Abstract
Systemic light chain amyloidosis (AL) is a clonal plasma cell (PC) disorder characterized by the deposition of misfolded immunoglobulin light chains (LC) as insoluble fibrils in organs. The lack of suitable models has hindered the investigation of the disease mechanisms. Our aim was to establish AL producing PC lines and to use them to investigate the biology of the amyloidogenic clone. We used lentiviral vectors to generate cell lines expressing LCs from patients suffering from AL amyloidosis. The AL LC producing cell lines showed a significant decrease in proliferation, cell cycle arrest, and an increase in apoptosis and autophagy as compared with the multiple myeloma (MM) LC producing cells. Using RNAsequencing the AL LC producing lines showed higher mitochondrial oxidative stress, decreased activity of the myc and cholesterol pathways. The neoplastic behavior of PCs is altered by the constitutive expression of amyloidogenic LC causing intracellular toxicity. This observation may explain the disparity in the malignant behavior of the amyloid clone compared to the myeloma clone. These findings should enable future in vitro studies and help delineate AL’s unique cellular pathways, thus expediting the development of specific treatments for AL patients.
Figures & Tables
Article Information

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.