Abstract
The European Hematology Association (EHA) Roadmap for European Hematology Research highlights major achievements in diagnosis and treatment of blood disorders and identifies the greatest unmet clinical and scientific needs in those areas to enable better funded, more focused European hematology research. Initiated by the EHA, around 300 experts contributed to the consensus document, which will help European policy makers, research funders, research organizations, researchers, and patient groups make better informed decisions on hematology research. It also aims to raise public awareness of the burden of blood disorders on European society, which purely in economic terms is estimated at €23 billion per year, a level of cost that is not matched in current European hematology research funding. In recent decades, hematology research has improved our fundamental understanding of the biology of blood disorders, and has improved diagnostics and treatments, sometimes in revolutionary ways. This progress highlights the potential of focused basic research programs such as this EHA Roadmap.The EHA Roadmap identifies nine ‘sections’ in hematology: normal hematopoiesis, malignant lymphoid and myeloid diseases, anemias and related diseases, platelet disorders, blood coagulation and hemostatic disorders, transfusion medicine, infections in hematology, and hematopoietic stem cell transplantation. These sections span 60 smaller groups of diseases or disorders.The EHA Roadmap identifies priorities and needs across the field of hematology, including those to develop targeted therapies based on genomic profiling and chemical biology, to eradicate minimal residual malignant disease, and to develop cellular immunotherapies, combination treatments, gene therapies, hematopoietic stem cell treatments, and treatments that are better tolerated by elderly patients.
Introduction
Blood can be described as one of the human body’s largest organs. It is essentially a liquid tissue containing many different types of specialized cells needed for the normal functioning of the human body. When one or more of these cell types do not perform well, a wide variety of blood disorders can result, ranging from blood cancers and coagulation and platelet disorders to very common diseases such as anemia.
Hematology is the medical discipline concerned with diagnosing and treating all of these diseases.
In the European Union (EU) alone, an estimated 80 million people are currently affected with blood disorders.
Various types of anemia affect more than 50 million children and adults in the World Health Organization’s European region.1 Blood cancers, some of which mainly affect young people, contribute strongly to premature cancer-related mortality and lost productivity in Europe.2 Among cancers, blood cancers [leukemia, Hodgkin and non-Hodgkin lymphomas (HLs and NHLs), and multiple myeloma] together rank third after lung cancer and colorectal cancer in terms of age-adjusted mortality in the European Economic Area.3
Inherited blood diseases, such as thalassemia, sickle cell disease, and glucose-6-phosphate dehydrogenase deficiency, also affect millions of people and cause substantial morbidity and mortality. Rarer forms of congenital blood disorders represent an immense burden on those affected. Many infectious diseases affect various types of blood or blood-forming cells, causing widespread diseases such as malaria and HIV/AIDS.
In recent decades, enormous progress has been made in terms of diagnosis and treatment of these diseases. Unfortunately, many blood disorders remain incurable. Approximately 115,000 patients die each year.4
Blood disorders have immense economic consequences as well. The combined societal cost of hematologic diseases for the EU, Norway, Iceland, and Switzerland has been estimated at €23 billion per year.
At a European level, current public spending on hematology research does not match this vast medical need. Of the €6.1 billion that the European Union allocated to health research under its 7 Framework Programme (2007–2013), only 2.2% (€137 million) was granted to hematology research. That amounts to less than 0.1% of the societal cost of blood disorders in Europe over that same period.
Milestones in hematology and the contribution from Europe
Research in hematology has fundamentally improved our understanding of the biology of hematologic diseases and resulted in many innovative discoveries. Many of these discoveries are powerful examples of how carefully designed basic research can lead to new approaches that block or interact with key pathways in diseased cells, resulting in very impressive anti-tumor effects. European hematologists have pioneered important inventions and played leading roles in developing, for example, curative approaches for patients with malignant diseases, such as lymphomas and leukemias,65 which often affect young patients.
Key milestones included the characterization of hemoglobin (Hb),7 induced pluripotent stem cells (iPSCs),8 and somatic driver mutations.9 The discovery of the Philadelphia chromosome and the subsequent identification of the BCR-ABL1 tyrosine kinase and its role in chronic myeloid leukemia (CML)10 led to the successful development of potentially curative targeted treatment in this form of blood cancer.11 This was an unprecedented rate of success and it occurred in a malignancy that previously could only be treated by allogeneic transplant in a very select number of patients. Acute promyelocytic leukemia became one of the first malignancies that could be cured without conventional chemotherapy.12
Another key development in hematology was that of a wide range of monoclonal antibodies following the original invention by Köhler and Milstein in the UK.13 Humanized or fully human monoclonal antibodies are now used in hematology for both diagnostic and therapeutic purposes. The clinical breakthrough was a humanized monoclonal antibody targeting the CD20 antigen on B-cell lymphoma.14 Today, monoclonal antibodies or antibody-based conjugates are used successfully in most malignant lymphomas and leukemias. They can, however, also be effective in nonmalignant blood disorders such as paroxysmal nocturnal hemoglobinuria (PNH), a rare acquired clonal stem cell defect leading to increased fragility of hematopoietic cells and hemolytic anemia (HA), thrombosis, and bone marrow failure (BMF). Prognosis of patients with severe PNH used to be less than five years, but changed radically with the advent of an anti-complement monoclonal antibody that counteracts membrane fragility.15 Today, PNH patients treated with this antibody have a normal life expectancy.
Severe hemophilia represents another story of unprecedented success. Patients used to be confined to wheelchairs or face the specter of death because of untreatable hemorrhage or blood-born infections such as HIV/AIDS. Today, new recombinant substitutive therapy is completely safe and effective in long-term prophylaxis. Hematology expects to further improve in this area, with innovative factor VIII or IX molecules that have increased activity and prolonged half-life.
Gene therapy is becoming a reality for more and more blood diseases, while treatment of malignant and nonmalignant hematologic diseases is impossible without blood transfusions and blood-derived medicinal products. “Haemovigilance”, a European initiative that provides a surveillance registry of serious unwanted transfusion effects, is now up and running in most EU member states.
European research policy
Governments, politicians and other policy makers carry the responsibility for making well informed decisions on regulation and funding priorities for health research and medicinal product development. The research community has a responsibility in providing policy makers with the kind of information and evidence that they need to make those informed decisions.
With respect to research funding, the authors feel that hematology was underfunded in the EU’s 7 Framework Programme. The current Framework Programme (Horizon 2020) was spared major budget cuts, but raising the relative level of funding for hematology research needs to be improved.
With respect to regulation, a key issue on the table is the EU’s new regulation on clinical trials on medicinal products for human use, which will come into effect in 2016. Over the past years, the number of clinical trials in Europe has decreased. These trials are key to medical research. European research groups have been instrumental in setting up multicenter clinical trials to test important new products. However, the new regulation has the potential of making future trials in Europe too expensive and too complex to carry out, especially in terms of academic research, and, therefore, may lead to a further decrease in clinical trials. A drop in the number of trials and the number of participants would harm the interests of European patients and damage Europe’s knowledge infrastructure and future economy.
The European Hematology Association Roadmap
In 2014, at its 19 Annual Congress in Milan, Italy, the European Hematology Association (EHA), Europe’s largest non-profit membership organization in the field of hematology, decided to launch a Roadmap project. One of its goals was to better inform European policy makers and other stakeholders about the urgent needs and priorities of patients with blood diseases and the field of hematology. Another goal was to help the European hematology research community in harnessing resources by bringing basic researchers, clinical trial networks and patient advocates together in comprehensive study groups. A European consensus on medical and research priorities will also promote excellence and collaboration between academics and the pharmaceutical industry.
The EHA Roadmap Task Force included EHA board members and other top experts from all fields of hematology. Hundreds of hematologists, clinical trial groups, drug makers, national hematology societies, patient representatives and others were invited to provide input and advice. Many contributed to the drafting of the document and the various stages of review.
This Roadmap is the outcome of this project. It identifies the greatest unmet needs in hematology research and clinical science, describing: 1) state-of-the-art hematologic research; 2) the most urgent research priorities; and 3) the anticipated impact this research could have.
The EHA Roadmap Task Force identified nine major ‘sections’ in hematology: normal hematopoiesis, malignant lymphoid and myeloid diseases, anemias and related diseases, platelet disorders, blood coagulation and hemostatic disorders, transfusion medicine, infections in hematology, and hematopoietic stem cell transplantation (HSCT). For each section, the Roadmap Task Force appointed one or two editors. Together, the Roadmap Task Force and section editors drafted and reviewed a more detailed framework of 60 ‘subsections’ of groups of diseases and conditions. Section editors selected experts from their various fields to contribute as subsection editors or authors. Each section and subsection adapted the same basic format.
Draft texts and figures were discussed by the Roadmap Task Force and section editors during three meetings between October 2014 and March 2015. Sections were then reviewed by the Roadmap Task Force, the EHA board, and a selection of experts. The final draft was sent for consultation to stakeholders such as national hematology societies, patients’ organizations, hematology trial groups, and other European organizations in, for example, overlapping disease areas. All comments were discussed and integrated before submission of the manuscript to Haematologica.
In all, around 300 European hematologists and top experts helped to create the Roadmap.
At the request of the EHA board, the University of Oxford simultaneously carried out a study into the societal burden and cost of blood disorders in Europe. Outcomes from their analysis also informed various parts of this Roadmap.
Some dominating topics and unmet needs can be recognized in nearly all of the nine EHA Roadmap sections. They include:
- developing novel targeted therapies based on genomic profiling and chemical biology;
- unleashing the power of cellular immunotherapy;
- eradicating minimal residual disease (MRD) in hematologic malignancies;
- creating smarter combination treatments;
- developing better tolerated treatments for blood disorders with a special emphasis on elderly patients;
- using gene therapy to tackle blood disorders;
- maximizing the clinical application of hematopoietic stem cells (HSCs) for transfusion, immunomodulation, and repair.
Taken together, this EHA Roadmap highlights major past achievements in the diagnostics and treatment of blood disorders, identifies unmet clinical and scientific needs in those same areas, and will enable better funded and more focused European hematology research.
The EHA will pro-actively bring this Roadmap to the attention of all stakeholders involved in hematology, and calls upon those stakeholders to do the same.
- Received December 15, 2015.
- Accepted January 27, 2016.
References
- WHO Global Database on Anemia. World Health Organization: Geneva; 2008. Google Scholar
- Hanly P, Soerjomataram I, Sharp L. Measuring the societal burden of cancer: the cost of lost productivity due to premature cancer-related mortality in Europe. Int J Cancer. 2015; 136(4):e136-145. PubMedhttps://doi.org/10.1002/ijc.29105Google Scholar
- Causes of death. 2015. Google Scholar
- Cancer Factsheets.Google Scholar
- Döhner H, Stilgenbauer S, Benner A. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 2000; 343(26):1910-1916. PubMedhttps://doi.org/10.1056/NEJM200012283432602Google Scholar
- Engert A, Plütschow A, Eich HT. Reduced treatment intensity in patients with early-stage Hodgkin’s Lymphoma. N Engl J Med. 2010; 363:640-652. PubMedhttps://doi.org/10.1056/NEJMoa1000067Google Scholar
- Perutz MF, Rossmann MG, Cullis AF. Structure of hemoglobin: a three-dimensional Fourier synthesis at 5.5-A. resolution, obtained by X-ray analysis. Nature. 1960; 185:416-422. PubMedhttps://doi.org/10.1038/185416a0Google Scholar
- Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006; 126(4):663-676. PubMedhttps://doi.org/10.1016/j.cell.2006.07.024Google Scholar
- Malcovati L, Papaemmanuil E, Ambaglio I. Driver somatic mutations identify distinct disease entities within myeloid neoplasms with myelodysplasia. Blood. 2014; 124(9):1513-1521. PubMedhttps://doi.org/10.1182/blood-2014-03-560227Google Scholar
- Faderl S, Talpaz M, Estrov Z, O’Brien S, Kurzrock R, Kantarjian HM. The biology of chronic myeloid leukemia. N Engl J Med. 1999; 341(3):164-172. PubMedhttps://doi.org/10.1056/NEJM199907153410306Google Scholar
- Druker BJ, Guilhot F, O’Brian SG. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med. 2006; 355(23):2408-2411. PubMedhttps://doi.org/10.1056/NEJMoa062867Google Scholar
- Lo-Coco F, Cicconi L. Outpatient oral treatment for acute promyelocytic leukemia. N Engl J Med. 2015; 372(9):884-885. https://doi.org/10.1056/NEJMc1500125Google Scholar
- Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975; 256:495-497. PubMedhttps://doi.org/10.1038/256495a0Google Scholar
- Coiffier B, Lepage E, Briere J. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med. 2002; 346(4):235-242. PubMedhttps://doi.org/10.1056/NEJMoa011795Google Scholar
- Hillmen P, Young NS, Schubert J. The complement inhibitor eculizumab in paroxysmal nocturnal hemoglobinuria. N Engl J Med. 2006; 355(12):1233-1243. PubMedhttps://doi.org/10.1056/NEJMoa061648Google Scholar
- Dzierzak E, Philipsen S. Erythropoiesis: development and differentiation. Cold Spring Harb. Perspect. Med. 2013; 3(4):a011601. Google Scholar
- Weatherall DJ, Clegg JB. Thalassemia–a global public health problem. Nat Med. 1996; 2(8):847-849. PubMedhttps://doi.org/10.1038/nm0896-847Google Scholar
- Kountouris P, Lederer CW, Fanis P, Feleki X, Old J, Kleanthous M. IthaGenes: an interactive database for hemoglobin variations and epidemiology. PLoS One. 2014; 9(7):e103020. PubMedhttps://doi.org/10.1371/journal.pone.0103020Google Scholar
- Vainchenker W, Favale F. Myelofibrosis, JAK2 inhibitors and erythropoiesis. Leukemia. 2013; 27(6):1219-1223. PubMedhttps://doi.org/10.1038/leu.2013.72Google Scholar
- Nauseef WM, Borregaard N. Neutrophils at work. Nat Immunol. 2014; 15(7):602-611. PubMedhttps://doi.org/10.1038/ni.2921Google Scholar
- Dong F, Brynes RK, Tidow N, Welte K, Lowenberg B, Touw IP. Mutations in the gene for the granulocyte colony-stimulating-factor receptor in patients with acute myeloid leukemia preceded by severe congenital neutropenia. N Engl J Med. 1995; 333(8):487-493. PubMedhttps://doi.org/10.1056/NEJM199508243330804Google Scholar
- Theilgaard-Monch K, Jacobsen LC, Borup R. The transcriptional program of terminal granulocytic differentiation. Blood. 2005; 105(4):1785-1796. PubMedhttps://doi.org/10.1182/blood-2004-08-3346Google Scholar
- Reckzeh K, Bereshchenko O, Mead A. Molecular and cellular effects of oncogene cooperation in a genetically accurate AML mouse model. Leukemia. 2012; 26(7):1527-1536. PubMedhttps://doi.org/10.1038/leu.2012.37Google Scholar
- Kirstetter P, Schuster MB, Bereshchenko O. Modeling of C/EBPa mutant acute myeloid leukemia reveals a common expression signature of committed myeloid leukemia initiating cells. Cancer Cell. 2008; 13:299-310. PubMedhttps://doi.org/10.1016/j.ccr.2008.02.008Google Scholar
- Wendling F, Maraskovsky E, Debili N. cMpl ligand is a humoral regulator of megakaryocytopoiesis. Nature. 1994; 369(6481):571-574. PubMedhttps://doi.org/10.1038/369571a0Google Scholar
- Tijssen MR, Cvejic A, Joshi A. Genome-wide analysis of simultaneous GATA1/2, RUNX1, FLI1, and SCL binding in megakaryocytes identifies hematopoietic regulators. Dev Cell. 2011; 20(5):597-609. PubMedhttps://doi.org/10.1016/j.devcel.2011.04.008Google Scholar
- Sanjuan-Pla A, Macaulay IC, Jensen CT. Platelet-biased stem cells reside at the apex of the hematopoietic stem-cell hierarchy. Nature. 2013; 502(7470):232-236. PubMedhttps://doi.org/10.1038/nature12495Google Scholar
- Lordier L, Bluteau D, Jalil A. RUNX1-induced silencing of non-muscle myosin heavy chain IIB contributes to megakary-ocyte polyploidization. Nat Commun. 2012; 3:717. PubMedhttps://doi.org/10.1038/ncomms1704Google Scholar
- Di Buduo CA, Wray LS, Tozzi L. Programmable 3D silk bone marrow niche for platelet generation ex vivo and modeling of megakaryopoiesis pathologies. Blood. 2015; 125(14):2254-2264. PubMedhttps://doi.org/10.1182/blood-2014-08-595561Google Scholar
- Cavazzana-Calvo M, Fischer A, Hacein-Bey-Abina S, Aiuti A. Gene therapy for primary immunodeficiencies: Part 1. Curr Opin Immunol. 2012; 24(5):580-584. PubMedhttps://doi.org/10.1016/j.coi.2012.08.008Google Scholar
- Plum J, De SM, Leclercq G, Taghon T, Kerre T, Vandekerckhove B. Human intrathymic development: a selective approach. Semin Immunopathol. 2008; 30(4):411-423. PubMedhttps://doi.org/10.1007/s00281-008-0135-2Google Scholar
- Taghon T, Waegemans E, Van de Walle I. Notch signaling during human T cell development. Curr Top Microbiol Immunol. 2012; 360:75-97. PubMedhttps://doi.org/10.1007/82_2012_230Google Scholar
- De Villartay JP, Fischer A, Durandy A. The mechanisms of immune diversification and their disorders. Nat Rev Immunol. 2003; 3(12):962-972. PubMedhttps://doi.org/10.1038/nri1247Google Scholar
- Spits H, Di Santo JP. The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nat Immunol. 2011; 12(1):21-27. PubMedhttps://doi.org/10.1038/ni.1962Google Scholar
- Bystrykh LV, Verovskaya E, Zwart E, Broekhuis M, de Haan G. Counting stem cells: methodological constraints. Nat Methods. 2012; 9(6):567-574. PubMedhttps://doi.org/10.1038/nmeth.2043Google Scholar
- Geiger H, de Haan G, Florian MC. The ageing hematopoietic stem cell compartment. Nat Rev Immunol. 2013; 13(5):376-389. PubMedhttps://doi.org/10.1038/nri3433Google Scholar
- Pereira CF, Lemischka IR, Moore K. ‘From blood to blood’: de-differentiation of hematopoietic progenitors to stem cells. EMBO J. 2014; 33(14):1511-1513. PubMedhttps://doi.org/10.15252/embj.201488980Google Scholar
- Lassailly F, Foster K, Lopez-Onieva L, Currie E, Bonnet D. Multimodal imaging reveals structural and functional heterogeneity in different bone marrow compart ments: functional implications on hematopoietic stem cells. Blood. 2013; 122(10):1730-1740. PubMedhttps://doi.org/10.1182/blood-2012-11-467498Google Scholar
- Shlush LI, Zandi S, Mitchell A. Identification of pre-leukaemic hematopoietic stem cells in acute leukemia. Nature. 2014; 506(7488):328-333. PubMedhttps://doi.org/10.1038/nature13038Google Scholar
- Dzierzak E, Speck NA. Of lineage and legacy: the development of mammalian hematopoietic stem cells. Nat Immunol. 2008; 9(2):129-36. PubMedhttps://doi.org/10.1038/ni1560Google Scholar
- Medvinsky A, Rybtsov S, Taoudi S. Embryonic origin of the adult hematopoietic system: advances and questions. Development. 2011; 138(6):1017-1031. PubMedhttps://doi.org/10.1242/dev.040998Google Scholar
- Solaimani Kartalaei P, Yamada-Inagawa T, Vink CS. Whole-transcriptome analysis of endothelial to hematopoietic stem cell transition reveals a requirement for Gpr56 in HSC generation. J Exp Med. 2015; 212:93-106. PubMedhttps://doi.org/10.1084/jem.20140767Google Scholar
- Charbord P, Pouget C, Binder H. A systems biology approach for defining the molecular framework of the hematopoietic stem cell niche. Cell Stem Cell. 2014; 15(3):376-391. PubMedhttps://doi.org/10.1016/j.stem.2014.06.005Google Scholar
- Roberts I, O’Connor D, Roy A, Cowan G, Vyas P. The impact of trisomy 21 on foetal hematopoiesis. Blood Cells Mol Dis. 2013; 51(4):277-281. PubMedhttps://doi.org/10.1016/j.bcmd.2013.07.008Google Scholar
- Rashidi NM, Scott MK, Scherf N. In vivo time-lapse imaging shows diverse niche engagement by quiescent and naturally activated hematopoietic stem cells. Blood. 2014; 124(1):79-83. PubMedhttps://doi.org/10.1182/blood-2013-10-534859Google Scholar
- Krause DS, Fulzele K, Catic A. Differential regulation of myeloid leukemias by the bone marrow microenvironment. Nat Med. 2013; 19(11):1513-1517. PubMedhttps://doi.org/10.1038/nm.3364Google Scholar
- Arranz L, Sanchez-Aguilera A, Martin-Perez D. Neuropathy of hematopoietic stem cell niche is essential for myeloproliferative neoplasms. Nature. 2014; 512(7512):78-81. PubMedhttps://doi.org/10.1038/nature13383Google Scholar
- Raaijmakers MH, Mukherjee S, Guo S. Bone progenitor dysfunction induces myelodysplasia and secondary leukemia. Nature. 2010; 464(7290):852-857. PubMedhttps://doi.org/10.1038/nature08851Google Scholar
- Chen L, Kostadima M, Martens JH. Transcriptional diversity during lineage commitment of human blood progenitors. Science. 2014; 345(6204):1251033. PubMedhttps://doi.org/10.1126/science.1251033Google Scholar
- Martens JH, Brinkman AB, Simmer F. PML-RARalpha/RXR Alters the Epigenetic Landscape in Acute Promyelocytic Leukemia. Cancer Cell. 2010; 17(2):173-185. PubMedhttps://doi.org/10.1016/j.ccr.2009.12.042Google Scholar
- Moignard V, Macaulay IC, Swiers G. Characterization of transcriptional networks in blood stem and progenitor cells using high-throughput single-cell gene expression analysis. Nat Cell Biol. 2013; 15(4):363-372. PubMedhttps://doi.org/10.1038/ncb2709Google Scholar
- Saeed S, Quintin J, Kerstens HH. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science. 2014; 345(6204):1251086. PubMedhttps://doi.org/10.1126/science.1251086Google Scholar
- Wilson NK, Foster SD, Wang X. Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators. Cell Stem Cell. 2010; 7(4):532-544. PubMedhttps://doi.org/10.1016/j.stem.2010.07.016Google Scholar
- Eilken HM, Nishikawa S, Schroeder T. Continuous single-cell imaging of blood generation from haemogenic endothelium. Nature. 2009; 457(7231):896-900. PubMedhttps://doi.org/10.1038/nature07760Google Scholar
- Lancrin C, Sroczynska P, Stephenson C, Allen T, Kouskoff V, Lacaud G. The haemangioblast generates hematopoietic cells through a haemogenic endothelium stage. Nature. 2009; 457(7231):892-895. PubMedhttps://doi.org/10.1038/nature07679Google Scholar
- Ledran MH, Krassowska A, Armstrong L. Efficient hematopoietic differentiation of human embryonic stem cells on stromal cells derived from hematopoietic niches. Cell Stem Cell. 2008; 3(1):85-98. PubMedhttps://doi.org/10.1016/j.stem.2008.06.001Google Scholar
- Mittra J, Tait J, Mastroeni M, Turner ML, Mountford JC, Bruce K. Identifying viable regulatory and innovation pathways for regenerative medicine: a case study of cultured red blood cells. Nat Biotechnol. 2015; 32(1):180-190. Google Scholar
- Bussmann LH, Schubert A, Vu Manh TP. A robust and highly efficient immune cell reprogramming system. Cell Stem Cell. 2009; 5(5):554-566. PubMedhttps://doi.org/10.1016/j.stem.2009.10.004Google Scholar
- Sant M, Allemani C, Tereanu C. Incidence of hematologic malignancies in Europe by morphologic subtype: results of the HAEMACARE project. Blood. 2010; 116(19):3724-3734. PubMedhttps://doi.org/10.1182/blood-2010-05-282632Google Scholar
- Marcos-Gragera R, Allemani C, Tereanu C. Survival of European patients diagnosed with lymphoid neoplasms in 2000–2002: results of the HAEMACARE project. Haematologica. 2011; 96(5):720-728. PubMedhttps://doi.org/10.3324/haematol.2010.034264Google Scholar
- Testoni M, Zucca E, Young KH, Bertoni F. Genetic lesions in diffuse large B-cell lymphomas. Ann Onc. 2015; 26(6):1069-1080. PubMedhttps://doi.org/10.1093/annonc/mdv019Google Scholar
- Pileri SA, Piccaluga PP. New molecular insights into peripheral T cell lymphomas. J Clin Invest. 2012; 122(10):3448-3455. PubMedhttps://doi.org/10.1172/JCI61205Google Scholar
- Puente XS, Pinyol M, Quesada V. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature. 2011; 475(7354):101-105. PubMedhttps://doi.org/10.1038/nature10113Google Scholar
- Google Scholar
- Beà S, Valdés-Mas R, Navarro A. Landscape of somatic mutations and clonal evolution in mantle cell lymphoma. Proc Natl Acad Sci USA. 2013; 110(45):18250-18255. PubMedhttps://doi.org/10.1073/pnas.1314608110Google Scholar
- Lemonnier F, Couronne L, Parrens M. Recurrent TET2 mutations in peripheral T-cell lymphomas correlate with TFH-like features and adverse clinical parameters. Blood. 2012; 120(7):1466-1469. PubMedhttps://doi.org/10.1182/blood-2012-02-408542Google Scholar
- Scott DW, Gascoyne RD. The tumour microenvironment in B cell lymphomas. Nat Rev Cancer. 2014; 14:517-534. PubMedhttps://doi.org/10.1038/nrc3774Google Scholar
- Chubb D, Weinhold N, Broderick P. Common variation at 3q26.2, 6p21.33, 17p11.2 and 22q13.1 influences multiple myeloma risk. Nat Genet. 2013; 45(10):1221-1225. PubMedhttps://doi.org/10.1038/ng.2733Google Scholar
- Cerhan JR, Berndt SI, Vijai J. Genome-wide association study identifies multiple susceptibility loci for diffuse large B cell lymphoma. Nat Genet. 2014; 46(11):1233-1238. PubMedhttps://doi.org/10.1038/ng.3105Google Scholar
- Cruz RD, Tricot G, Zangari M, Zhan F. Progress in myeloma stem cells. Am J Blood Res. 2011; 1(3):135-145. PubMedGoogle Scholar
- Martinez-Climent JA, Fontan L, Gascoyne RD, Siebert R, Prosper F. Lymphoma stem cells: enough evidence to support their existence¿. Haematologica. 2010; 95(2):293-302. PubMedhttps://doi.org/10.3324/haematol.2009.013318Google Scholar
- Roulland S, Kelly RS, Morgado E. t(14;18) Translocation: A predictive blood biomarker for follicular lymphoma. J Clin Oncology. 2014; 32(13):1347-1355. PubMedhttps://doi.org/10.1200/JCO.2013.52.8190Google Scholar
- Sant M, Minicozzi P, Mounier M. Survival for haematological malignancies in Europe between 1997 and 2008 by region and age: Results of EUROCARE-5, a population-based study. Lancet Oncol. 2014; 15(9):931-942. PubMedhttps://doi.org/10.1016/S1470-2045(14)70282-7Google Scholar
- Oerlemans S, Mols F, Nijziel MR, Lybeert M, van de Poll-Franse LV. The impact of treatment, socio-demographic and clinical characteristics on health-related quality of life among Hodgkin’s and non-Hodgkin’s lymphoma survivors: a systematic review. Ann Hematol. 2011; 90(9):993-1004. PubMedhttps://doi.org/10.1007/s00277-011-1274-4Google Scholar
- Behringer K, Goergen H, Hitz F. Omission of dacarbazine or bleomycin, or both, from the ABVD regimen in treatment of early-stage favourable Hodgkin’s lymphoma (GHSG HD13): an open-label, randomized, non-inferiority trial. Lancet. 2014; 14:6736-6769. Google Scholar
- Diehl V, Franklin J, Pfreundschuh M. Standard and increased-dose BEACOPP chemotherapy compared with COPP-ABVD for advanced Hodgkin’s disease. N Engl J Med. 2003; 348:2386-2395. PubMedhttps://doi.org/10.1056/NEJMoa022473Google Scholar
- Raemaekers JM, André MP, Federico M. Omitting radiotherapy in early positron emission tomography-negative stage I/II Hodgkin lymphoma is associated with an increased risk of early relapse: Clinical results of the preplanned interim analysis of the randomized EORTC/LYSA/FIL H10 trial. J Clin Oncol. 2014; 32:1188-1194. PubMedhttps://doi.org/10.1200/JCO.2013.51.9298Google Scholar
- Barrington SF, Mikhaeel NG, Kostakoglu L. Role of imaging in the staging and response assessment of lymphoma: Consensus of the International Conference on Malignant Lymphomas Imaging Working Group. J Clin Oncol. 2014; 32:3048-3058. PubMedhttps://doi.org/10.1200/JCO.2013.53.5229Google Scholar
- Younes A, Gopal AK, Smith SE. Results of a pivotal phase II study of bren-tuximab vedotin for patients with relapsed or refractory Hodgkin’s lymphoma. J Clin Oncol. 2012; 30:2183-2189. PubMedhttps://doi.org/10.1200/JCO.2011.38.0410Google Scholar
- Coiffier B, Thieblemont C, Van Den Neste E. Long-term outcome of patients in the LNH-98.5 trial, the first randomized study comparing rituximab-CHOP to standard CHOP chemotherapy in DLBCL patients: a study by the Groupe d’Etudes des Lymphomes de l’Adulte. Blood. 2010; 116:2040-2045. PubMedhttps://doi.org/10.1182/blood-2010-03-276246Google Scholar
- Ziepert M, Hasenclever D, Kuhnt E. Standard International prognostic index remains a valid predictor of outcome for patients with aggressive CD20+ B-cell lymphoma in the rituximab era. J Clin Oncol. 2010; 28:2373-2380. PubMedhttps://doi.org/10.1200/JCO.2009.26.2493Google Scholar
- Hummel M, Bentink S, Berger H. A biologic definition of Burkitt’s lymphoma from transcriptional and genomic profiling. N Engl J Med. 2006; 354:2419-2430. PubMedhttps://doi.org/10.1056/NEJMoa055351Google Scholar
- Pott C, Hoster E, Delfau-Larue M-H. Molecular remission is an independent predictor of clinical outcome in patients with mantle cell lymphoma after combined immunochemotherapy: a European MCL intergroup study. Blood. 2010; 115:3215-3223. PubMedhttps://doi.org/10.1182/blood-2009-06-230250Google Scholar
- Hoster E, Dreyling M, Klapper W. A new prognostic index (MIPI) for patients with advanced-stage mantle cell lymphoma. Blood. 2008; 111:558-565. PubMedhttps://doi.org/10.1182/blood-2007-06-095331Google Scholar
- Geisler CH, Kolstad A, Laurell A. Long-term progression-free survival of mantle cell lymphoma after intensive front-line immunochemotherapy with in vivo-purged stem cell rescue: a nonrandomized phase 2 multicenter study by the Nordic Lymphoma Group. Blood. 2008; 112:2687-2693. PubMedhttps://doi.org/10.1182/blood-2008-03-147025Google Scholar
- Kluin-Nelemans HC, Hoster E, Hermine O. Treatment of older patients with mantle-cell lymphoma. N Engl J Med. 2012; 367:520-531. PubMedhttps://doi.org/10.1056/NEJMoa1200920Google Scholar
- Wang ML, Rule S, Martin P. Targeting BTK with Ibrutinib in Relapsed or Refractory Mantle-Cell Lymphoma. N Engl J Med. 2013; 369:507-516. PubMedhttps://doi.org/10.1056/NEJMoa1306220Google Scholar
- Okosun J, Bodor C, Wang J. Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma. Nat Genet. 2014; 46(2):176-181. PubMedhttps://doi.org/10.1038/ng.2856Google Scholar
- Salles G, Seymour JF, Offner F. Rituximab maintenance for 2 years in patients with high tumour burden follicular lymphoma responding to rituximab plus chemotherapy (PRIMA): a phase 3, randomised controlled trial. Lancet. 2011; 377(9759):42-51. PubMedhttps://doi.org/10.1016/S0140-6736(10)62175-7Google Scholar
- Tellier J, Menard C, Roulland S. Human t(14;18)positive germinal center B cells: a new step in follicular lymphoma pathogenesis¿. Blood. 2014; 123(22):3462-3465. PubMedhttps://doi.org/10.1182/blood-2013-12-545954Google Scholar
- Bodor C, Grossmann V, Popov N. EZH2 mutations are frequent and represent an early event in follicular lymphoma. Blood. 2013; 122(18):3165-3168. PubMedhttps://doi.org/10.1182/blood-2013-04-496893Google Scholar
- Sander B, de Jong D, Rosenwald A. The reliability of immunohistochemical analysis of the tumor microenvironment in follicular lymphoma: a validation study from the Lunenburg Lymphoma Biomarker Consortium. Haematologica. 2014; 99(4):715-725. PubMedhttps://doi.org/10.3324/haematol.2013.095257Google Scholar
- Ferreri AJ, Govi S, Ponzoni M. Marginal zone lymphomas and infectious agents. Semin Cancer Biol. 2013; 23:431-440. PubMedhttps://doi.org/10.1016/j.semcancer.2013.09.004Google Scholar
- Montalban C, Abraira V, Arcaini L. Simplification of risk stratification for splenic marginal zone lymphoma: a point-based score for practical use. Leuk Lymphoma. 2014; 55:929-931. PubMedhttps://doi.org/10.3109/10428194.2013.818143Google Scholar
- Salar A, Domingo-Domenech E, Panizo C. First-line response-adapted treatment with the combination of bendamustine and rituximab for patients with mucosa-associated lymphoid tissue lymphoma (MALT2008-01): a multicenter, single arm, phase II trial. Lancet Haematol. 2014; 1:e104-111. https://doi.org/10.1016/S2352-3026(14)00021-0Google Scholar
- Zucca E, Conconi A, Laszlo D. Addition of rituximab to chlorambucil produces superior event-free survival in the treatment of patients with extranodal marginal-zone B-cell lymphoma: 5-year analysis of the IELSG-19 Randomized Study. J Clin Oncol. 2013; 31:565-572. PubMedhttps://doi.org/10.1200/JCO.2011.40.6272Google Scholar
- Arcaini L, Vallisa D, Rattotti S. Antiviral treatment in patients with indolent B-cell lymphomas associated with HCV infection: a study of the Fondazione Italiana Linfomi. Ann Oncol. 2014; 25:1404-1410. PubMedhttps://doi.org/10.1093/annonc/mdu166Google Scholar
- Gaulard P, de Leval L. Pathology of Peripheral T-Cell Lymphomas: Where Do We Stand. Sem Hematol. 2014; 51(1):5-16. PubMedhttps://doi.org/10.1053/j.seminhematol.2013.11.003Google Scholar
- Chaudhary RK, Bhatt VR, Vose JM. Management of extranodal natural killer/T-cell lymphoma, nasal type. Clin Lymphoma Myeloma Leuk. 2015; 15(5):245-252. PubMedhttps://doi.org/10.1016/j.clml.2014.12.014Google Scholar
- Inghirami G, Chan WC, Pileri S. Peripheral T-cell and NK cell lymphoproliferative disorders: Cell of origin, clinical and pathological implications. Immunol Rev. 2015; 263(1):124-159. PubMedhttps://doi.org/10.1111/imr.12248Google Scholar
- DeSimone JA, Sodha P, Ignatova D, Dummer R, Cozzio A, Guenova E. Recent advances in primary cutaneous T-cell lymphoma. Curr Opin Oncol. 2015; 27(2):128-133. PubMedhttps://doi.org/10.1097/CCO.0000000000000161Google Scholar
- San-Juan R, Manuel O, Hirsch HH. Current preventive strategies and management of Epstein Barr virus-related post-transplant lymphoproliferative disease in solid organ transplantation in Europe. Results of the ESGICH questionnaire-based Cross-sectional Survey. Clin Microbiol Infect. 2015; 21(6):604.e1-9. https://doi.org/10.1016/j.cmi.2015.02.002Google Scholar
- Vickers MA, Wilkie GM, Robinson N. Establishment and operation of a Good Manufacturing Practice-compliant allogeneic Epstein-Barr virus (EBV)-specific cytotoxic cell bank for the treatment of EBV-associated lymphoproliferative disease. Br J Haematol. 2014; 167:402-410. PubMedhttps://doi.org/10.1111/bjh.13051Google Scholar
- Barta SK, Samuel MS, Xue X. Changes in the influence of lymphoma- and HIV-specific factors on outcomes in AIDS-related non-Hodgkin lymphoma. Ann Oncol. 2015;mdv036. Google Scholar
- Barta SK, Xue X, Wang D. A new prognostic score for AIDS-related lymphoma in the rituximabera. Haematologica. 2014; 99:1731-1737. PubMedhttps://doi.org/10.3324/haematol.2014.111112Google Scholar
- Castillo JJ, Bower M, Brühlmann J. HIV-Associated Hodgkin Lymphoma in the cART Era Study Group. Prognostic factors for advanced-stage human immunodeficiency virus-associated classical Hodgkin lymphoma treated with doxorubicin, bleomycin, vinblastine, and dacarbazine plus combined antiretroviral therapy: A multi-institutional retrospective study. Cancer. 2015; 121:423-431. PubMedhttps://doi.org/10.1002/cncr.29066Google Scholar
- Dühren-von Minden M, Übelhart R, Schneider D. Chronic lymphocytic leukaemia is driven by antigen-independent cell-autonomous signalling. Nature. 2012; 489(7415):309-312. PubMedhttps://doi.org/10.1038/nature11309Google Scholar
- Woyach JA, Furman RR, Liu TM. Resistance mechanisms for the Bruton’s tyrosine kinase inhibitor ibrutinib. N Engl J Med. 2014; 370(24):2286-2294. PubMedhttps://doi.org/10.1056/NEJMoa1400029Google Scholar
- Hallek M, Fischer K, Fingerle-Rowson G. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. Lancet. 2010; 376:1164-1174. PubMedhttps://doi.org/10.1016/S0140-6736(10)61381-5Google Scholar
- Goede V, Fischer K, Busch R. Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions. N Engl J Med. 2014; 370(12):1101-1110. PubMedhttps://doi.org/10.1056/NEJMoa1313984Google Scholar
- Hallek M. Signaling the end of chronic lymphocytic leukemia: new frontline treatment strategies. Blood. 2013; 122:3723-3734. PubMedhttps://doi.org/10.1182/blood-2013-05-498287Google Scholar
- Bassan R, Hoelzer D. Modern therapy of acute lymphoblastic leukemia. J Clin Oncol. 2011; 29(5):532-543. PubMedhttps://doi.org/10.1200/JCO.2010.30.1382Google Scholar
- Analysis of minimal residual disease by Ig/TCR gene rearrangements: guidelines for interpretation of real-time quantitative PCR data. Leukemia. 2007; 21:604-611. PubMedGoogle Scholar
- Holleman A, Cheok MH, den Boer ML. Gene-expression patterns in drug-resistant acute lymphoblastic leukemia cells and response to treatment. N Engl J Med. 2004; 351(6):533-542. PubMedhttps://doi.org/10.1056/NEJMoa033513Google Scholar
- Ma X, Edmonson M, Yergeau D. Rise and fall of subclones from diagnosis to relapse in pediatric B-acute lymphoblastic leukaemia. Nat Commun. 2015; 6:6604. PubMedhttps://doi.org/10.1038/ncomms7604Google Scholar
- Vassal G, Rousseau R, Blanc P. Creating a unique, multi-stakeholder Paediatric Oncology Platform to improve drug development for children and adolescents with cancer. Eur J Cancer. 2015; 51(2):218-224. PubMedhttps://doi.org/10.1016/j.ejca.2014.10.029Google Scholar
- Rawstron AC, Orfao A, Beksac M. Report of the European Myeloma Network on multiparametric flow cytometry in mul tiple myeloma and related disorders. Haematologica. 2008; 93(3):431-438. PubMedhttps://doi.org/10.3324/haematol.11080Google Scholar
- Palumbo A, Bringhen S, Ludwig H. Personalized therapy in multiple myeloma according to patient age and vulnerability: a report of the European Myeloma Network (EMN). Blood. 2011; 118(17):4519-4529. PubMedhttps://doi.org/10.1182/blood-2011-06-358812Google Scholar
- Ross FM, Avet-Loiseau H, Ameye G. Report from the European Myeloma Network on interphase FISH in multiple myeloma and related disorders. Haematologica. 2012; 97(8):1272-1277. PubMedhttps://doi.org/10.3324/haematol.2011.056176Google Scholar
- Dimopoulos MA, García-Sanz R, Gavriatopoulou M. Primary therapy of Waldenstrom macroglobulinemia (WM) with weekly bortezomib, low-dose dexamethasone, and rituximab (BDR): long-term results of a phase 2 study of the European Myeloma Network (EMN). Blood. 2013; 122(19):3276-3282. PubMedhttps://doi.org/10.1182/blood-2013-05-503862Google Scholar
- Engelhardt M, Terpos E, Kleber M. European Myeloma Network recommendations on the evaluation and treatment of newly diagnosed patients with multiple myeloma. Haematologica. 2014; 99(2):232-242. PubMedhttps://doi.org/10.3324/haematol.2013.099358Google Scholar
- Sanders MA, Valk PJ. The evolving molecular genetic landscape in acute myeloid leukemia. Curr Opin Hematol. 2013; 20(2):79-85. PubMedhttps://doi.org/10.1097/MOH.0b013e32835d821cGoogle Scholar
- Cazzola M, Kralovics R. From Janus kinase 2 to calreticulin: the clinically relevant genomic landscape of myeloproliferative neoplasms. Blood. 2014; 123(24):3714-3719. PubMedhttps://doi.org/10.1182/blood-2014-03-530865Google Scholar
- Harrison C, Kiladjian JJ, Al-Ali HK. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med. 2012; 366(9):787-798. PubMedhttps://doi.org/10.1056/NEJMoa1110556Google Scholar
- Vannucchi AM, Kiladjian JJ, Griesshammer M. Ruxolitinib versus Standard Therapy for the Treatment of Polycythemia Vera. N Engl J Med. 2015; 372(5):426-435. PubMedhttps://doi.org/10.1056/NEJMoa1409002Google Scholar
- Fenaux P, Mufti GJ, Hellstrom-Lindberg E, Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomized, open-label, phase III study. Lancet Oncol. 2009; 10(3):223-232. PubMedhttps://doi.org/10.1016/S1470-2045(09)70003-8Google Scholar
- Dombret H, Seymour JF, Butrym A. International phase 3 study of azacitidine vs conventional care regimens in older patients with newly diagnosed AML with >30% blasts. Blood. 2015; 126(3):291-299. PubMedhttps://doi.org/10.1182/blood-2015-01-621664Google Scholar
- Lo-Coco F, Avvisati G, Vignetti M, Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N Engl J Med. 2013; 369(2):111-121. PubMedhttps://doi.org/10.1056/NEJMoa1300874Google Scholar
- Hehlmann R, Grimwade D, Simonsson B. The European LeukemiaNet - Achievements and perspectives. Haematologica. 2011; 96(1):156-162. PubMedhttps://doi.org/10.3324/haematol.2010.032979Google Scholar
- Malcovati L, Hellstrom-Lindberg E, Bowen D. Diagnosis and treatment of primary myelodysplastic syndromes in adults: recommendations from the European LeukemiaNet. Blood. 2013; 122:2943-2964. PubMedhttps://doi.org/10.1182/blood-2013-03-492884Google Scholar
- Döhner H, Estey EH, Amadori S. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood. 2010; 115(3):453-474. PubMedhttps://doi.org/10.1182/blood-2009-07-235358Google Scholar
- Baccarani M, Deininger MW, Rosti G. European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood. 2013; 122:872-884. PubMedhttps://doi.org/10.1182/blood-2013-05-501569Google Scholar
- Barosi G, Tefferi A, Besses C. Clinical end points for drug treatment trials in BCR-ABL1-negative classic myeloproliferative neoplasms: consensus statements from European LeukemiaNET (ELN) and International Working Group-Myeloproliferative Neoplasms Research and Treatment (IWG-MRT). Leukemia. 2015; 29(1):20-26. PubMedhttps://doi.org/10.1038/leu.2014.250Google Scholar
- Papaemmanuil E, Cazzola M, Boultwood J. Somatic SF3B1 mutation in myelodys-plasia with ring sideroblasts. N Engl J Med. 2011; 365:1384-1395. PubMedhttps://doi.org/10.1056/NEJMoa1103283Google Scholar
- Papaemmanuil E, Gerstung M, Malcovati L. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood. 2013; 122:3616-3627. PubMedhttps://doi.org/10.1182/blood-2013-08-518886Google Scholar
- Niemeyer CM, Kang MW, Shin DH. Germline CBL mutations cause developmental abnormalities and predispose to juvenile myelomonocytic leukemia. Nat Genet. 2010; 42:794-800. PubMedhttps://doi.org/10.1038/ng.641Google Scholar
- Jadersten M, Malcovati L, Dybedal I. Erythropoietin and granulocyte-colony stimulating factor treatment associated with improved survival in myelodysplastic syndrome. J Clin Oncol. 2008; 26:3607-3613. PubMedhttps://doi.org/10.1200/JCO.2007.15.4906Google Scholar
- Döhner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N Engl J Med. 2015; 373(12):1136-1152. PubMedhttps://doi.org/10.1056/NEJMra1406184Google Scholar
- Cornelissen JJ, Gratwohl A, Schlenk RF. The European LeukemiaNet AML Working Party consensus statement on allogeneic HSCT for patients with AML in remission: an integrated-risk adapted approach. Nat Rev Clin Oncol. 2012; 9(10):579-590. PubMedhttps://doi.org/10.1038/nrclinonc.2012.150Google Scholar
- Falini B, Mecucci C, Tiacci E, Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med. 2005; 352:254-266. PubMedhttps://doi.org/10.1056/NEJMoa041974Google Scholar
- Genovese G, Kähler AK, Handsaker RE. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. 2014; 371(26):2477-2487. PubMedhttps://doi.org/10.1056/NEJMoa1409405Google Scholar
- Hoffmann VS, Baccarani M, Hasford J. The EUTOS population-based registry: Incidence and clinical characteristics of 2904 CML patients in twenty European Countries. Leukemia. 2015; 29(6):1336-1343. PubMedhttps://doi.org/10.1038/leu.2015.73Google Scholar
- Hanfstein B, Shlyakhto V, Lauseker M. Velocity of early BCR-ABL transcript elimination as an optimized predictor of outcome in chronic myeloid leukemia (CML) patients in chronic phase on treatment with imatinib. Leukemia. 2014; 28:1988-1992. PubMedhttps://doi.org/10.1038/leu.2014.153Google Scholar
- Cross NC, White HE, Colomer D. Laboratory recommendations for scoring deep molecular responses following treatment for chronic myeloid leukemia. Leukemia. 2015; 29(5):999-1003. PubMedhttps://doi.org/10.1038/leu.2015.29Google Scholar
- Mahon FX, Réa D, Guilhot J. Discontinuation of imatinib in patients with chronic myeloid leukemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol. 2010; 11:1029-1035. PubMedhttps://doi.org/10.1016/S1470-2045(10)70233-3Google Scholar
- James C, Ugo V, Le Couedic JP. A unique clonal JAK2 mutation leading to constitutive signaling causes polycythaemia vera. Nature. 2005; 434(7037):1144-1148. PubMedhttps://doi.org/10.1038/nature03546Google Scholar
- Nangalia J, Massie CE, Baxter EJ. Somatic CALR Mutations in Myeloproliferative Neoplasms with Nonmutated JAK2. N Engl J Med. 2013; 369(25):2391-2405. PubMedhttps://doi.org/10.1056/NEJMoa1312542Google Scholar
- Klampfl T, Gisslinger H, Harutyunyan AS. Somatic Mutations of Calreticulin in Myeloproliferative Neoplasms. N Engl J Med. 2013; 369(25):2379-2390. PubMedhttps://doi.org/10.1056/NEJMoa1311347Google Scholar
- Andro M, Le Squere P, Estivin S, Gentric A. Anemia and cognitive performances in the elderly: a systematic review. Eur J Neurol. 2013; 20(9):1234-1240. PubMedhttps://doi.org/10.1111/ene.12175Google Scholar
- Abel GJ, Sander N. Quantifying Global International Migration Flows. Science. 2014; 343(6178):1520-1522. PubMedhttps://doi.org/10.1126/science.1248676Google Scholar
- Buermans HP, den Dunnen JT. Next generation sequencing technology: Advances and applications. Biochim Biophys Acta. 2014; 1842(10):1932-1941. Google Scholar
- Iolascon A, Andolfo I, Russo R. Red cells in post-genomic era: impact of personalized medicine in the treatment of anemias. Haematologica. 2015; 100(1):3-6. PubMedhttps://doi.org/10.3324/haematol.2014.120733Google Scholar
- Thein SL. Genetic association studies in β-hemoglobinopathies. Hematology Am Soc Hematol Educ Program. 2013; 2013:354-361. PubMedhttps://doi.org/10.1182/asheducation-2013.1.354Google Scholar
- Rivella S. β-Thalassemias: paradigmatic diseases for scientific discoveries and development of innovative therapies. Haematologica. 2015; 100:418-430. PubMedhttps://doi.org/10.3324/haematol.2014.114827Google Scholar
- Telen MJ. Cellular adhesion and the endothelium: E-selectin, L-selectin, and pan-selectin inhibitors. Hematol Oncol Clin North Am. 2014; 28(2):341-354. PubMedhttps://doi.org/10.1016/j.hoc.2013.11.010Google Scholar
- Bauer DE, Kamran SC. An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level. Science. 2013; 342(6155):253-257. PubMedhttps://doi.org/10.1126/science.1242088Google Scholar
- Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med. 2015; 372:793-795. PubMedhttps://doi.org/10.1056/NEJMp1500523Google Scholar
- Kassebaum NJ, Jasrasaria R, Naghavi M. A systematic analysis of global anemia burden from 1990 to 2010. Blood. 2014; 123:615-624. PubMedhttps://doi.org/10.1182/blood-2013-06-508325Google Scholar
- Sazawal S, Black RE, Ramsan M. Effects of routine prophylactic supplementation with iron and folic acid on admission to hospital and mortality in preschool children in a high malaria transmission setting: community-based, randomised, placebo-controlled trial. Lancet. 2006; 367:133-143. PubMedhttps://doi.org/10.1016/S0140-6736(06)67962-2Google Scholar
- Hentze MW, Muckenthaler MU, Galy B, Camaschella C. Two to tango: regulation of Mammalian iron metabolism. Cell. 2010; 142:24-38. PubMedhttps://doi.org/10.1016/j.cell.2010.06.028Google Scholar
- Goodnough LT, Nemeth E, Ganz T. Detection, evaluation, and management of iron-restricted erythropoiesis. Blood. 2010; 116:4754-4761. PubMedhttps://doi.org/10.1182/blood-2010-05-286260Google Scholar
- Camaschella C. Treating iron overload. N Engl J Med. 2013; 368:2325-2327. PubMedhttps://doi.org/10.1056/NEJMcibr1304338Google Scholar
- Gulbis B, Eleftheriou A, Angastiniotis M. Epidemiology of rare anemias in Europe. Adv Exp Med Biol. 2010; 686:375-396. PubMedhttps://doi.org/10.1007/978-90-481-9485-8_22Google Scholar
- Iolascon A, Heimpel H, Wahlin A, Tamary H. Congenital dyserythropoietic anemias: molecular insights and diagnostic approach. Blood. 2013; 122:2162-2166. PubMedhttps://doi.org/10.1182/blood-2013-05-468223Google Scholar
- Vlachos A, Rosenberg PS, Atsidaftos E, Alter BP, Lipton JM. Incidence of neoplasia in Diamond Blackfan anemia: a report from the Diamond Blackfan Anemia Registry. Blood. 2012; 119:3815-3819. PubMedhttps://doi.org/10.1182/blood-2011-08-375972Google Scholar
- Vlachos A, Blanc L, Lipton JM. Diamond Blackfan anemia: a model for the translational approach to understanding human disease. Expert Rev Hematol. 2014; 7:359-372. PubMedhttps://doi.org/10.1586/17474086.2014.897923Google Scholar
- Breda L, Rivella S. Modulators of erythropoiesis: emerging therapies for hemoglobinopathies and disorders of red cell production. Hematol Oncol Clin North Am. 2014; 28:375-386. PubMedhttps://doi.org/10.1016/j.hoc.2013.12.001Google Scholar
- Flatt JF, Guizouarn H, Burton NM. Stomatin-deficient cryohydrocytosis results from mutations in SLC2A1: a novel form of GLUT1 deficiency syndrome. Blood. 2011; 118(19):5267-5277. PubMedhttps://doi.org/10.1182/blood-2010-12-326645Google Scholar
- Andolfo I, Alper SL, De Franceschi L. Multiple clinical forms of dehydrated hereditary stomatocytosis arise from mutations in PIEZO1. Blood. 2013; 121(19):3925-3935. PubMedhttps://doi.org/10.1182/blood-2013-02-482489Google Scholar
- A White Book. Prodrug Multimedia, SL: Madrid, Spain; 2014. Google Scholar
- King M-J, Garçon L, Hoyer JD. ICSH Guidelines for the laboratory diagnosis of non-immune hereditary red cell membrane disorders. Int J Lab Hematol. 2015. Google Scholar
- Nathan and Oski’s Hematology of Infancy and Childhood. 6. PA Saunders: Philadelphia; 2003. Google Scholar
- Dufour C, Corcione A, Svahn J. TNF-alpha and IFN-gamma are overexpressed in the bone marrow of Fanconi anemia patients and TNF-alpha suppresses erythropoiesis in vitro. Blood. 2003; 102:2053-2059. PubMedhttps://doi.org/10.1182/blood-2003-01-0114Google Scholar
- Scheinberg P, Nunez O, Weinstein B. Horse versus rabbit antithymocyte globulin in acquired aplastic anemia. N Engl J Med. 2011; 365:430-438. PubMedhttps://doi.org/10.1056/NEJMoa1103975Google Scholar
- Marsh JC, Bacigalupo A, Schrezenmeier H. Prospective study of rabbit antithymocyte globulin and cyclosporine for aplastic anemia from the EBMT Severe Aplastic Anemia Working Party. Blood. 2012; 119:5391-5396. PubMedhttps://doi.org/10.1182/blood-2012-02-407684Google Scholar
- Rabbit ATG for aplastic anemia treatment: a backward step¿. Lancet. 2011; 378:1831-1833. PubMedhttps://doi.org/10.1016/S0140-6736(11)60817-9Google Scholar
- Weatherall DJ, Williams TN, Allen SJ, O’Donnell A. The population genetics and dynamics of the thalassemias. Hematol Oncol Clin North Am. 2010; 24(6):1021-1031. PubMedhttps://doi.org/10.1016/j.hoc.2010.08.010Google Scholar
- Weatherall DJ. The inherited diseases of hemoglobin are an emerging global health burden. Blood. 2010; 115(22):4331-4336. PubMedhttps://doi.org/10.1182/blood-2010-01-251348Google Scholar
- Cappellini MD, Cohen A, Porter J, Taher A, Viprasik V. Guidelines for the management of Transfusion Dependent Thalassaemia (TDT). 2014. Google Scholar
- Angelucci E, Matthes-Martin S, Baronciani D. Hematopoietic stem cell transplantation in thalassemia major and sickle cell disease: indications and management recommendations from an international expert panel. Haematologica. 2014; 99(5):811-820. PubMedhttps://doi.org/10.3324/haematol.2013.099747Google Scholar
- Rivella S, Rachmilewitz E. Future alternative therapies for β-thalassemia. Expert Rev Hematol. 2009; 2(6):685. PubMedhttps://doi.org/10.1586/ehm.09.56Google Scholar
- Roetto A, Papanikolaou G, Politou M. Mutant antimicrobial peptide hepcidin is associated with severe juvenile hemochromatosis. Nat Genet. 200. 33(1):21-22. Google Scholar
- Montosi G, Donovan A, Totaro A. Autosomal-dominant hemochromatosis is associated with a mutation in the ferroportin (SLC11A3) gene. J Clin Invest. 2001; 108(4):619-623. PubMedhttps://doi.org/10.1172/JCI200113468Google Scholar
- Nicolas G, Viatte L, Lou DQ. Constitutive hepcidin expression prevents iron overload in a mouse model of hemochromatosis. Nat Genet. 2003; 34(1):97-101. PubMedhttps://doi.org/10.1038/ng1150Google Scholar
- Van Eijk LT, John AS, Schwoebel F. Effect of the antihepcidin Spiegelmer lexaptepid on inflammation-induced decrease in serum iron in humans. Blood. 2014; 124:2643-2646. PubMedhttps://doi.org/10.1182/blood-2014-03-559484Google Scholar
- Gaskell H, Derry S, Andrew Moore R, McQuay HJ. Prevalence of anemia in older persons: systematic review. BMC Geriatrics. 2008; 8:1. PubMedhttps://doi.org/10.1186/1471-2318-8-1Google Scholar
- Bach V, Schruckmayer G, Sam I, Kemmler G, Stauder R. Prevalence and possible causes of anemia in the elderly: a cross-sectional analysis of a large European university hospital cohort. Clinical Interventions in Aging. 2014; 9:1187-1196. PubMedGoogle Scholar
- Busti F, Campostrini N, Martinelli N, Girelli D. Iron deficiency in the elderly population, revisited in the hepcidin era. Front Pharmacol. 2014; 5:83. PubMedGoogle Scholar
- Stauder R, Thein SL. Anemia in the elderly – clinical implications and new therapeutic concepts. Haematologica. 2014; 99(7):1127-1130. PubMedhttps://doi.org/10.3324/haematol.2014.109967Google Scholar
- Fung E, Nemeth E. Manipulation of the hepcidin pathway for therapeutic purposes. Haematologica. 2013; 98(11):1667-1676. PubMedhttps://doi.org/10.3324/haematol.2013.084624Google Scholar
- Murray CJ, Vos T, Lozano R. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012; 380(9859):2197-2223. PubMedhttps://doi.org/10.1016/S0140-6736(12)61689-4Google Scholar
- Hassel KL. Population estimates of sickle cell disease in the US. Am J Prev Med. 2010; 38(4 Suppl):s512-521. PubMedhttps://doi.org/10.1016/j.amepre.2009.12.022Google Scholar
- De Franceschi L, Cappellini MD, Olivieri O. Thrombosis and sickle cell disease. Semin Thromb Hemost. 2011; 37(3):226-236. PubMedhttps://doi.org/10.1055/s-0031-1273087Google Scholar
- Hebbel RP. The systems biology-based argument for taking a bold step in chemo-prophylaxis of sickle vasculopathy. Am J Hematol. 2009; 84(9):543-545. PubMedhttps://doi.org/10.1002/ajh.21474Google Scholar
- Yawn BP, Buchanan GR, Afenyi-Annan AN. Management of sickle cell disease: summary of the 2014 evidence-based report by expert panel members. JAIMA. 2014; 312(10):1033-1048. PubMedhttps://doi.org/10.1001/jama.2014.10517Google Scholar
- Balduini CL, Pecci A, Noris P. Diagnosis and management of inherited thrombocytopenias. Semin Thromb Hemost. 2013; 39(2):161-171. PubMedhttps://doi.org/10.1055/s-0032-1333540Google Scholar
- Greinacher A, Fürll B, Selleng S. Heparin-induced thrombocytopenia. Methods Mol Biol. 2013; 992:301-318. PubMedhttps://doi.org/10.1007/978-1-62703-339-8_23Google Scholar
- George JN, Nester CM. Syndromes of thrombotic microangiopathy. N Engl J Med. 2014; 371(7):654-666. PubMedhttps://doi.org/10.1056/NEJMra1312353Google Scholar
- Scully M. Trends in the diagnosis and management of TTP: European perspective. Transfus Apher Sci. 2014; 51(1):11-14. PubMedhttps://doi.org/10.1016/j.transci.2014.08.001Google Scholar
- Furlan M, Robles R, Galbusera M. von Willebrand factor-cleaving protease in thrombotic thrombocytopenic purpura and the hemolytic-uremic syndrome. N Engl J Med. 1998; 339(22):1578-1584. PubMedhttps://doi.org/10.1056/NEJM199811263392202Google Scholar
- Basciano PA, Bussel J, Hafeez Z, Christos PJ, Giannakakou P. The beta 1 tubulin R307H single nucleotide polymorphism is associated with treatment failures in immune thrombocytopenia (ITP). Br J Hematol. 2013; 160(2):237-243. PubMedhttps://doi.org/10.1111/bjh.12124Google Scholar
- Pecci A, Klersy C, Gresele P. MYH9-related disease: a novel prognostic model to predict the clinical evolution of the disease based on genotype-phenotype correlations. Hum Mutat. 2014; 35(2):236-247. PubMedhttps://doi.org/10.1002/humu.22476Google Scholar
- Iraqi M, Perdomo J, Yan F, Choi PY, Chong BH. Immune thrombocytopenia: antiplatelet autoantibodies inhibit pro-platelet formation by megakaryocytes and impair platelet production in vitro. Haematologica. 2015; 100(5):623-632. PubMedhttps://doi.org/10.3324/haematol.2014.115634Google Scholar
- Kühne T. Treatment of pediatric primary immune thrombocytopenia with thrombopoietin receptor agonists. Semin Hematol. 2015; 52(1):25-30. PubMedhttps://doi.org/10.1053/j.seminhematol.2014.10.004Google Scholar
- Rodeghiero F, Ruggeri M. Treatment of immune thrombocytopenia in adults: the role of thrombopoietin-receptor agonists. Semin Hematol. 2015; 52(1):16-24. PubMedhttps://doi.org/10.1053/j.seminhematol.2014.10.006Google Scholar
- Gresele P, Harrison P, Bury L. Diagnosis of suspected inherited platelet function disorders: results of a worldwide survey. J Thromb Haemost. 2014; 12(9):1562-1569. PubMedhttps://doi.org/10.1111/jth.12650Google Scholar
- Rodeghiero F, Michel M, Gernsheimer T. Standardization of bleeding assessment in immune thrombocytopenia: report from the International Working Group. Blood. 2013; 121(14):2596-2606. PubMedhttps://doi.org/10.1182/blood-2012-07-442392Google Scholar
- Noris P, Schlegel N, Klersy C. Analysis of 339 pregnancies in 181 women with 13 different forms of inherited thrombocytopenia. Haematologica. 2014; 99(8):1387-1394. PubMedhttps://doi.org/10.3324/haematol.2014.105924Google Scholar
- Gresele P, Diagnosis of inherited platelet function disorders: guidance from the SSC of the ISTH. J Thromb Haemost. 2015; 13(2):314-322. PubMedhttps://doi.org/10.1111/jth.12792Google Scholar
- Blombery P, Scully M. Management of thrombotic thrombocytopenic purpura: current perspectives. J Blood Med. 2014; 5:15-23. PubMedGoogle Scholar
- Mele C, Remuzzi G, Noris M. Hemolytic uremic syndrome. Semin Immunopathol. 2014; 36(4):399-420. PubMedhttps://doi.org/10.1007/s00281-014-0416-xGoogle Scholar
- Dawood BB, Lowe GC, Lordkipanidzé M. Evaluation of participants with suspected heritable platelet function disorders including recommendation and validation of a streamlined agonist panel. Blood. 2012; 120(25):5041-5049. PubMedhttps://doi.org/10.1182/blood-2012-07-444281Google Scholar
- Westbury SK, Turro E, Lentaigne C. Human phenotype ontology annotation and cluster analysis to unravel genetic defects in 707 cases with unexplained bleeding and platelet disorders. Genome Med. 2015; 7(1):36. PubMedhttps://doi.org/10.1186/s13073-015-0151-5Google Scholar
- Bluteau D, Balduini A, Balayn N. Thrombocytopenia-associated mutations in the ANKRD26 regulatory region induce MAPK hyperactivation. J Clin Invest. 2014; 124(2):580-591. PubMedhttps://doi.org/10.1172/JCI71861Google Scholar
- Bender M, Stritt S, Nurden P. Megakaryocyte-specific Profilin1-deficiency alters microtubule stability and causes a Wiskott-Aldrich syndrome-like platelet defect. Nat Commun. 2014; 5:4746. PubMedhttps://doi.org/10.1038/ncomms5746Google Scholar
- Scharf RE. Drugs that affect platelet function. Semin Thromb Hemost. 2012; 38(8):865-883. PubMedhttps://doi.org/10.1055/s-0032-1328881Google Scholar
- Witters P, Freson K, Verslype C. Review article: blood platelet number and function in chronic liver disease and cirrhosis. Aliment Pharmacol Ther. 2008; 27(11):1017-1029. PubMedhttps://doi.org/10.1111/j.1365-2036.2008.03674.xGoogle Scholar
- Boccardo P, Remuzzi G, Galbusera M. Platelet dysfunction in renal failure. Semin Thromb Hemost. 2004; 30(5):579-589. PubMedhttps://doi.org/10.1055/s-2004-835678Google Scholar
- Sousa-Uva M, Storey R, Huber K, Eur Heart J. 2014; 35(23):1510-1514. PubMedhttps://doi.org/10.1093/eurheartj/ehu158Google Scholar
- Hamzeh-Cognasse H, Damien P, Chabert A, Pozzetto B, Cognasse F, Garraud O. Platelets and infections - complex interac tions with bacteria. Front Immunol. 2015; 6:82. PubMedGoogle Scholar
- Rodeghiero F, Stasi R, Gernsheimer T. Standardization of terminology, definitions and outcome criteria in immune thrombocytopenic purpura of adults and children: report from an international working group. Blood. 2009; 113(11):2386-2393. PubMedhttps://doi.org/10.1182/blood-2008-07-162503Google Scholar
- Newland A. Thrombopoietin receptor agonists in the treatment of thrombocytopenia. Curr Opin Hematol. 2009; 16(5):357-364. PubMedhttps://doi.org/10.1097/MOH.0b013e32832e06e4Google Scholar
- Khellaf M, Charles-Nelson A, Fain O. Safety and efficacy of rituximab in adult immune thrombocytopenia: results from a prospective registry including 248 patients. Blood. 2014; 124(22):3228-3236. PubMedhttps://doi.org/10.1182/blood-2014-06-582346Google Scholar
- Kamphuis MM, Paridaans NP, Porcelijn L, Lopriore E, Oepkes D. Incidence and consequences of neonatal alloimmune thrombocytopenia: a systematic review. Pediatrics. 2014; 133(4):715-721. PubMedhttps://doi.org/10.1542/peds.2013-3320Google Scholar
- Bakchoul T, Bassler D, Heckmann M. Management of infants born with severe neonatal alloimmune thrombocytopenia: the role of platelet transfusions and intravenous immunoglobulin. Transfusion. 2014; 54(3):640-645. Google Scholar
- Warkentin TE, Greinacher A. CRC Press: Boca Raton, USA; 2013. Google Scholar
- Arnold DM, Curtis BR, Bakchoul T, Recommendations for standardization of laboratory testing for drug-induced immune thrombocytopenia: communication from the SSC of the ISTH. J Thromb Haemost. 2015; 13(4):676-678. PubMedhttps://doi.org/10.1111/jth.12852Google Scholar
- Warkentin TE, Greinacher A, Gruel Y, Aster RH, Chong BH, Laboratory testing for heparin-induced thrombocytopenia: a conceptual framework and implications for diagnosis. J Thromb Haemost. 2011; 9(12):2498-2500. PubMedhttps://doi.org/10.1111/j.1538-7836.2011.04536.xGoogle Scholar
- Rollin J, Pouplard C, Cheng Sung H. Increased risk of thrombosis in FcγRIIA 131RR patients with HIT due to defective control of platelet activation by plasma IgG2. Blood. 2015; 125(15):2397-2404. PubMedhttps://doi.org/10.1182/blood-2014-09-594515Google Scholar
- Jaax ME, Krauel K, Marschall T. Complex formation with nucleic acids and aptamers alters the antigenic properties of platelet factor 4. Blood. 2013; 122(2):272-281. PubMedhttps://doi.org/10.1182/blood-2013-01-478966Google Scholar
- Coppo P, Veyradier A. Thrombotic microangiopathies: towards a pathophysiology-based classification. Cardiovasc Hematol Disord Drug Targets. 2009; 9(1):36-50. PubMedhttps://doi.org/10.2174/187152909787581318Google Scholar
- Froissart A, Buffet M, Veyradier A, Efficacy and safety of first-line rituximab in severe, acquired thrombotic thrombocytopenic purpura with a suboptimal response to plasma exchange. Experience of the French Thrombotic Microangiopathies Reference Center. Crit Care Med. 2012; 40(1):104-111. PubMedhttps://doi.org/10.1097/CCM.0b013e31822e9d66Google Scholar
- Legendre CM, Licht C, Muus P. Terminal complement inhibitor eculizumab in atypical hemolytic-uremic syndrome. N Engl J Med. 2013; 368(23):2169-2181. PubMedhttps://doi.org/10.1056/NEJMoa1208981Google Scholar
- Scully M, Brown J, Patel R, McDonald V, Brown CJ, Machin S. Human leukocyte antigen association in idiopathic thrombotic thrombocytopenic purpura: evidence for an immunogenetic link. J Thromb Haemost. 2010; 8(2):257-262. PubMedhttps://doi.org/10.1111/j.1538-7836.2009.03692.xGoogle Scholar
- Kremer Hovinga JA, Vesely SK, Terrell DR, Lämmle B, George JN. Survival and relapse in patients with thrombotic thrombocy-topenic purpura. Blood. 2010; 115(8):1500-1511. PubMedhttps://doi.org/10.1182/blood-2009-09-243790Google Scholar
- Cohen AT, Agnelli G, Anderson FA, Venous thromboembolism (VTE) in Europe—the number of VTE events and associated morbidity and mortality. J Thromb Haemost. 2007; 98:756-764. Google Scholar
- Owen CA. Recent advances in blood coagulation. Historical remarks. Semin Thromb Hemost. 1985; 11:335-336. PubMedhttps://doi.org/10.1055/s-2007-1004389Google Scholar
- Stormorken H, Paul A. Owren and the Golden Era of Haemostasis. Gazettebok: Oslo; 2005. Google Scholar
- Franchini M, Mannucci PM. The history of hemophilia. Semin Thromb Hemost. 2014; 40:571-576. PubMedhttps://doi.org/10.1055/s-0034-1381232Google Scholar
- Brewer DB. Max Schultze (1865), G. Bizzozero (1882) and the discovery of the platelet. Br J Hematol. 2006; 133:251-258. PubMedhttps://doi.org/10.1111/j.1365-2141.2006.06036.xGoogle Scholar
- Bagot CN, Arya R. Virchow and his triad: a question of attribution. Br J Hematol. 2008; 143:180-190. PubMedhttps://doi.org/10.1111/j.1365-2141.2008.07323.xGoogle Scholar
- Galanaud JP, Laroche JP, Righini M. The history and historical treatments of deep vein thrombosis. J Thromb Haemost. 2013; 11:402-411. PubMedhttps://doi.org/10.1111/jth.12127Google Scholar
- Google Scholar
- Harper K, Winter RM, Pembrey ME, Hartley D, Davies KE, Tuddenham EG. A clinically useful DNA probe closely linked to haemophilia A. Lancet. 1984; 2(8393):6-8. PubMedGoogle Scholar
- Bertina RM, Koeleman BP, Koster T. Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature. 1994; 369(6475):64-67. PubMedhttps://doi.org/10.1038/369064a0Google Scholar
- Albers CA, Cvejic A, Favier R. Exome sequencing identifies NBEAL2 as the causative gene for gray platelet syndrome. Nat Genet. 2011; 43(8):735-737. PubMedhttps://doi.org/10.1038/ng.885Google Scholar
- Germain M, Chasman DI, de Haan H. Meta-analysis of 65,734 Individuals Identifies TSPAN15 and SLC44A2 as Two Susceptibility Loci for Venous Thromboembolism. Am J Hum Genet. 2015; 96:532-542. PubMedhttps://doi.org/10.1016/j.ajhg.2015.01.019Google Scholar
- Zöller B, Li X, Sundquist J, Sundquist K. Age- and gender-specific familial risks for venous thromboembolism: a nationwide epidemiological study based on hospitalizations in Sweden. Circulation. 2011; 124(9):1012-1020. PubMedhttps://doi.org/10.1161/CIRCULATIONAHA.110.965020Google Scholar
- Renne T, Schmaier AH, Nickel KF, Blomback M, Maas C. In vivo roles of factor XII. Blood. 2012; 120:4296-4303. PubMedhttps://doi.org/10.1182/blood-2012-07-292094Google Scholar
- Kannemeier C, Shibamiya A, Nakazawa F. Extracellular RNA constitutes a natural procoagulant cofactor in blood coagulation. Proc Natl Acad Sci USA. 2007; 104:6388-6393. PubMedhttps://doi.org/10.1073/pnas.0608647104Google Scholar
- Hemostasis and Thrombosis: Basic Principles and Clinical Practice. Lippincott Williams & Wilkins; 2012. Google Scholar
- Langer F, Ruf W. Synergies of phosphatidylserine and protein disulfide isomerase in tissue factor activation. J Thromb Haemost. 2014; 111:590-597. https://doi.org/10.1160/TH13-09-0802Google Scholar
- Engelmann B, Massberg S. Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol. 2013; 13:34-45. PubMedhttps://doi.org/10.1038/nri3345Google Scholar
- Dahlbäck B, Carlsson M, Svensson PJ. Familial thrombophilia due to a previously unrecognized mechanism characterized by poor anticoagulant response to activated protein C: prediction of a cofactor to activated protein C. Proc Natl Acad Sci USA. 1993; 90:1004-1008. PubMedhttps://doi.org/10.1073/pnas.90.3.1004Google Scholar
- Bertina RM1, Koeleman BP, Koster T. Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature. 1994; 369:64-67. PubMedhttps://doi.org/10.1038/369064a0Google Scholar
- Poort SR, Rosendaal FR, Reitsma PH, Bertina RM. A common genetic variation in the 3-untranslated region of the prothrom-bin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis. Blood. 1996; 88:3698-3703. PubMedGoogle Scholar
- Reitsma PH. Genetics in thrombophilia. Hämostaseolgie. 2015; 35:47-51. Google Scholar
- Braekkan SK, Mathiesen EB, Njolstad I, Wilsgaard T, Stormer J, Hansen JB. Family history of myocardial infarction is an independent risk factor for venous thromboembolism: the Tromso study. J Thromb Haemost. 2008; 6:1851-1857. PubMedhttps://doi.org/10.1111/j.1538-7836.2008.03102.xGoogle Scholar
- Engbers MJ, van Hylckama Vlieg A, Rosendaal FR. Venous thrombosis in the elderly: incidence, risk factors and risk groups. J Thromb Haemost. 2010; 8:2105-2112. PubMedhttps://doi.org/10.1111/j.1538-7836.2010.03986.xGoogle Scholar
- Franchini M. Hemostasis and aging. Critical reviews in oncology/hematology. 2006; 60:144-151. PubMedhttps://doi.org/10.1016/j.critrevonc.2006.06.004Google Scholar
- Weill-Engerer S, Meaume S, Lahlou A. Risk factors for deep vein thrombosis in inpatients aged 65 and older: a case-control multicenter study. J Am Geriatr Soc. 2004; 52:1299-1304. PubMedhttps://doi.org/10.1111/j.1532-5415.2004.52359.xGoogle Scholar
- Blix K, Braekkan SK, le Cessie S, Skjeldestad FE, Cannegieter SC, Hansen JB. The increased risk of venous thromboembolism by advancing age cannot be attributed to the higher incidence of cancer in the elderly: the Tromso study. European journal of epidemiology. 2014; 29:277-284. PubMedhttps://doi.org/10.1007/s10654-014-9902-7Google Scholar
- Mannucci PM, Shi Q, Bonanad S, Klamroth R. Novel investigations on the protective role of the FVIII/VWF complex in inhibitor development. Haemophilia. 2014; 20(Suppl 6):2-16. Google Scholar
- Lillicrap D, Fijnvandraat K, Santagostino E. Inhibitors - genetic and environmental factors. Haemophilia. 2014; 20(Suppl 4):87-93. PubMedhttps://doi.org/10.1111/hae.12412Google Scholar
- Van den Berg HM. Epidemiological aspects of inhibitor development redefine the clinical importance of inhibitors. Haemophilia. 2014; 20(Suppl 4):76-79. PubMedhttps://doi.org/10.1111/hae.12404Google Scholar
- Peyvandi F, Palla R, Menegatti M. Coagulation factor activity and clinical bleeding severity in rare bleeding disorders: results from the European Network of Rare Bleeding Disorders. J Thromb Haemost. 2012; 10(4):615-621. PubMedhttps://doi.org/10.1111/j.1538-7836.2012.04653.xGoogle Scholar
- Goodeve A, Eikenboom J, Castaman G. Phenotype and genotype of a cohort of families historically diagnosed with type 1 von Willebrand disease in the European study, Molecular and Clinical Markers for the Diagnosis and Management of Type 1 von Willebrand Disease (MCMDM-1VWD). Blood. 2007; 109(1):112-121. PubMedhttps://doi.org/10.1182/blood-2006-05-020784Google Scholar
- World Federation of Hemophilia. 2014. Google Scholar
- Shankar M, Lee CA, Sabin CA, Economides DL, Kadir RA. Von Willebrand disease in women with menorrhagia: a systematic review. BJOG. 2004; 111:734-740. PubMedhttps://doi.org/10.1111/j.1471-0528.2004.00176.xGoogle Scholar
- Tsui NB, Kadir RA, Chan KC. Noninvasive prenatal diagnosis of hemophilia by microfluidics digital PCR analysis of maternal plasma DNA. Blood. 2011; 117:3684-3691. PubMedhttps://doi.org/10.1182/blood-2010-10-310789Google Scholar
- Collins PW, Lilley G, Bruynseels D. Fibrin-based clot formation an early and rapidly biomarker for progression of postpartum hemorrhage: a prospective study. Blood. 2014; 124:1727-1736. PubMedhttps://doi.org/10.1182/blood-2014-04-567891Google Scholar
- Rodger MA, Hague WM, Kingdom J. Antepartum dalteparin versus no antepartum dalteparin for the prevention of pregnancy complications in pregnant women with thrombophilia (TIPPS): a multinational open-label randomised trial. Lancet. 2014; 8:1673-1683. Google Scholar
- Rohde JM, Dimcheff DE, Blumberg N. Health Care–Associated Infection After Red Blood Cell Transfusion. A Systematic Review and Meta-analysis. JAMA. 2014; 311:1317-1326. PubMedhttps://doi.org/10.1001/jama.2014.2726Google Scholar
- Almeida de JP, Vincent JL, Gomes Galas FRB. Transfusion Requirements in Surgical Oncology Patients, A Prospective, Randomized Controlled Trial. Anesthesiology. 2015; 122:29-38. PubMedhttps://doi.org/10.1097/ALN.0000000000000511Google Scholar
- Hunt BJ. Bleeding and coagulopathies in critical care. N Engl J Med. 2014; 370:847-859. PubMedhttps://doi.org/10.1056/NEJMra1208626Google Scholar
- Fragkou PC, Torrance HD, Pearse RM. Perioperative transfusion is associated with a gene transcription profile characteristic of immunosuppression: a prospective cohort study. Critical Care. 2014; 18:541. PubMedhttps://doi.org/10.1186/s13054-014-0541-xGoogle Scholar
- Van Hoeven LR, Janssen MP, Rautmann G. The Collection, testing and use of blood and blood components in Europe, 2011 report. Council of Europe, European Directorate for the Quality of Medicines & HealthCare: Strasbourg, France; 2011. Google Scholar
- Shander A, van Aken H, Colomina MJ. Patient Blood management in Europe. Br J Anaesth. 2012; 109(1):55-68. PubMedhttps://doi.org/10.1093/bja/aes139Google Scholar
- Sewell WA, Kerr J, Behr-Gross ME, Peter HH, European consensus proposal for immunoglobulin therapy. Eur J Immunol. 2014; 44(8):2207-2214. PubMedhttps://doi.org/10.1002/eji.201444700Google Scholar
- Storry JR, Castilho L, Daniels G. International Society of Blood Transfusion working party on red cell immunogenetics and blood group terminology. Vox Sang. 2014; 107:90-96. PubMedhttps://doi.org/10.1111/vox.12127Google Scholar
- Silvy M, Bres JC, Grimaldi A. A simple genotyping procedure without DNA extraction to identify rare blood donors. Vox Sang. 2015; 109(2):173-180. PubMedhttps://doi.org/10.1111/vox.12261Google Scholar
- Kormoczi GF, Mayr WR. Responder individuality in red blood cell alloimmunization. Transfus Med Hemather. 2014; 41:446-451. Google Scholar
- Karahan GE, de Vaal YJH, Roelen DL. Quantification of HLA class II specific memory B cells in HLA-sensitized individuals. Human Immunology. 2015; 76:129-136. PubMedGoogle Scholar
- Noizat-Pirenne F, Bachir D, Chadebech P. Rituximab for prevention of delayed hemolytic transfusion reaction in sickle cell disease. Haematologica. 2007; 92:e132-135. PubMedhttps://doi.org/10.3324/haematol.12074Google Scholar
- Figueiredo C, Wedekind D, Müller T. MHC Universal Cells Survive in an Allogeneic Environment after Incompatible Transplantation. Biomed Res Int. 2013; 2013:796046. PubMedGoogle Scholar
- Moore C, Sambrook J, Walker M. The INTERVAL trial to determine whether intervals between blood donations can be safely and acceptably decreased to optimise blood supply: study protocol for a randomised controlled trial. Trials. 2014; 15:363. PubMedhttps://doi.org/10.1186/1745-6215-15-363Google Scholar
- Narhi M, Natri O, Desbois I. Collection, processing and testing of bone, corneas, umbilical cord blood and hematopoietic stem cells by European Blood Alliance members. Vox Sang. 2013; 105:346-354. PubMedhttps://doi.org/10.1111/vox.12053Google Scholar
- Goodnough LT, Murphy MF. Do liberal transfusions cause more harm than goodû. BMJ. 2014; 5:g6897. PubMedhttps://doi.org/10.1136/bmj.g6897Google Scholar
- Rebulla P, Finazzi G, Marangoni F. The threshold for platelet transfusions for adults with acute myeloid leukemia. N Engl J Med. 1997; 337:1870-1875. PubMedhttps://doi.org/10.1056/NEJM199712253372602Google Scholar
- Stanworth SJ, Estcourt LJ, Powter G. No-Prophylaxis Platelet transfusion strategy for hematologic cancers. N Engl J Med. 2013; 368:1771-1780. PubMedhttps://doi.org/10.1056/NEJMoa1212772Google Scholar
- Seidel MG, Peters C, Wacker A. Randomized phase III study of granulocyte transfusions in neutropenic patients. Bone Marrow Transplant. 2008; 42:679-684. PubMedhttps://doi.org/10.1038/bmt.2008.237Google Scholar
- Holst LB, Haase N, Wetterslev J. Lower versus higher hemoglobin threshold for transfusion in septic shock. N Engl J Med. 2014; 371:1381-1391. PubMedhttps://doi.org/10.1056/NEJMoa1406617Google Scholar
- Gupta N, Culina S, Meslier Y. Regulation of immune responses to protein therapeutics by transplacental induction of T cell tolerance. Sci Transl Med. 2015; 7(275):275ra21. PubMedhttps://doi.org/10.1126/scitranslmed.aaa1957Google Scholar
- McIntosh J, Lenting PJ, Rosales C. Therapeutic levels of FVIII following a single peripheral vein administration of rAAV vector encoding a novel human factor VIII variant. Blood. 2013; 121(17):3335-3344. PubMedhttps://doi.org/10.1182/blood-2012-10-462200Google Scholar
- von Gunten S, Shoenfeld Y, Blank M. IVIG pluripotency and the concept of Fcsialylation: challenges to the scientist. Nat Rev Immunol. 2014; 14(5):349. PubMedhttps://doi.org/10.1038/nri3401-c1Google Scholar
- Trinath J, Hegde P, Sharma M. Intravenous immunoglobulin expands regulatory T cells via induction of cyclooxyge-nase-2-dependent prostaglandin E2 in human dendritic cells. Blood. 2013; 122(8):1419-1427. PubMedhttps://doi.org/10.1182/blood-2012-11-468264Google Scholar
- Fiebiger BM, Maamary J, Pincetic A, Ravetch JV. Protection in antibody- and T cell-mediated autoimmune diseases by antiinflammatory IgG Fcs requires type II FcRs. Proc Natl Acad Sci USA. 2015; 112(18):e2385-2394. PubMedhttps://doi.org/10.1073/pnas.1505292112Google Scholar
- Schwartz J, Winters JL, Padmanabhan A. Guidelines on the use of therapeutic apheresis in clinical practice-evidence-based approach from the Writing Committee of the American Society for Apheresis: the sixth special issue. J Clin Apher. 2013; 28:154-284. Google Scholar
- Pierelli L, Perseghin P, Marchetti M. Best practice for peripheral blood progenitor cell mobilization and collection in adults and children: results of a Società Italiana Di Emaferesi e Manipolazione Cellulare (SIDEM) and Gruppo Italiano Trapianto Midollo Osseo (GITMO) consensus process. Transfusion. 2012; 52:893-905. Google Scholar
- Das-Gupta E, Dignan F, Shaw B. Extracorporeal photopheresis for treatment of adults and children with acute GVHD: UK consensus statement and review of published literature. Bone Marrow Transplant. 2014; 49:1251-1258. PubMedhttps://doi.org/10.1038/bmt.2014.106Google Scholar
- International standards for cellular therapy product collection, processing, and administration. 2012. Google Scholar
- Amrein K, Katschnig C, Sipurzynski S. Apheresis affects bone and mineral metabolism. Bone. 2010; 46:789-795. PubMedhttps://doi.org/10.1016/j.bone.2009.11.008Google Scholar
- Chitty LS, Finning K, Wade A. Diagnostic accuracy of routine antenatal determination of fetal RHD status across gestation: population based cohort study. BMJ. 2014; 349:g5243. PubMedhttps://doi.org/10.1136/bmj.g5243Google Scholar
- Avent ND, Martinez A, Flegel WA. The Bloodgen Project of the European Union, 2003–2009. Transfus Med Hemother. 2009; 36:162-167. PubMedhttps://doi.org/10.1159/000218192Google Scholar
- Sanchez-Mazas A, Vidan-Jeras B, Nunes JM. Strategies to work with HLA data in human populations for histocompatibility, clinical transplantation, epidemiology and population genetics: HLA-NET methodological recommendations. Int J Immunogenetics. 2012; 39:459-476. https://doi.org/10.1111/j.1744-313X.2012.01113.xGoogle Scholar
- Allen DL, Metcalfe P, Kaplan C. Sensitivity of assays for the detection of HPA-1a antibodies: results of an international workshop demonstrating the impact of cation chelation from integrin aIIbb3 on three widely used assays. Vox Sang. 2013; 105:167-173. PubMedhttps://doi.org/10.1111/vox.12043Google Scholar
- Tambur AR, Claas FHJ. HLA epitopes as viewed by antibodies: What is it all aboutû. Am J Transplant. 2015; 15(5):1148-1154. PubMedhttps://doi.org/10.1111/ajt.13192Google Scholar
- Bochennek K, Allwinn R, Langer R. Differential loss of immunity against measles, mumps, rubella and varicella zoster in children treated for cancer. Vaccine. 2014; 32:3357-3361. PubMedhttps://doi.org/10.1016/j.vaccine.2014.04.042Google Scholar
- Abravanel F, Lhommes S, Dubois M. Hepatitis E virus. Med Mal Infect. 2013; 43:263-270. PubMedhttps://doi.org/10.1016/j.medmal.2013.03.005Google Scholar
- Schmidt M, Geilenkeuser WJ, Sireis W, Seifried E, Hourfar K. Emerging Pathogens - How Safe is Blood¿. Transfus Med Hemother. 2014; 41(1):10-17. PubMedhttps://doi.org/10.1159/000368056Google Scholar
- Schlenke P. Pathogen inactivation technologies for cellular blood components: an update. Transfus Med Hemother. 2014; 41(4):309-325. PubMedhttps://doi.org/10.1159/000365646Google Scholar
- Kaiser-Guignard J, Canellini G, Lion N, Abonnenc M, Osselaer JC, Tissot JD. The clinical and biological impact of new pathogen inactivation technologies on platelet concentrates. Blood Rev. 2014; 28(6):235-241. PubMedhttps://doi.org/10.1016/j.blre.2014.07.005Google Scholar
- Prudent M, D’Alessandro A, Cazenave JP. Proteome changes in platelets after pathogen inactivation–an interlaboratory consensus. Transfus Med Rev. 2014; 28(2):72-83. PubMedhttps://doi.org/10.1016/j.tmrv.2014.02.002Google Scholar
- Seghatchian J, Putter JS. Pathogen inactivation of whole blood and red cell components: an overview of concept, design, developments, criteria of acceptability and storage lesion. Transfus Apher Sci. 2014; 49(2):357-363. Google Scholar
- Anstee DJ, Gampel A, Toye AM. Ex-vivo generation of human red cells for transfusion. Curr Opin Hematol. 2012; 19:163-169. PubMedhttps://doi.org/10.1097/MOH.0b013e328352240aGoogle Scholar
- Dunois-Larde C, Capron C, Fichelson S, Bauer T, Cramer-Borde E, Baruch D. Exposure of human megakaryocytes to high shear rates accelerates platelet production. Blood. 2009; 114:1875-1883. PubMedhttps://doi.org/10.1182/blood-2009-03-209205Google Scholar
- Giarratana MC, Rouard H, Dumont A, Kiger L, Safeukui I. Proof of principle for transfusion of in vitro-generated red blood cells. Blood. 2011; 118:5071-5079. PubMedhttps://doi.org/10.1182/blood-2011-06-362038Google Scholar
- Migliaccio G, Sanchez M, Masiello F. Humanized culture medium for clinical expansion of human erythroblasts. Cell Transplant. 2010; 19:453-469. PubMedhttps://doi.org/10.3727/096368909X485049Google Scholar
- Van den Akker E, Satchwell TJ, Pellegrin S, Daniels G, Toye AM. The majority of the in vitro erythroid expansion potential resides in CD34(−) cells, outweighing the contribution of CD34(+) cells and significantly increasing the erythroblast yield from peripheral blood samples. Haematologica. 2010; 95:1594-1598. PubMedhttps://doi.org/10.3324/haematol.2009.019828Google Scholar
- Klastersky J, Zinner SH, Calandra T. Empiric antimicrobial therapy for febrile granulocytopenic cancer patients: lessons from four EORTC trials. Eur J Cancer Clin Oncol. 1988; 24(Suppl 1):S35-45. PubMedGoogle Scholar
- Gratwohl A, Brand R, Frassoni F. Cause of death after allogeneic hematopoietic stem cell transplantation in early leukemias: an EBMT analysis of lethal infectious complications and changes over calendar time. Bone Marrow Transplant. 2005; 36(9):757-769. PubMedhttps://doi.org/10.1038/sj.bmt.1705140Google Scholar
- Caira M, Candoni A, Verga L. Pre-chemotherapy risk factors for invasive fungal diseases: prospective analysis of 1,192 patients with newly diagnosed acute myeloid leukemia (SEIFEM 2010-a multicenter study). Haematologica. 2015; 100(2):284-292. PubMedhttps://doi.org/10.3324/haematol.2014.113399Google Scholar
- Gyssens IC, Kern WV, Livermore DM, The role of antibiotic stewardship in limiting antibacterial resistance among hematology patients. Haematologica. 2013; 98(12):1821-1825. PubMedhttps://doi.org/10.3324/haematol.2013.091769Google Scholar
- Robin C, Beckerich F, Cordonnier C. Immunization in cancer patients: Where we stand. Pharmacol Res. 2015; 92C:23-30. PubMedhttps://doi.org/10.1016/j.phrs.2014.10.002Google Scholar
- Leen AM, Bollard CM, Mendizabal AM. Multicenter study of banked third-party virus-specific T cells to treat severe viral infections after hematopoietic stem cell transplantation. Blood. 2013; 121(26):5113-5123. PubMedhttps://doi.org/10.1182/blood-2013-02-486324Google Scholar
- Zerr DM, Boeckh M, Delaney C. HHV-6 Reactivation and Associated Sequelae after Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant. 2012; 18(11):1700-1708. PubMedhttps://doi.org/10.1016/j.bbmt.2012.05.012Google Scholar
- Waghmare A, Pergam SA, Jerome KR, Englund JA, Boeckh M, Kuypers J. Clinical disease due to lenterovirus D68 in adult hematologic malignancy patients and hematopoietic cell transplant recipients. Blood. 2015; 125(11):1724-1729. PubMedhttps://doi.org/10.1182/blood-2014-12-616516Google Scholar
- Versluis J, Pas SD, Agteresch HJ. Hepatitis E virus: an underestimated opportunistic pathogen in recipients of allogeneic hematopoietic stem cell transplantation. Blood. 2013; 122(6):1079-1086. PubMedhttps://doi.org/10.1182/blood-2013-03-492363Google Scholar
- Rubin LG, Levin MJ, Ljungman P. 2013 IDSA clinical practice guideline for vaccination of the immunocompromised host. Clin Infect Dis. 2014; 58(3):309-318. PubMedhttps://doi.org/10.1093/cid/cit816Google Scholar
- Satlin MJ, Jenkins SG, Walsh TJ. The global challenge of carbapenem-resistant Enterobacteriaceae in transplant recipients and patients with hematologic malignancies. Clin Infect Dis. 2014; 58:1274-1283. PubMedhttps://doi.org/10.1093/cid/ciu052Google Scholar
- Lehners N, Schnitzler P, Geis S. Risk factors and containment of respiratory syncytial virus outbreak in a hematology and transplant unit. Bone Marrow Transplant. 2013; 48:1548-1553. PubMedhttps://doi.org/10.1038/bmt.2013.94Google Scholar
- Eckmanns T, Rüden H, Gastmeier P. The influence of high-efficiency particulate air filtration on mortality and fungal infection among highly immunosuppressed patients: a systematic review. J Infect Dis. 2006; 193:1408-1418. PubMedhttps://doi.org/10.1086/503435Google Scholar
- Iida N, Dzutsev A, Stewart CA. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science. 2013; 342:967-970. PubMedhttps://doi.org/10.1126/science.1240527Google Scholar
- Taur Y, Jenq RR, Perales MA. The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation. Blood. 2014; 124:1174-1182. PubMedhttps://doi.org/10.1182/blood-2014-02-554725Google Scholar
- Blimark C, Holmberg E, Mellqvist UH. Multiple myeloma and infections: a pop ulation-based study on 9253 multiple myeloma patients. Haematologica. 2015; 100:107-113. PubMedhttps://doi.org/10.3324/haematol.2014.107714Google Scholar
- Boucher HW, Talbot GH, Bradley JS. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis. 2009; 48:1-12. PubMedhttps://doi.org/10.1086/595011Google Scholar
- Bow EJ. Fluoroquinolones, antimicrobial resistance and neutropenic cancer patients. Curr Opin Infect Dis. 2011; 24:545-553. PubMedhttps://doi.org/10.1097/QCO.0b013e32834cf054Google Scholar
- Gilchrist M, Seaton RA. Outpatient parenteral antimicrobial therapy and antimicrobial stewardship: challenges and checklists. J Antimicrob Chemother. 2015; 70(4):965-970. PubMedhttps://doi.org/10.1093/jac/dku517Google Scholar
- Viscoli C, Management of infection in cancer patients. studies of the EORTC International Antimicrobial Therapy Group (IATG). Eur J Cancer. 2002; 38(Suppl 4):s82-87. PubMedGoogle Scholar
- Lanari M, Vandini S, Capretti MG, Lazzarotto T, Faldella G. Respiratory syncytial virus infections in infants affected by primary immunodeficiency. J Immunol Res. 2014; 2014:850831. PubMedGoogle Scholar
- Li S, Bizzarro MJ. Prevention of central line associated bloodstream infections in critical care units. Curr Opin Pediatr. 2011; 23(1):85-90. PubMedhttps://doi.org/10.1097/MOP.0b013e328341d1daGoogle Scholar
- Checkley W, White AC, Jaganath D. A review of the global burden, novel diagnostics, therapeutics, and vaccine targets for cryptosporidium. Lancet Infect Dis. 2015; 15(1):85-94. PubMedhttps://doi.org/10.1016/S1473-3099(14)70772-8Google Scholar
- Nuti F, Civitelli F, Cucchiara S. Long-term safety of immunomodulators in pediatric inflammatory diseases. Paediatr Drugs. 2014; 16(5):343-352. PubMedhttps://doi.org/10.1007/s40272-014-0084-2Google Scholar
- Zhang SX. Enhancing molecular approaches for diagnosis of fungal infections. Future Microbiol. 2013; 8(12):1599-1611. PubMedhttps://doi.org/10.2217/fmb.13.120Google Scholar
- Wojtowicz A, Bochud PY. Host genetics of invasive Aspergillus and Candida infections. Seminars in Immunopathology. 2015; 37(2):173-186. PubMedhttps://doi.org/10.1007/s00281-014-0468-yGoogle Scholar
- Bochud PY, Chien JW, Marr KA. Toll-like receptor 4 polymorphisms and aspergillosis in stem-cell transplantation. N Engl J Med. 2008; 359(17):1766-1777. PubMedhttps://doi.org/10.1056/NEJMoa0802629Google Scholar
- Cunha C, Di Ianni M, Bozza S. Dectin-1 Y238X polymorphism associates with susceptibility to invasive aspergillosis in hematopoietic transplantation through impairment of both recipient- and donor-dependent mechanisms of antifungal immunity. Blood. 2010; 116(24):5394-5402. PubMedhttps://doi.org/10.1182/blood-2010-04-279307Google Scholar
- Cunha C, Aversa F, Lacerda JF. Genetic PTX3 deficiency and aspergillosis in stem-cell transplantation. N Engl J Med. 2014; 370(5):421-432. PubMedhttps://doi.org/10.1056/NEJMoa1211161Google Scholar
- Ferwerda B, Ferwerda G, Plantinga TS. Human dectin-1 deficiency and mucocutaneous fungal infections. N Engl J Med. 2009; 361(18):1760-1767. PubMedhttps://doi.org/10.1056/NEJMoa0901053Google Scholar
- Wöjtowicz A, Lecompte TD, Bibert S. PTX3 Polymorphisms and Invasive Mold Infections After Solid Organ Transplant. Universite & EPFL: Lausanne; 2015. Google Scholar
- De Lima M, Porter DL, Battiwalla M. Proceedings from the National Cancer Institute’s Second International Workshop on the Biology, Prevention, and Treatment of Relapse After Hematopoietic Stem Cell Transplantation: part III. Prevention and treatment of relapse after allogeneic transplantation. Biol Blood Marrow Transplant. 2014; 20:4-13. PubMedhttps://doi.org/10.1016/j.bbmt.2013.08.012Google Scholar
- Martelli MF, Di Ianni M, Ruggeri L. HLA-haploidentical transplantation with regulatory and conventional T-cell adoptive immunotherapy prevents acute leukemia relapse. Blood. 2014; 124(4):638-644. PubMedhttps://doi.org/10.1182/blood-2014-03-564401Google Scholar
- Schmid C, Schleuning M, Schwerdtfeger R. Long-term survival in refractory acute myeloid leukemia after sequential treatment with chemotherapy and reduced-intensity conditioning for allogeneic stem cell transplantation. Blood. 2006; 108(3):1092-1099. PubMedhttps://doi.org/10.1182/blood-2005-10-4165Google Scholar
- Damaj G, Mohty M, Robin M. Upfront allogeneic stem cell transplantation after reduced-intensity/nonmyeloab-lative conditioning for patients with myelodysplastic syndrome: a study by the Société Française de Greffe de Moelle et de Thérapie Cellulaire. Biol Blood Marrow Transplant. 2014; 20(9):1349-1355. PubMedhttps://doi.org/10.1016/j.bbmt.2014.05.010Google Scholar
- Cruz CR, Micklethwaite KP, Savoldo B. Infusion of donor-derived CD19-redirected virus-specific T cells for B-cell malignancies relapsed after allogeneic stem cell transplant: a phase 1 study. Blood. 2013; 122:2965-2973. PubMedhttps://doi.org/10.1182/blood-2013-06-506741Google Scholar
- Bargou R, Leo E, Zugmaier G. Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science. 2008; 321(5891):974-977. PubMedhttps://doi.org/10.1126/science.1158545Google Scholar
- Topp MS, Gökbuget N, Zugmaier G. Phase II trial of the anti-CD19 bispecific T cell-engager blinatumomab shows hemato-logic and molecular remissions in patients with relapsed or refractory B-precursor acute lymphoblastic leukemia. J Clin Oncol. 2014; 32(36):4134-4140. PubMedhttps://doi.org/10.1200/JCO.2014.56.3247Google Scholar
- Ghorashian S, Veliça P, Chua I. CD8 T cell tolerance to a tumor-associated self-antigen is reversed by CD4 T cells engineered to express the same T cell receptor. J Immunol. 2015; 194(3):1080-1089. PubMedhttps://doi.org/10.4049/jimmunol.1401703Google Scholar
- Van Loenen MM, Hagedoorn RS, de Boer R, Frederik Falkenburg JH, Heemskerk MH. Extracellular domains of CD8α and CD8ß subunits are sufficient for HLA class I restricted helper functions of TCR-engineered CD4+ T cells. PLoS One. 2013; 8(5):e65212. PubMedhttps://doi.org/10.1371/journal.pone.0065212Google Scholar
- Feucht J, Opherk K, Lang P. Adoptive T-cell therapy with hexon-specific THELPER-1 cells as a treatment for refractory adenovirus infection after HSCT. Blood. 2015; 125(12):1986-1994. PubMedhttps://doi.org/10.1182/blood-2014-06-573725Google Scholar
- Walter D, Lier A, Geiselhart A. Exit from dormancy provokes DNA-damage-induced attrition in hematopoietic stem cells. Nature. 2015; 520(7548):549-552. PubMedhttps://doi.org/10.1038/nature14131Google Scholar
- Sun J, Ramos A, Chapman B. Clonal dynamics of native hematopoiesis. Nature. 2014; 514(7522):322-327. PubMedhttps://doi.org/10.1038/nature13824Google Scholar
- Etzrodt M, Endele M, Schroeder T. Quantitative single-cell approaches to stem cell research. Cell Stem Cell. 2014; 15(5):546-558. PubMedhttps://doi.org/10.1016/j.stem.2014.10.015Google Scholar
- Shepard KA, Talib S. Bottlenecks in Deriving Definitive Hematopoietic Stem Cells From Human Pluripotent Stem Cells: A CIRM Mini-Symposium and Workshop Report. Stem Cells Transl Med. 2014; 3(7):775-781. PubMedhttps://doi.org/10.5966/sctm.2014-0104Google Scholar
- Graf T, Enver T. Forcing cells to change lineages. Nature. 2009; 462(7273):587-594. PubMedhttps://doi.org/10.1038/nature08533Google Scholar
- Cathomen T, Ehl S. Translating the genomic revolution - targeted genome editing in primates. N Engl J Med. 2014; 370(24):2342-2345. PubMedhttps://doi.org/10.1056/NEJMcibr1403629Google Scholar
- Genovese P, Schiroli G, Escobar G. Targeted genome editing in human repopulating hematopoietic stem cells. Nature. 2014; 510(7504):235-240. PubMedhttps://doi.org/10.1038/nature13420Google Scholar
- Dominici M, Le Blanc K, Mueller I. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006; 8(4):315-317. PubMedhttps://doi.org/10.1080/14653240600855905Google Scholar
- Bernardo ME, Fibbe WE. Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell. 2013; 13(4):392-402. PubMedhttps://doi.org/10.1016/j.stem.2013.09.006Google Scholar
- Sauer AV, Di Lorenzo B, Carriglio N, Aiuti A. Progress in gene therapy for primary immunodeficiencies using lentiviral vectors. Curr Opin Allergy Clin Immunol. 2014; 14(6):527-534. PubMedhttps://doi.org/10.1097/ACI.0000000000000114Google Scholar
- Naldini L. Ex vivo gene transfer and correction for cell-based therapies. Nat Rev Genet. 2011; 12(5):301-315. PubMedhttps://doi.org/10.1038/nrg2985Google Scholar
- Cieri N, Mastaglio S, Oliveira G, Casucci M, Bondanza A, Bonini C. Adoptive immunotherapy with genetically modified lymphocytes in allogeneic stem cell transplantation. Immunol Rev. 2014; 257(1):165-180. PubMedhttps://doi.org/10.1111/imr.12130Google Scholar