@article{Emile van den Akker_Timothy J. Satchwell_Stephanie Pellegrin_Joanna F. Flatt_Michel Maigre_Geoff Daniels_Jean Delaunay_Lesley J. Bruce_Ashley M. Toye_2010, place={Pavia, Italy}, title={Investigating the key membrane protein changes during in vitro erythropoiesis of protein 4.2 (−) cells (mutations Chartres 1 and 2)}, volume={95}, url={https://haematologica.org/article/view/5680}, DOI={10.3324/haematol.2009.021063}, abstractNote={<strong>Background</strong> Protein 4.2 deficiency caused by mutations in the <em>EPB42</em> gene results in hereditary spherocytosis with characteristic alterations of CD47, CD44 and RhAG. We decided to investigate at which stage of erythropoiesis these hallmarks of protein 4.2 deficiency arise in a novel protein 4.2 patient and whether they cause disruption to the band 3 macrocomplex.<strong>Design and Methods</strong> We used immunoprecipitations and detergent extractability to assess the strength of protein associations within the band 3 macrocomplex and with the cytoskeleton in erythrocytes. Patient erythroblasts were cultured from peripheral blood mononuclear cells to study the effects of protein 4.2 deficiency during erythropoiesis.<strong>Results</strong> We report a patient with two novel mutations in <em>EPB42</em> resulting in complete protein 4.2 deficiency. Immunoprecipitations revealed a weakened ankyrin-1-band 3 interaction in erythrocytes resulting in increased band 3 detergent extractability. CD44 abundance and its association with the cytoskeleton were increased. Erythroblast differentiation revealed that protein 4.2 and band 3 appear simultaneously and associate early in differentiation. Protein 4.2 deficiency results in lower CD47, higher CD44 expression and increased RhAG glycosylation starting from the basophilic stage. The normal downregulation of CD44 expression was not seen during protein 4.2(−) erythroblast differentiation. Knockdown of CD47 did not increase CD44 expression, arguing against a direct reciprocal relationship.<strong>Conclusions</strong&gt; We have established that the characteristic changes caused by protein 4.2 deficiency occur early during erythropoiesis. We postulate that weakening of the ankyrin-1-band 3 association during protein 4.2 deficiency is compensated, in part, by increased CD44-cytoskeleton binding.}, number={8}, journal={Haematologica}, author={Emile van den Akker and Timothy J. Satchwell and Stephanie Pellegrin and Joanna F. Flatt and Michel Maigre and Geoff Daniels and Jean Delaunay and Lesley J. Bruce and Ashley M. Toye}, year={2010}, month={Jul.}, pages={1278-1286} }