# Lysine succinylation precisely controls normal erythropoiesis

Bin Hu,<sup>1\*</sup> Han Gong,<sup>1\*</sup> Ling Nie,<sup>2</sup> Ji Zhang,<sup>3</sup> Yanan Li,<sup>1</sup> Dandan Liu,<sup>1</sup> Huifang Zhang,<sup>1</sup> Haihang Zhang,<sup>1</sup> Lu Han,<sup>1</sup> Chaoying Yang,<sup>1</sup> Maohua Li,<sup>1</sup> Wenwen Xu,<sup>1</sup> Yukio Nakamura,<sup>4</sup> Lihong Shi,<sup>5</sup> Mao Ye,<sup>6</sup> Christopher D. Hillyer,<sup>7</sup> Narla Mohandas,<sup>7</sup> Long Liang,<sup>1</sup> Yue Sheng<sup>1</sup> and Jing Liu<sup>1</sup>

<sup>1</sup>Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Hunan, China; <sup>2</sup>Department of Hematology, Xiangya Hospital, Central South University, Hunan, China; <sup>3</sup>The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hunan, China; <sup>4</sup>Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan; <sup>5</sup>State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, China; <sup>6</sup>Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Hunan, China and <sup>7</sup>Research Laboratory of Red Cell Physiology, New York Blood Center, New York, NY, USA

\*BH and HG contributed equally as first authors.

# **Correspondence:** J. Liu jingliucsu@hotmail.com

Y. Sheng shengyue1900@163.com

L. Liang liang\_long614@126.com

| <b>Received:</b> |
|------------------|
| Accepted:        |
| Early view:      |

April 24, 2024. October 4, 2024. October 17, 2024.

#### https://doi.org/10.3324/haematol.2024.285752

©2025 Ferrata Storti Foundation Published under a CC BY-NC license 📴 🕵

# **Supplemental Methods**

#### CD34<sup>+</sup> Cell culture and manipulation

CD34<sup>+</sup> cells were purified from peripheral blood mononuclear cells (PMBC) by positive selection with the magnetic-activated cell sorting system (Miltenyi Biotec), according to the manufacturer's instructions. The cell culture procedure was divided into three phases. The cells were cultured in Iscove's modified Dulbecco's medium (IMDM, Life Technologies) containing 200 g/ml human holo-transferrin (sigma-Aldrich), 2% human AB plasma, 10 g/ml insulin (sigma-Aldrich), 3% fetal bovine serum (Gibco FBS, thermofisher), 3 IU/ml heparin (qilupharma), and 1% penicillin/streptomycin (Thermofisher) on day 0– day 6, CD34<sup>+</sup> cells at a concentration of 10<sup>5</sup>/ml were supplemented with 1 ng/ml interleukin 3 (IL-3), 10 ng/ml stem cell factor (SCF, STEMCELL Technologies), and 3 IU/ml EPO. On day 7– day 11, the cells were supplemented with 1 IU/ml EPO and 10 ng/ml SCF alone. day 11–14, the cell concentration was adjusted to 10<sup>6</sup>/ml on day 11 and to  $5 \times 10^{6}$ /ml on day 14. The cells were maintained at 37°C at the presence of 5% CO<sub>2</sub>, and were split into fresh culture medium every 2 days.

#### HUDEP2 cells towards erythroid lineage

Begin culture of HUDEP2 cells from frozen stock by plating in HUDEP2 expansion media at 100,000 cells/mL. The HUDEP2 cells typically double every 24–36 h. Perform media changes every 3–4 days, while ensuring that the cell density remains below 800,000 cells/mL. The cells were cultured with expansion medium: StemSpa Serum-Free Expansion Medium (SFEM,Stemcell Technologies), 2% PenicillinStreptomycin solution (10000 U/mL stock), 50 ng/mL recombinant human stem cell factor (SCF), 3 IU/mL EPO, 0.4µg/mL dexamethasone, 1 µg/mL doxycycline. Culturing HUDEP2 Cells for Erythroid Differentiation Phase, Transfer the cells from expansion medium, then the cells were cultured in Iscove's modified Dulbecco's medium (IMDM), 1% L-glutamine (this is in addition to the L-glutamine present in IMDM), 2% PenicillinStreptomycin solution (10,000U/mL stock concentration), 330µg/mL human holo-transferrin, 10µg/mL recombinant human insulin solution, 2 IU/mL heparin, 5% inactivated human plasma, 3 IU/mL EPO.

#### Cytospin preparation

A total of  $1 \times 105$  cells in 100 µL DPBS were spun for 5 minutes at 400 rpm onto glass slides using the cytospin apparatus. After airdrying for 1 minute, slides were stained with Giemsa staining solution (Sigma, Darmstadt, Germany) according to manufacturer's instructions. Stained cells were viewed, and images were acquired with an Olympus BX51 microscope and QCapture Pro 6.0 (Tokyo, Japan).

#### **Plasmid construction**

Primers of two human shRNA were annealed, followed by subcloning into pLKO.1 vectors at AgeI and EcoRI restriction enzyme sites. KAT2A, CPT1A and HAT1 were amplified and cloned into MSCV-puro at AgeI and EcoRI restriction enzyme sites. Cycs overexpression plasmid was cloned into pcl20-N-2\*flag-Blasticidin at EcoRI restriction enzyme sites.

#### Virus preparation

For lentivirus production, pLKO.1 shRNA or pcl20-N-2\*flag-Blasticidin together with package plasmids pMDG.2 and PSPAX2 were transfected into 293T cells by PEI (polysciences). For retrovirus production, MSCV vector combined with PECO package vector, were transfected into 293T cells by PEI. The supernatant medium containing virus was collected after 48 and 72 h. The virus medium was filtered by 0.45  $\mu$ M filter (Millipore) before use.

#### **Cell infection**

Cells were mixed with virus medium, 4  $\mu$ g/ml polybrene was added and cells were spinoculated for 3 h at 32 °C. In the following day, spinoculation was repeated. Then 1  $\mu$ g/ml puromycin (Solarbio) and 20  $\mu$ g/ml Blasticidin (Beyotime) were added to select the positive cells.

#### Western blot analysis

Protein extracts were subject to polyacrylamide gels (Bio-Rad), transferred to a NC membrane, and incubated in blocking buffer (5% non-fat milk in PBST). Antibody staining was visualized using the Bio-rad Imaging System. For western blotting, the primary antibody was diluted to 1:500 by blocking buffer with a final concentration of 2  $\mu$ g/mL. The secondary antibody (goat anti-rabbit or anti-mouse IgG [H+L] with HRP (abbkine) was diluted to 1:5000 by blocking buffer with a final concentration of 0.4  $\mu$ g/mL. The SuperSignal<sup>TM</sup> West Femto Maximum Sensitivity Substrate (Thermo Fisher Scientific) was used for antibody signal detection.

#### **Co-immunoprecipitation**

Total cell lysates were prepared from HUDEP2 cells using RIPA IP buffer (Beyotime). the cell lysate was precleared with Pierce Protein A/G magnetic beads (Bimake) for 30min then incubated with the antibody overnight. This was followed by incubation for 2 h with fresh Protein A/G magnetic beads. The beads were then washed three times with IP buffer, and  $2\times$  SDS-PAGE sample buffer was added. Samples were boiled for 10 min then centrifuged, and the supernatants were subjected to Western blot analysis. Immunoprecipitation was conducted using an anti-KAT2A antibody.

#### Immunofluorescence

Sections were permeabilized with 0.1% Triton X-100 in PBS for 15 min at room temperature, treated with 3% BSA and 3% goat serum, 0.1% Triton, and 0.05% Tween-20 in PBS for 1 h, and then incubated with anti-succinyllysine antibody overnight at 4°C. Sections were then washed extensively, incubated with the secondary antibody for 2 h at room temperature, mounted on glass slides, and visualized with a confocal laser scanning microscope (OLYMPUS).

#### **Chromatin Immunoprecipitation (ChIP)-PCR**

ChIP was performed with anti-succ-H3K79 antibody (PTM BIO) in HUDEP2 cells using Chromatin Immunoprecipitation (ChIP) Kit (9003S, Cell Signaling Technology, CST) according to the manufacturer's protocol. Quantitative PCR analysis was performed on the immunoprecipitated DNA using SYBR qRT-PCR analysis Master Mix (Vazyme). The PCR primers are listed in supplemental Table 4.

**Cleavage Under Targets & Tagmentation (CUT&Tag) assay and sequencing data analysis** CD34<sup>+</sup> cells were collected to perform the CUT&Tag assay by using NovoNGS CUT&Tag 4.0 High-Sensitivity Kit (for Illumina®) (Novoprotein, N259-YH01). The library sequencing was performed by Illumina novaseq 6000 platform (Haplox Genomics center). FastQC software was used for quality control. The clean reads were aligned to hg38 genome using bowtie2 (v2.3.5.1) with the options (--very-sensitive--end-to-end). Then, the low-quality mapping reads were removed using SAMtools with the option (-q 35). Peak calling was performed by Macs2 (v.2.2.7.1). BW files were visualized using IGV software. Heatmaps were then generated using DeepTools (v.3.5.1) tool. The R package ChIPseeker was used to perform annotation and functional enrichment analysis for differential binding peak between groups.

#### **BrdU** assay

The medium was removed from  $1 \times 10^6$  cells and replaced with BrdU-labeled solution. After 3 hours incubation at 37°C, the cells were washed twice with PBS and resuspended in 100 µL BD Cytofix/Cytoperm buffer (BD Biosciences), and then incubated on ice for 15-30 minutes until cooling. The cooled cells were washed with 1 mL 1x BD Perm/Wash buffer (BD Biosciences). The cells were centrifuged at 5000 rpm for 5 min and the supernatant was removed. Subsequently, the cells were resuspended in 100 µL BD Cytoperm Permeability Stability Buffer Plus (BD Biosciences) and incubated on ice for 10 min and then washed with 1 mL 1x BD Perm/Wash buffer, centrifuged at 5000 rpm for 5 min and the supernatant removed. Following the up step, the cells were incubated in 100 µL BD Cytofix/Cytoperm buffer on ice for 5 min followed by washing with 1 mL 1x BD Perm/Wash buffer, centrifuged at 5000 rpm for 5 min and the supernatant removed. Immediately, the cells were treated with DNase (300 µg/mL working concentration diluted in DPBS from 6 mg/mL stock solution (Sigma-Aldrich), to expose incorporated BrdU. 100  $\mu$ L of the diluted DNase (300  $\mu$ g/mL in DPBS) was used to resuspend the cells and incubated at 37°C in the dark for 1 hour. After this, the cells were washed with 1 mL 1x BD Perm/Wash buffer, centrifuged at 5000 rpm for 5 min and the supernatant removed. the cell pellet was resuspended in 50 µL 1x BD Perm/Wash buffer with the addition of BrdU antibody (ThermoFisher) at 5  $\mu$ L per 10<sup>6</sup> cells. Then the cells were incubated for 20 min at room temperature and washed with 1 mL 1x BD Perm/Wash buffer, centrifuged at 5000 rpm for 5 min and the supernatant removed. Finally, the cells were stained with 100 µL FACS buffer containing 1 µL of 1 mg/mL DAPI (BioSharp) and incubated in the dark for 30 min. The stained cells were then used for flow cytometric analysis.

#### LC-MS/MS analysis and database search

The peptides were separated using a NanoElute ultra-high-performance liquid chromatography system. Once separated, the peptides were ionized by injection into a Capillary ion source and analyzed using the tims TOF Pro mass spectrometer. The ion source voltage was set at 1.65 kV, and high-resolution TOF was used to detect and analyze both the peptide precursor ions and their fragment ions. The secondary mass spectrometry scan range was set to 400-1500 m/z. Parallel accumulation serial fragmentation (PASEF) mode was used for data acquisition, where 10 PASEF mode scans were performed to collect the secondary spectra of precursor ions with charges between 0-5 after collecting one primary mass spectrum. The dynamic exclusion time for tandem mass spectrometry scanning was set to 30 seconds to avoid repeat scans of precursor ions. Protein identification was performed using MaxQuant software (v1.6.15.0), and a total of 20,395 Homo sapiens sequences were downloaded from the UniProtKB database (Release 2021-01) for database searching. Carbamidomethyl (C) was set as a fixed modification for cysteine alkylation, and variable modifications included oxidation of methionine and acetylation of protein N-termini. For succinylome, succinylated lysine residue was added as a variable modification. The false discovery rate (FDR) threshold for protein, peptide, and modification site was set to 1%. The peptide mass tolerance and fragment mass tolerance were set to 10 ppm and 0.02 Da, respectively. The probability for site localization was set to >0.75.

#### LC-MS/MS analysis and database search

The peptides were separated using a NanoElute ultra-high-performance liquid chromatography system. Once separated, the peptides were ionized by injection into a Capillary ion source and analyzed using the timsTOF Pro mass spectrometer. The ion source voltage was set at 1.65 kV, and high-resolution TOF was used to detect and analyze both the peptide precursor ions and their fragment ions. The secondary mass spectrometry scan range was set to 400-1500 m/z. Parallel accumulation serial fragmentation (PASEF) mode was used for data acquisition, where 10 PASEF mode scans were performed to collect the secondary spectra of precursor ions with

charges between 0-5 after collecting one primary mass spectrum. The dynamic exclusion time for tandem mass spectrometry scanning was set to 30 seconds to avoid repeat scans of precursor ions. Protein identification was performed using MaxQuant software (v1.6.15.0), and a total of 20,395 Homo sapiens sequences were downloaded from the UniProtKB database (Release 2021-01) for database searching. Carbamidomethyl (C) was set as a fixed modification for cysteine alkylation, and variable modifications included oxidation of methionine and acetylation of protein N-termini. For succinylome, succinylated lysine residue was added as a variable modification. The false discovery rate (FDR) threshold for protein, peptide, and modification site was set to 1%. The peptide mass tolerance and fragment mass tolerance were set to 10 ppm and 0.02 Da, respectively. The probability for site localization was set to >0.75.

# **Supplemental Tables and Figures**

| Antibodies                                | Catolog  | Company        | Use              |  |
|-------------------------------------------|----------|----------------|------------------|--|
| Anti-Succinyllysine Mouse mAb             | PTM-419  | PTMBIO         | Western blot     |  |
| Anti-HAT1 Mouse mAb                       | PTM-     | PTMBIO         | Western blot     |  |
|                                           | 5195     |                |                  |  |
| Anti-Succinyllysine Rabbit pAb            | PTM-401  | PTMBIO         | IF               |  |
| Anti-Succinyl-Histone H3 (Lys79)          | PTM-412  | PTMBIO         | Western blot, IP |  |
| Rabbit pAb                                |          |                | and ChIP         |  |
| SIRT5 Rabbit pAb                          | A5784    | abclonal       | Western blot     |  |
| SIRT7 Rabbit pAb                          | A0979    | abclonal       | Western blot     |  |
| Lamin B1 Rabbit pAb                       | A1910    | abclonal       | Western blot     |  |
| HBB Polyclonal antibody                   | 16216-1- | proteintech    | Western blot     |  |
|                                           | AP       |                |                  |  |
| Cytochrome c Polyclonal antibody          | 10993-1- | proteintech    | Western Blot     |  |
|                                           | AP       |                |                  |  |
| GCN5L2 (KAT2A) Rabbit mAb #3305           | C26A10   | Cell Signaling | Western Blot     |  |
|                                           |          | Technology     | and IP           |  |
| CPT1A (D3B3) Rabbit mAb #12252            | D3B3     | Cell Signaling | Western blot     |  |
|                                           |          | Technology     |                  |  |
| Histone H3 Antibody #9715                 | 9715S    | Cell Signaling | Western blot     |  |
|                                           |          | Technology     |                  |  |
| GAPDH antibody(0411)                      | sc-47724 | Santa Cruz     | Western blot     |  |
|                                           |          | Biotechnology  |                  |  |
| beta Actin antibody (C4)                  | sc-47778 | Santa Cruz     | Western blot     |  |
|                                           |          | Biotechnology  |                  |  |
| Anti-DDDDK(FLAG)-tag antibody             | M185-3L  | MBL            | Western blot     |  |
| BD Pharmingen <sup>™</sup> 7-AAD          | 559925   | BD             | Flow cytometry   |  |
|                                           |          | Biosciences    |                  |  |
| BV421 Mouse Anti-Human CD235a             | 562938   | BD             | Flow cytometry   |  |
|                                           |          | Biosciences    |                  |  |
| BD Pharmingen <sup>™</sup> PE Mouse Anti- | 555537   | BD             | Flow cytometry   |  |
| Human CD71                                |          | Biosciences    |                  |  |
| BD Pharmingen <sup>TM</sup> DAPI Solution | 564907   | BD             | Flow cytometry   |  |
|                                           | 11 5051  | Biosciences    |                  |  |
| BrdU Monoclonal Antibody (BU20A),         | 11-5071- | Invitrogen     | Flow cytometry   |  |
| FIIC                                      | 42       |                |                  |  |

Supplemental Table 1. All antibodies used in this study

Abbreviations: IP, immunoprecipitation; ChIP, chromatin immunoprecipitation; IF: immunofluorescence.

| Product name                | Company        | Catalog #   | Applications in the present study       |
|-----------------------------|----------------|-------------|-----------------------------------------|
|                             |                |             |                                         |
| CD34 Microbead              | miltenyibiotec | 130-046-702 | Cell separation                         |
| kit                         |                |             |                                         |
| IMDM                        | thermofisher   | 31980030    | Cell Culture                            |
| holo-transferrin            | sigma-Aldrich  | 11096-37-0  | Cell culture                            |
| insulin                     | sigma-Aldrich  | 11061-68-0  | Cell culture                            |
| fetal bovine<br>serum       | thermofisher   | 30044333    | Cell culture                            |
| heparin                     | qilu-pharma    |             | Cell culture                            |
|                             | thermofisher   | 15140122    | Prevent bacterial contamination of cell |
| penicillin/strepto<br>mycin |                |             | cultures                                |
| stem cell factor            | STEMCELL       | 78064       | Cell culture                            |
|                             | Technologies   |             |                                         |
| EPO                         | Sinovac        |             | Cell culture                            |
|                             | Biotech Ltd    |             |                                         |
| StemSpan serum-             | STEMCELL       | 09600       | Cell Culture                            |
| free medium                 | Technologies   |             |                                         |
| STEMCELL                    |                |             |                                         |
| Technologies                | 11 1           | 95150       |                                         |
| Doxycycline                 | selleck        | \$5159      | Cell Culture                            |
| dexamethasone               | selleck        | S1322       | Cell Culture                            |
| HEK293T cells               | ATCC® CRL-     |             | Cell culture                            |
|                             | 11268тм        |             |                                         |
| DMEM                        | thermofisher   | 12430054    | Cell Culture                            |
| PEI                         | polysciences   | 02371-100   | non-viral vector carriers               |
|                             |                |             |                                         |
| 0.45 µM filter              | millipore      | HAWP04700   | Filtered plasma                         |
| puromycin                   | Solarbio       | P8230       | screening strains                       |
| Blasticidin                 | beyotime       | ST018-5ml   | screening strains                       |
| Pierce Protein              | bimake         | B23201      | Antibody purification and               |
| A/G magnetic                |                |             | immunoprecipitation                     |
| beads                       |                | 51 2000W7   | Durks and multiferentiate and an        |
| BD<br>Cutofin/Cotoroa       | BD             | 31-2090KZ   | Brau cell proliferation assay           |
| m buffer                    | DIOSCIETICES   |             |                                         |

# Supplemental Table 2. Specific reagents used.

| 1× BD                    | BD             | 554723     | Brdu cell proliferation assay          |
|--------------------------|----------------|------------|----------------------------------------|
| Perm/Wash                | Biosciences    |            |                                        |
| buffer                   |                |            |                                        |
| BD Cytoperm              | BD             | 51-2356KC  | Brdu cell proliferation assay          |
| Perme Stability          | Biosciences    |            |                                        |
| Buffer Plus              |                |            |                                        |
| BrdU(dilution            |                | 32160405   | Brdu cell proliferation assay          |
| of dnase                 | sigma-Aldrich  |            |                                        |
| DAPI                     | biosharp       | BS097-10mg | Flow cytometry and                     |
|                          |                |            | immunofluorescence.                    |
| Chromatin                | Cell Signaling | 9003S      | Detect protein-DNA interactions        |
| Immunoprecipita          | Technology     |            |                                        |
| tion (ChIP) Kit          |                |            |                                        |
| BCA assay kit            | Thermo         | 23225      | determination of protein concentration |
|                          | Scientific     |            |                                        |
| SuperSignal <sup>™</sup> | Thermo         | 34580      | Protein Electrophoresis & Western      |
| West Pico PLUS           | Scientific     |            | Blotting                               |
|                          |                |            |                                        |
| Annexin V-               | Vazyme         | A211-01    | apoptosis assay                        |
| FITC/PI                  |                |            |                                        |
| Apoptosis                |                |            |                                        |
| Detection Kit            |                |            |                                        |
| NE-PER Nuclear           | Thermo         | 78835      | Nuclear and Cytoplasmic Extraction     |
| and Cytoplasmic          | Scientific     |            |                                        |
| Extraction               |                |            |                                        |
| Reagents                 |                |            |                                        |

Supplemental Table 3. Oligonucleoties used in this study.

| Name        | Sequence (5' to 3')                    | Туре  |
|-------------|----------------------------------------|-------|
| shKAT2A-1-F | CCGGGCTGAACTTTGTGCAGTACAACTCGAGTTGTAC  | shRNA |
|             | TGCACAAAGTTCAGCTTTTTG                  |       |
| shKAT2A-1-R | AATTCAAAAAGCTGAACTTTGTGCAGTACAACTCGAG  | shRNA |
|             | TTGTACTGCACAAAGTTCAGC                  |       |
| shKAT2A-2-F | CCGGCCACCTGAAGGAGTATCACATCTCGAGATGTGA  | shRNA |
|             | TACTCCTTCAGGTGGTTTTTG                  |       |
| shKAT2A-2-R | AATTCAAAAACCACCTGAAGGAGTATCACATCTCGAG  | shRNA |
|             | ATGTGATACTCCTTCAGGTGG                  |       |
| shHAT1-1-F  | CCGGGCTACATGACAGTCTATAATTCTCGAGAATTATA | shRNA |
|             | GACTGTCATGTAGCTTTTTG                   |       |
| shHAT1-1-R  | AATTCAAAAAGCTACATGACAGTCTATAATTCTCGAG  | shRNA |
|             | AATTATAGACTGTCATGTAGC                  |       |
| shHAT1-2-F  | CCGGCCGTGTTGAATATGCATCTAACTCGAGTTAGATG | shRNA |
|             | CATATTCAACACGGTTTTTG                   |       |
| shHAT1-2-R  | AATTCAAAAACCGTGTTGAATATGCATCTAACTCGAGT | shRNA |
|             | TAGATGCATATTCAACACGG                   |       |
| shCPT1A-1-F | CCGGCGTAGCCTTTGGTAAAGGAATCTCGAGATTCCT  | shRNA |
|             | TTACCAAAGGCTACGTTTTTG                  |       |
| shCPT1A-1-R | AATTCAAAAACGTAGCCTTTGGTAAAGGAATCTCGAG  | shRNA |
|             | ATTCCTTTACCAAAGGCTACG                  |       |
| shCPT1A-2-F | CCGGCGATGTTACGACAGGTGGTTTCTCGAGAAACCA  | shRNA |
|             | CCTGTCGTAACATCGTTTTTG                  |       |
| shCPT1A-2-R | AATTCAAAAACGATGTTACGACAGGTGGTTTCTCGAG  | shRNA |
|             | AAACCACCTGTCGTAACATCG                  |       |
| shCYCS-F    | CCGGAGGGCAGACTTATGATTAGACTTCGTTAGTAATC | shRNA |
|             | TATTAAGTCTGCCCTTTTTTG                  |       |
| shCYCS-R    | AATTCAAAAAAGGGCAGACTTAATAGCTTATCTCGAG  | shRNA |
|             | ATAAGCTATTAAGTCTGCCCT                  |       |

Abbreviations: F, forward; R, reverse.

| Name       | Sequence (5' to 3')                                                        |
|------------|----------------------------------------------------------------------------|
| CHIP-PCR   | tttaattcagaaagatgtactcaatatttaattaaagatatgagatctaacgatgtaggcaggc           |
| primer for | cagggagtatgccctgtgtaaggactccattc                                           |
| hFOXO3     |                                                                            |
| CHIP-PCR   | tgaatgagagaatgaacgagtggttgaatggggaaatgagtggtagaggaaactggcaactgttgggtt      |
| primer for | gggggtgtctatggggattgacttctccaactctcttacctctttttcttc                        |
| hHDAC6     |                                                                            |
| CHIP-PCR   | tcttctatagcatcaaataaagagacctataaatggttattaggtgaatgttacccaggttctcctcagttcag |
| primer for | aagcaattetttetttaetgattatt                                                 |
| hXPO7      |                                                                            |
| CHIP-PCR   | actattgttccccaaaggtccttagtaataaaggacttagtaataggaaaactttcttggaagagatacatgc  |
| primer for | aatatgtcacatatcacagatacacatatacaaa                                         |
| hHNRNPU    |                                                                            |
| CHIP-PCR   | cctagg ctcgagaagc ctgttcggtt ctcagcatgt ttgagtgcttctgggcgcgg gcggagcgag    |
| primer for | aaagcaagtgtagggtggcaggctccggagccggaagaagcccgttcaattcagcaacttttcattaag      |
| hCTLA      | catttgctgtgcctttagtccggtctctgaagcaaccgcattggcgcagtttttccagacttataagcttataa |
|            | gtctgagccgagcacagaactcgttattagaaaaggagggcggaaaaaaataagaatggaaatatcgtt      |
|            | tttgagagatacaaacaaaagtagcaatgcagttcagcatttaagcacttaaggtgtacagagtgttggatt   |
|            | acgaggaggaaggagggggggggagtagggaactcgaaagatgatctaggtctggagaaagaa            |
|            | gcggtaggagtttgctatcgttgagcgattgatttacagctaggacttctggagctcttcctctgggaacag   |
|            | ctttggtaggcaatattgcctaagca                                                 |

Supplemental Table 4. CHIP-qPCR Primers used in this study.

## Supplemental Table 5. Succinylated proteins only in Day 0

| UNIPR  | SYMB  | GENENAME                            | sites                 |
|--------|-------|-------------------------------------|-----------------------|
| OT     | OL    |                                     |                       |
| O0041  | POLR  | RNA polymerase mitochondrial        | K402                  |
| 1      | MT    |                                     |                       |
| O1487  | BCKD  | branched chain keto acid            | K184, K233, K89, K192 |
| 4      | Κ     | dehydrogenase kinase                |                       |
| O4376  | LIAS  | lipoic acid synthetase              | K318                  |
| 6      |       |                                     |                       |
| O7587  | GATB  | glutamyl-tRNA amidotransferase      | K529                  |
| 9      |       | subunit B                           |                       |
| P21583 | KITLG | KIT ligand                          | K42                   |
| P82921 | MRPS2 | mitochondrial ribosomal protein S21 | K40                   |
|        | 1     |                                     |                       |
| Q1419  | MRPL5 | mitochondrial ribosomal protein L58 | K153, K118, K94, K98  |
| 7      | 8     |                                     |                       |
| Q1464  | RASA3 | RAS p21 protein activator 3         | K15                   |
| 4      |       |                                     |                       |
| Q14CZ  | FASTK | FAST kinase domains 3               | K471, K481            |
| 7      | D3    |                                     |                       |
| Q1512  | PDK3  | pyruvate dehydrogenase kinase 3     | K278                  |

| 0      |         |                                         |                         |
|--------|---------|-----------------------------------------|-------------------------|
| Q53R4  | FASTK   | FAST kinase domains 1                   | K785, K482, K360, K478, |
| 1      | D1      |                                         | K236                    |
| Q5T5X  | BEND3   | BEN domain containing 3                 | K816, K821, K822, K824  |
| 7      |         |                                         |                         |
| Q6P4F  | FDX2    | ferredoxin 2                            | K184                    |
| 2      |         |                                         |                         |
| Q6PM   | SLC30   | solute carrier family 30 member 9       | K487, K223, K234        |
| L9     | A9      |                                         |                         |
| Q7Z3T  | ZFYVE   | zinc finger FYVE-type containing 16     | K435                    |
| 8      | 16      |                                         |                         |
| Q86W   | BPHL    | biphenyl hydrolase like                 | K126, K257, K191, K271  |
| A6     |         |                                         |                         |
| Q86Y   | PDSS2   | decaprenyl diphosphate synthase         | K285                    |
| H6     |         | subunit 2                               |                         |
| Q8IVH  | MMAA    | metabolism of cobalamin associated A    | K88, K323               |
| 4      |         |                                         |                         |
| Q8N8   | C2orf69 | chromosome 2 open reading frame 69      | K346                    |
| R5     |         |                                         |                         |
| Q8NC   | PDPR    | pyruvate dehydrogenase phosphatase      | K854, K100, K219, K307, |
| N5     |         | regulatory subunit                      | K218                    |
| Q96C0  | FAM13   | family with sequence similarity 136     | K18                     |
| 1      | 6A      | member A                                |                         |
| Q96G   | MRPL4   | mitochondrial ribosomal protein L48     | K64                     |
| C5     | 8       |                                         |                         |
| Q96I51 | RCC1L   | RCC1 like                               | K209                    |
| Q96PE  | MCEE    | methylmalonyl-CoA epimerase             | K114, K60, K150         |
| 7      |         |                                         |                         |
| Q9959  | TIMM1   | translocase of inner mitochondrial      | K56                     |
| 5      | 7A      | membrane 17A                            |                         |
| Q9BY   | MRPS2   | mitochondrial ribosomal protein S26     | K185                    |
| N8     | 6       |                                         |                         |
| Q9HC   | MRM3    | mitochondrial rRNA methyltransferase    | K251, K167, K153, K136, |
| 36     |         | 3                                       | K122, K237              |
| Q9HD   | LYRM4   | LYR motif containing 4                  | K44, K47                |
| 34     |         |                                         |                         |
| Q9NW   | RMND    | required for meiotic nuclear division 1 | K240, K249              |
| S8     | 1       | homolog                                 |                         |
| Q9UG   | WARS2   | tryptophanyl tRNA synthetase 2,         | K333, K354, K234, K198  |
| M6     |         | mitochondrial                           |                         |
| Q9UH   | POLG2   | DNA polymerase gamma 2, accessory       | K463, K288              |
| N1     |         | subunit                                 |                         |
| Q9Y2   | MRPS1   | mitochondrial ribosomal protein S17     | K21                     |

| R5   | 7     |                                      |            |
|------|-------|--------------------------------------|------------|
| Q9Y3 | MRPS1 | mitochondrial ribosomal protein S18C | K131, K134 |
| D5   | 8C    |                                      |            |

## Supplemental Table 6. Succinylated proteins only in Day 6

| UNIPRO | SYMBO | GENENAME                          | sites                  |
|--------|-------|-----------------------------------|------------------------|
| Т      | L     |                                   |                        |
| P02671 | FGA   | fibrinogen alpha chain            | K202, K89, K476, K148, |
|        |       |                                   | K157                   |
| P02675 | FGB   | fibrinogen beta chain             | K374                   |
| P02679 | FGG   | fibrinogen gamma chain            | K231                   |
| P78540 | ARG2  | arginase 2                        | K229, K241             |
| Q4G176 | ACSF3 | acyl-CoA synthetase family member | K534, K563             |
|        |       | 3                                 |                        |
| Q9HD23 | MRS2  | magnesium transporter MRS2        | К93                    |

# Supplemental Table 7. Enrichment analysis of stage-specific Ksu proteins

| Enrichment analysis of early-stage specific proteins                                                 |                                                                                                                                                                                                                                                                     |                                                                                     |                                                                                    |                                                                                  |                                    |  |  |
|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------|--|--|
| ID                                                                                                   | Description                                                                                                                                                                                                                                                         | pvalu                                                                               | p.adjust                                                                           | qvalue                                                                           | Cou                                |  |  |
|                                                                                                      |                                                                                                                                                                                                                                                                     | e                                                                                   |                                                                                    |                                                                                  | nt                                 |  |  |
| GO:01400                                                                                             | mitochondrial gene expression                                                                                                                                                                                                                                       | 3.16E                                                                               | 1.18E-                                                                             | 9.69E-                                                                           | 10                                 |  |  |
| 53                                                                                                   |                                                                                                                                                                                                                                                                     | -16                                                                                 | 13                                                                                 | 14                                                                               |                                    |  |  |
| GO:00325                                                                                             | mitochondrial translation                                                                                                                                                                                                                                           | 1.25E                                                                               | 2.33E-                                                                             | 1.91E-                                                                           | 8                                  |  |  |
| 43                                                                                                   |                                                                                                                                                                                                                                                                     | -13                                                                                 | 11                                                                                 | 11                                                                               |                                    |  |  |
| GO:00009                                                                                             | mitochondrial RNA metabolic process                                                                                                                                                                                                                                 | 9.22E                                                                               | 0.00011                                                                            | 9.41E-                                                                           | 4                                  |  |  |
| 59                                                                                                   |                                                                                                                                                                                                                                                                     | -07                                                                                 | 5                                                                                  | 05                                                                               |                                    |  |  |
| GO:00701                                                                                             | positive regulation of mitochondrial                                                                                                                                                                                                                                | 1.48E                                                                               | 0.0001                                                                             | 0.0001                                                                           | 3                                  |  |  |
| 31                                                                                                   | translation                                                                                                                                                                                                                                                         | -06                                                                                 | 39                                                                                 | 14                                                                               |                                    |  |  |
| GO:00701                                                                                             | regulation of mitochondrial translation                                                                                                                                                                                                                             | 6.54E                                                                               | 0.0004                                                                             | 0.0004                                                                           | 3                                  |  |  |
| 29                                                                                                   |                                                                                                                                                                                                                                                                     | -06                                                                                 | 89                                                                                 |                                                                                  |                                    |  |  |
| Enrichment analysis of late-stage specific proteins                                                  |                                                                                                                                                                                                                                                                     |                                                                                     |                                                                                    |                                                                                  |                                    |  |  |
| Enrichment                                                                                           | analysis of late-stage specific proteins                                                                                                                                                                                                                            |                                                                                     |                                                                                    |                                                                                  |                                    |  |  |
| Enrichment<br>ID                                                                                     | analysis of late-stage specific proteins Description                                                                                                                                                                                                                | pvalu                                                                               | p.adjust                                                                           | qvalue                                                                           | Cou                                |  |  |
| Enrichment<br>ID                                                                                     | analysis of late-stage specific proteins Description                                                                                                                                                                                                                | pvalu<br>e                                                                          | p.adjust                                                                           | qvalue                                                                           | Cou<br>nt                          |  |  |
| Enrichment<br>ID<br>GO:00341                                                                         | analysis of late-stage specific proteins<br>Description<br>positive regulation of heterotypic cell-                                                                                                                                                                 | pvalu<br>e<br>8.21E                                                                 | p.adjust<br>1.11E-                                                                 | qvalue<br>2.32E-                                                                 | Cou<br>nt<br>3                     |  |  |
| Enrichment<br>ID<br>GO:00341<br>16                                                                   | analysis of late-stage specific proteins Description positive regulation of heterotypic cell- cell adhesion                                                                                                                                                         | pvalu<br>e<br>8.21E<br>-09                                                          | p.adjust<br>1.11E-<br>06                                                           | qvalue<br>2.32E-<br>07                                                           | Cou<br>nt<br>3                     |  |  |
| Enrichment<br>ID<br>GO:00341<br>16<br>GO:00723                                                       | analysis of late-stage specific proteins<br>Description<br>positive regulation of heterotypic cell-<br>cell adhesion<br>blood coagulation, fibrin clot formation                                                                                                    | pvalu<br>e<br>8.21E<br>-09<br>8.21E                                                 | p.adjust<br>1.11E-<br>06<br>1.11E-                                                 | qvalue<br>2.32E-<br>07<br>2.32E-                                                 | Cou<br>nt<br>3                     |  |  |
| Enrichment<br>ID<br>GO:00341<br>16<br>GO:00723<br>78                                                 | analysis of late-stage specific proteins Description positive regulation of heterotypic cell- cell adhesion blood coagulation, fibrin clot formation                                                                                                                | pvalu<br>e<br>8.21E<br>-09<br>8.21E<br>-09                                          | p.adjust<br>1.11E-<br>06<br>1.11E-<br>06                                           | qvalue<br>2.32E-<br>07<br>2.32E-<br>07                                           | Cou<br>nt<br>3                     |  |  |
| Enrichment<br>ID<br>GO:00341<br>16<br>GO:00723<br>78<br>GO:00723                                     | analysis of late-stage specific proteins<br>Description<br>positive regulation of heterotypic cell-<br>cell adhesion<br>blood coagulation, fibrin clot formation<br>protein activation cascade                                                                      | pvalu<br>e<br>8.21E<br>-09<br>8.21E<br>-09<br>1.23E                                 | p.adjust<br>1.11E-<br>06<br>1.11E-<br>06<br>1.11E-                                 | qvalue<br>2.32E-<br>07<br>2.32E-<br>07<br>2.32E-                                 | Cou<br>nt<br>3<br>3<br>3           |  |  |
| Enrichment<br>ID<br>GO:00341<br>16<br>GO:00723<br>78<br>GO:00723<br>76                               | analysis of late-stage specific proteins Description positive regulation of heterotypic cell- cell adhesion blood coagulation, fibrin clot formation protein activation cascade                                                                                     | pvalu<br>e<br>8.21E<br>-09<br>8.21E<br>-09<br>1.23E<br>-08                          | p.adjust<br>1.11E-<br>06<br>1.11E-<br>06<br>1.11E-<br>06                           | qvalue<br>2.32E-<br>07<br>2.32E-<br>07<br>2.32E-<br>07                           | Cou<br>nt<br>3<br>3<br>3           |  |  |
| Enrichment<br>ID<br>GO:00341<br>16<br>GO:00723<br>78<br>GO:00723<br>76<br>GO:00427                   | analysis of late-stage specific proteins          Description         positive regulation of heterotypic cell-cell adhesion         blood coagulation, fibrin clot formation         protein activation cascade         fibrinolysis                                | pvalu<br>e<br>8.21E<br>-09<br>8.21E<br>-09<br>1.23E<br>-08<br>3.65E                 | p.adjust<br>1.11E-<br>06<br>1.11E-<br>06<br>1.11E-<br>06<br>1.87E-                 | qvalue<br>2.32E-<br>07<br>2.32E-<br>07<br>2.32E-<br>07<br>3.93E-                 | Cou<br>nt<br>3<br>3<br>3<br>3      |  |  |
| Enrichment<br>ID<br>GO:00341<br>16<br>GO:00723<br>78<br>GO:00723<br>76<br>GO:00427<br>30             | analysis of late-stage specific proteins Description positive regulation of heterotypic cell- cell adhesion blood coagulation, fibrin clot formation protein activation cascade fibrinolysis                                                                        | pvalu<br>e<br>8.21E<br>-09<br>8.21E<br>-09<br>1.23E<br>-08<br>3.65E<br>-08          | p.adjust<br>1.11E-<br>06<br>1.11E-<br>06<br>1.11E-<br>06<br>1.87E-<br>06           | qvalue<br>2.32E-<br>07<br>2.32E-<br>07<br>2.32E-<br>07<br>3.93E-<br>07           | Cou<br>nt<br>3<br>3<br>3<br>3      |  |  |
| Enrichment<br>ID<br>GO:00341<br>16<br>GO:00723<br>78<br>GO:00723<br>76<br>GO:00427<br>30<br>GO:00316 | analysis of late-stage specific proteins          Description         positive regulation of heterotypic cell-cell adhesion         blood coagulation, fibrin clot formation         protein activation cascade         fibrinolysis         plasminogen activation | pvalu<br>e<br>8.21E<br>-09<br>8.21E<br>-09<br>1.23E<br>-08<br>3.65E<br>-08<br>4.14E | p.adjust<br>1.11E-<br>06<br>1.11E-<br>06<br>1.11E-<br>06<br>1.87E-<br>06<br>1.87E- | qvalue<br>2.32E-<br>07<br>2.32E-<br>07<br>2.32E-<br>07<br>3.93E-<br>07<br>3.93E- | Cou<br>nt<br>3<br>3<br>3<br>3<br>3 |  |  |

| GO:00341 | regulation | of | heterotypic | cell-cell | 4.14E | 1.87E- | 3.93E- | 3 |
|----------|------------|----|-------------|-----------|-------|--------|--------|---|
| 14       | adhesion   |    |             |           | -08   | 06     | 07     |   |

#### **Supplementary Figures**



**Supplementary Figure S1. Protein post-translational modifications during CD34+ cells erythroid differentiation.** (A-E) CD34+ cells were collected at each developmental stage of human erythroid differentiation for cell lysis, and posttranslational modifications were detected, including methylation (A), acetylation (B), crotonylation (C), malonylation (D), propionylation (E) and butyrylation (F). GAPDH was used as a loading control.



**Supplementary Figure S2. Effects of global lysine succinylation on erythroid differentiation in human CD34<sup>+</sup> cells.** (A) The qRT-PCR results showing the mRNA expression levels of succinyltransferases and desuccinylases in HUDEP2 cells. (B) The qRT-PCR results showing KAT2A and SIRT5 mRNA expression levels in cultured primary erythroid cells at day 7. (C) Western blotting analysis of global lysine succinylation levels in CD34<sup>+</sup> cells infected with KAT2A knockdown and SIRT5 overexpression. (D) Cell growth curves determined by manual cell counting. (E) Cell apoptosis proportions assessed via annexin V/PI staining during erythroid differentiation. (F) Results of cell-cycle distribution obtained through BrdU assay during erythroid differentiation. (G) Flow cytometry analysis of KAT2A knockdown or SIRT5 overexpression during human erythroid differentiation at different stages in human CD34<sup>+</sup> cells. (H) Differentiation of HUDEP2 cells after infection with KAT2A or, HAT1 or CPT1A shRNA lentivirus or SIRT5 or SIRT7 overexpression virus. Western blotting images displaying KAT2A, HAT1, CPT1A, SIRT5, and SIRT7 expression in HUDEP2 cells infected with relative lentivirus, along with hemoglobin expression.



Supplementary Figure S3. Effects of global lysine succinylation on erythroid differentiation following treatment with succinyltransferase inhibitors in human CD34+ cells. (A) Western blot analysis of global lysine succinylation levels in CD34+ cells treated with

succinyltransferase inhibitors - Butyrolactone 3 (a specific small-molecule inhibitor of KAT2A), Etomoxir (an irreversible inhibitor of CPT1A), and JG-2016 (a potent inhibitor of HAT1). (B) Cell-cycle distribution during erythroid differentiation assessed through PI assay. (C) Proportions of apoptotic cells evaluated via annexin V/PI staining during erythroid differentiation. (D) Flow cytometry analysis of erythroid differentiation at various stages in human CD34+ cells treated with succinyltransferase inhibitors. (E) Cell-cycle distribution during erythroid differentiation in CD34+ cells (left), proportions of apoptotic cells during erythroid differentiation in CD34+ cells (middle), and proportions of GPA- and CD71-positive cells during erythroid differentiation in CD34+ cells (right). Statistical analysis was performed on three independent experiments, with bar plots representing the mean  $\pm$  SD of triplicate samples. Significance levels are indicated as \*P < 0.05, \*\*P < 0.01, versus control, based on Student's t-test.



Supplementary Figure S4. Overexpression of SIRT5 impairs erythroid differentiation in vivo. (A) Expression levels of the succinylation-related enzymes during erythroid differentiation in bulk RNAseq. (B) Expression levels of the succinylation-related enzymes in the bone marrow (BM), with the red dotted box highlighting the erythroid lineages. (C) Experimental procedure for mouse bone marrow transplantation. (D) Relative mRNA levels of SIRT5 in BM cells from control and OV-SIRT5 mice, presented as the mean  $\pm$  SEM (n = 5).  $\beta$ -actin serves as the endogenous control. (E) Upper panel: Bone marrow cell counts of control and OV-SIRT5 mice. Bottom panel: Ter119<sup>+</sup> cells distribution analysis based on flow cytometry results. (F) The representative vertical sections of mouse BM showing expression of



**Supplementary Figure S5. Characterization of proteome and motif analysis for succinylated lysine residues.** (A) Principal component analysis of all identified proteins in the proteome (upper) and succinylome (lower). (B) Distribution of proteome intensities at different erythroid differentiation stages. (C) Proteomaps demonstrate significant differences in hemoglobin levels during erythroid differentiation in proteomes.

А

|            |                                | Motif | Foreground |      | Background |        | Fold   |
|------------|--------------------------------|-------|------------|------|------------|--------|--------|
| Motif Logo | Motif                          | Score | Matches    | Size | Matche     | Size   | Increa |
|            | addoodxVx_K_xddddx<br>xxxx     | 11.51 | 308        | 3561 | 34868      | 604548 | 1.5    |
|            | xxxxxxx                        | 11.44 | 262        | 3253 | 29493      | 569680 | 1.6    |
|            | eccerVecex_K_ecceex            | 11.57 | 269        | 2991 | 31384      | 540187 | 1.5    |
|            | «Viodododar_K_addddar<br>xodda | 10.87 | 243        | 2722 | 29108      | 508803 | 1.6    |
|            | DODODODOX_K_XXVXXX<br>XXXX     | 8.40  | 214        | 2479 | 27516      | 479695 | 1.5    |
|            | xcccccxIxx_K_xccccx            | 6.86  | 153        | 2265 | 19735      | 452179 | 1.5    |
|            | ooooocxAx_K_xcooox             | 6.84  | 209        | 2112 | 29765      | 432444 | 1.4    |
|            | 000000xLx_K_x0000x             | 6.14  | 306        | 1903 | 49484      | 402679 | 1.3    |

Log10(q value) Gene Count
 4.7 5.3 5 12.5
 respiratory electron transport
 Cellular response to heat stress
 Mitochondrial biogenesis
 ATP synthesis
 TCA cycle

#### С





D







В



D6



D0

Н

G



**Supplementary Figure S6. Characterization of succinylome.** (A) Identification of eight conserved amino acid residue frequencies around succinylated lysine residues using Motif-X during erythroid differentiation. (B) Gene Ontology Biological Process (GO-BP) enrichment analysis of proteins with >10 succinylated sites, showing significantly enriched functions. (C) The Venn plot showing the differences of succinylated proteins with >10 succinylated sites between our data with AD patients. (D) Detection of the succinylation levels of HBB and the interaction between HBB and three succinyltransferases. (E) Detection of the succinylation levels of flag-ALDH7A1 and the interaction between ALDH7A1 and three succinylated lysine residues from early to late-stages of erythroid differentiation. (G) Detection of the succinylation levels of SPTA1, SPTB, and SLC4A1. (H) GO analysis of succinylated proteins localized in the nucleus, cytoplasm, mitochondrion, and others showing significantly overrepresented functions.



**Supplementary Figure S7. The CUT&Tag analysis of H3K79Ksu in CD34<sup>+</sup> cells.** (A) Grayscale statistics of KAT2A expression level in erythroid differentiation. (B) Grayscale statistics of H3K79Ksu expression level in erythroid differentiation. (C) Grayscale statistics of KAT2A protein expression level. (D) Grayscale statistics of H3K79Ksu expression level. (E)

Detection of KAT2A mRNA level after knocking down KAT2A. (F) Genomic distribution of affected peaks. (G) The Venn plot showing the overlap of peak located in the promoter. Statistical analysis was performed on three independent experiments, with bar plots representing the mean  $\pm$  SD of triplicate samples. Significance levels are indicated as \*P < 0.05, \*\*P < 0.01, versus control, based on Student's t-test.



### Supplementary Figure S8. The succinylation of CYCS affects erythroid differentiation.

(A) Representative images of flow cytometry analysis of apoptosis by annexin V/PI staining in HUDEP2 cells. (B) Representative images of flow cytometry analysis of cell cycle by BrdU assay. (C) Representative images of flow cytometry analysis of GPA and CD71 expression. (D) Representative flow cytometry analysis of mitochondrial membrane potential using JC-1 staining.