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Abstract 

Primary myelofibrosis (PMF) is a myeloid proliferative neoplasm (MPN) characterized by 

bone marrow (BM) fibrosis. Pre-fibrotic PMF (pre-PMF) progresses to overt PMF. 

Megakaryocytes (MKs) play a primary role in PMF; however, the functions of MK subsets 

and those of other hematopoietic cells during PMF progression remain unclarified. Therefore, 

we analyzed BM aspirates in pre-PMFs, overt PMFs, and other MPNs using single-cell RNA 

sequencing (scRNA-seq). We identified 14 cell types with subsets, including hematopoietic 

stem and progenitor cells (HSPCs) and MKs. HSPCs in overt PMF were MK-biased and 

inflammation/fibrosis-enriched. Among MKs, the epithelial-mesenchymal transition (EMT)-

enriched subset was abruptly increased in overt PMF. MKs in non-fibrotic/non-PMF MPN 

were MK differentiation-enriched, whereas those in fibrotic/non-PMF MPN were 

inflammation/fibrosis-enriched. Overall, the inflammation/fibrosis signatures of the HSPC, 

MK, and CD14+ monocyte subsets increased from pre-PMF to overt PMF. Cytotoxic and 

dysfunctional scores also increased in T and NK cells. Clinically, MK and HSPC subsets with 

high inflammation/fibrosis signatures were frequent in the patients with peripheral blood 

blasts ≥1%. scRNA-seq predicted higher cellular communications of MK differentiation, 

inflammation/fibrosis, immunologic effector/dysfunction, and tumor-associated signaling in 

overt PMF than pre-PMF. However, no decisive subset emerged during PMF progression. 

Our study demonstrated that HSPCs, monocytes, and lymphoid cells contribute to PMF 

progression, and subset specificity existed regarding inflammation/fibrosis and immunologic 

dysfunction. PMF progression may depend on multiple cell types’ alterations, and EMT-

enriched MKs may be potential targets for the diagnosis and therapy of the progression. 
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Introduction 

Philadelphia-negative myeloproliferative neoplasm (MPN) is a myeloid hematopoietic stem 

cell (HSC) neoplasm characterized by the overproduction of myeloid, erythroid, and 

megakaryocytic (MK) cells, resulting in polycythemia vera (PV), essential thrombocythemia 

(ET), and primary myelofibrosis (PMF).1 PV, ET, and PMF share the clinical and molecular 

features that may result in disease progression to acute myeloid leukemia and harbor specific 

driver mutations (JAK2, CALR, or MPL) that activate JAK2 signaling.2 The major criteria for 

diagnosing PMF include MK proliferation with bone marrow (BM) fibrosis, the absence of 

diagnostic criteria for ET or PV, and the presence of driver mutations or additional high-

molecular-risk mutations.3-5 JAK inhibitors can relieve symptoms in PMF but do not entirely 

resolve BM fibrosis,6 suggesting that the pathogenesis of PMF is more complex than those of 

other MPNs.7 

   PMF arises from a single HSC with driver mutations that endow it with a selective 

advantage, thereby promoting myeloid cell proliferation and BM fibrosis.8 Atypical MKs are 

the histological hallmark of PMF and play a vital role in its development.4 PMF-MKs are 

characterized by the enrichment of inflammatory and immunoregulatory signals that alter 

cross-talks between BM cells, thereby exacerbating genetic instability in PMF-HSCs9, 10 and 

promoting fibrosis.5, 10 However, the specific MK subsets relevant to PMF remain 

undetermined. Furthermore, the contribution of other myeloid cells, besides MK, to PMF is 

largely uncharacterized. Immune evasion and dysregulation of the immune system contribute 

to the clonal evolution of PMF-HSCs and BM fibrosis.11-13 These immunologic alterations 

have been identified in the peripheral blood (PB) cells of patients with PMF; however, they 

do not reflect the complete immunologic landscape of PMF-BM. 

   The 2016 WHO classification categorizes PMF into pre-fibrotic PMF (pre-PMF, grade 0 or 
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1 fibrosis) and overt PMF (overt PMF, grade 2 or 3 fibrosis).3 As constitutional symptoms 

and hematologic pathology worsen, pre-PMF progresses to overt PMF, resulting in poorer 

survival.3, 14-16 Subtle genomic differences in the hematopoietic clones (unfavorable 

karyotypes and high-molecular-risk mutations) and bulk transcriptomic differences in 

inflammatory signatures have been noted between pre-PMF and overt PMF.14-16 However, 

the precise molecular mechanisms underlying the progression from pre-PMF to overt PMF 

remain unexplored. 

   JAK-STAT activation has been identified as a driver mechanism for MPNs; nevertheless, 

PMF remains the most heterogeneous disease among MPNs and is further complicated by 

coexisting inflammation.17 After acquiring the driver mutations, PMF presents with decades 

of latency before developing disease manifestations.18 These studies suggest the existence of 

multiple disease-modifying factors that could result in diverse cell states or subpopulations in 

the BM cells of patients with PMF. 

   Single-cell RNA sequencing (scRNA-seq) can define the individual transcriptomes of 

admixed cells in tissues, further dissecting subpopulations and enabling precise inference of 

the functions and interactions of the cells that cannot be distinguished by traditional bulk 

analyses.19 To the best of our knowledge, only a handful of the scRNA-seq datasets for PMF-

BM are currently available. A patient with overt PMF was assessed using a BM biopsy, with 

primary analyses of non-hematopoietic cells.10 Furthermore, PMFs were studied by 

simultaneous mutation and scRNA-seq analyses; however, this proof-of-principle method 

utilized in that study could not intersect multiple phenotypic readouts across a range of cell 

subtypes,20 warranting further investigations. 

   In this study, we hypothesized that specific cell subtypes, besides MK, might exist in overt 

PMF, and that their distinctive molecular signatures might contribute to PMF progression. To 

elucidate these, we analyzed BM aspirates from pre-PMF and overt PMF using scRNA-seq 
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and identified cellular subpopulations with inflammatory, fibrotic, and immunologic 

signatures between pre-PMF and overt PMF. 
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Methods 

Bone marrow samples 

BM aspirates were collected from 33 patients with MPN (five with ET, one with PV, five 

with pre-PMF, 12 with overt PMF, six with post-ET-MF, and four with post-PV-MF). 

Among the 12 patients with overt PMF, six were treated with the JAK inhibitor ruxolitinib, 

while the remaining six were not treated with any JAK inhibitor. To minimize the risk of PB 

dilution in BM aspirate samples, we repeated the aspiration at a different site if a dry tap was 

encountered during the procedure. We also performed microscopic examination of the BM 

aspirates to assess their quality and composition. The patients' BM fibrosis was confirmed 

using BM biopsies, indicating that our aspirates represented the remaining fluidic areas 

surrounding the fibrotic PMF-BM. This study was approved by the institutional review board 

of the Catholic University of Korea (KC20TISI0206). 

 

scRNA-seq library preparation 

Individual cells in BM aspirates were isolated using density gradient centrifugation with a 

Ficoll-Paque Plus medium (GE Healthcare). After removing red blood cells (RBCs) using 

RBC lysis buffer (Miltenyi Biotec), the cells were counted and stored at −80°C until their 

utilization. The scRNA-seq library was prepared using the Chromium instrument system with 

a Single Cell 3’ v3 Reagent kit (10x Genomics), according to the manufacturer’s protocol. 

scRNA-seq libraries were sequenced on the Illumina NovaSeq platform. Raw sequencing 

data have been deposited in Sequence Read Archive under accession number 

PRJNA1070224. Additional details of the scRNA-seq library preparation are described in the 

Supplementary Methods. 

 

scRNA-seq data analyses 
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The sequenced data were processed into expression matrices using CellRanger (10x 

Genomics). Sequencing reads were mapped to the GRCh38 reference genome. 

Bioinformatics processing of the scRNA-seq data was performed using Seurat.21 After 

removing low-quality cells, the data was log-normalized, and highly variable features were 

identified based on a variance stabilizing transformation method. All individual datasets were 

integrated using Harmony.22 Principal components analysis and graph-based clustering were 

performed on the integrated datasets, and the clustering data were applied to the uniform 

manifold approximation and projection. Each cell cluster was annotated for its cell type using 

SingleR and well-known cell-type-specific markers. 

   Differentially expressed gene (DEG) analysis was used to identify significant DEGs within 

each cluster using the ‘FindMarkers’ function in Seurat. Gene signature scores were 

calculated using UCell. Gene set enrichment analysis (GSEA) was performed using fgsea 

with MSigDB. Single-cell reference mapping compared the MK subset abundance between 

PMF and other MPNs. Receptor-ligand interactions were analyzed using CellChat to examine 

cell-to-cell communication between different cell types in PMF-BM.23 Additional details of 

the scRNA-seq data analyses are provided in the Supplementary Methods. 

 

Statistical analysis 

Fisher's exact test was used for categorical variables. The Mann–Whitney U test was used for 

continuous variables. Statistical analyses were performed using SPSS (IBM). GraphPad 

Prism software was used to create graphs. Statistical significance was set at p-value < 0.05 

for all the analyses. 
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Results 

BMs of overt PMF patients are enriched with MKs and HSPCs 

We performed scRNA-seq on whole BM mononuclear cells (BM-MNCs) isolated from 17 

patients with PMF (five with pre-PMFs and 12 with overt PMFs) (Table 1). After quality 

control, we obtained 98,677 cells from pre-PMF (19,452 cells) and overt PMF (79,215 cells) 

clustered in 14 cell populations: hematopoietic stem and progenitor cell (HSPC), MK, 

erythroid cell, five myeloid lineages [CD14+ monocyte, CD16+ monocyte, myeloid dendritic 

cell (mDC), plasmacytoid dendritic cell (pDC), and neutrophil], five lymphoid lineages [T 

cell, NK cell, pre-B cell, B cell, and plasma cell (PC)], and mesenchymal stromal cell (MSC) 

(Figure 1A). 

   We observed differences in the abundance of cells between pre-PMF and overt PMF. In 

overt PMF, we found increased HSPCs (9.3% of BM-MNCs) and MKs (11.7%), compared to 

pre-PMF (HSPCs: 3.4%, MKs: 5.9%) (Figure 1B-D). However, these differences were not 

statistically significant. On the other hand, the populations of mDC, neutrophils, and PCs 

significantly decreased as the diseases progressed (Figure 1D). Regarding clinical variables, 

MKs and HSPCs were enriched in the BM of patients with PMF with PB blasts ≥1% 

compared to those with PB blasts <1% (MK: 16.2% vs 4.5%, P = 0.015; HSPC: 12.4% vs 

3.3%, P = 0.027). MKs were also enriched in the BM of patients at high risk according to the 

Mutation-enhanced International Prognostic Score System (MIPSS) compared to those at low 

or intermediate risk (11.5% vs 4.2%, P = 0.021). In line with a previous finding,24 it was 

observed that lymphocyte levels decreased in patients treated with ruxolitinib compared to 

those not treated. We found no significant differences in cell type abundance according to the 

PMF driver mutations, age, leukocyte count, hemoglobin count, platelet count, or prognostic 

groups of the IPSS and Dynamic IPSS-plus (DIPSS-plus). Taken together, the BM cellular 
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abundance of HSPCs and MKs is noted during PMF progression and associated with an 

increase in PB blasts. 

 

HSPCs in overt PMF are MK-biased with inflammatory and fibrotic activation 

The sub-clustering of HSPC revealed nine subsets (Figure 2A; Supplementary Table S1): 

HSC (HSC1 and HSC2 expressing AVP and HLF), MK-erythroid-mast progenitor (MEMP 

expressing CLC and FCER1A), MK-erythroid progenitor (MEP1 and MEP2 expressing 

GATA1 and KLF1), early erythroid (expressing ALAS2 and GYPA), granulocyte-monocyte 

progenitor (GMP expressing MPO and AZU1), lymphoid progenitor (expressing CD247 and 

THEMIS), and proliferating cell (expressing TOP2A and MKI67). 

   In HSC1, GSEA identified the enrichment of inflammatory (tumor necrosis factor α 

signaling and interferon-gamma response) and fibrotic signaling [transforming growth factor 

β (TGF-β) and coagulation] (Supplementary Figure S1A). Pseudo-bulk DEG analysis 

identified eight overt PMF-specific genes, of which BACH2, ANXA2, and ANO2 were 

associated with MK differentiation (Supplementary Figure S1B; Supplementary Table S2).25 

The abundance of HSC1 was not different between pre-PMF and overt PMF (Figure 2B), 

suggesting that HSC1 might be related to PMF development. 

   The MEP1 subset was abundant in overt PMF compared to pre-PMF (11.0% vs 4.2%, P = 

0.029) (Figure 2B). Additionally, MEP1 was more abundant in patients with PMF with PB 

blasts ≥1% compared with those with PB blasts <1% (13.6% vs 4.1%, P = 0.001). GSEA of 

MEP1 revealed enrichment in the MK-lineage differentiation (Supplementary Figure S1C).26 

Eight overt PMF-specific DEGs were detected in MEP1 (Supplementary Figure S1D; 

Supplementary Table S2). There were no differences in HSC1 and MEP1 between the 

ruxolitinib-exposed and unexposed patients, in terms of quantitative or qualitative 

(inflammatory and fibrotic signaling) measures (Supplementary Figure S1E). 
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   Previously, MK-biased HSPCs expressing PF4, MPIG6B, VWF, SELP, and GP9 were 

observed in the PB of patients with PMF.5 In our study, the proportions of these HSPCs were 

higher in overt PMF than in pre-PMF (27.7% vs 8.3%, P = 3.7x10-99) (Figure 2C). Notably, 

the MK signatures were not limited to a specific HSPC subset, suggesting that the MK bias 

may be widespread among HSPCs (Figure 2C; Supplementary Figure S2). MPIG6B and PF4 

expressions were observed in uncommitted (HSC1 and HSC2) and lineage-committed subsets 

(MEP1 and MEP2) (Figure 2D), consistent with a previous report.5 The HSPCs expressing 

MPIG6B (59.6% vs 28.9%, P = 1.7x10-81) and PF4 (22.0% vs 10.7%, P = 1.5x10-16) were 

more prevalent in overt PMF than in pre-PMF (Supplementary Figure S2). Collectively, 

HSC1 and MEP1 subsets in overt PMF show a higher bias toward MK production compared 

to pre-PMF. These subsets may have a preference for expanding or interacting with other BM 

cells to promote MK differentiation, and BM inflammation and fibrosis. 

 

Increased inflammation and fibrosis signatures in MKs of overt PMF 

We identified five MK subsets (MK1–5; Figure 3A; Supplementary Table S1). The 

proportion of MK5 was higher in overt PMF than in pre-PMF (Figure 3B). We compared the 

module scores to identify the quality difference among the MK subsets and found that MK 

differentiation, fibrosis, TGF-β, and cytokine scores increased from pre-PMF to overt PMF 

(Figure 3C). These signatures increased in overt PMF of all MK subsets, except MK2. 

Notably, MK5 was most specific to overt PMF and was scarce in pre-PMF (1.3% vs 0.2%, P 

= 0.044) (Figure 3B). Furthermore, the MK5 subset was enriched in patients with PMF with 

PB blasts ≥1% compared with those with PB blasts <1% (2.0% vs 0.12%, P = 8.2x10-5). 

MK5 specifically expressed epithelial-mesenchymal transition (EMT)-related genes, 

including TTK, ITGA6, and ILK (Supplementary Figure S3A).27 There were no significant 
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differences in MK subsets between the patients exposed to ruxolitinib and those who were 

not exposed (Supplementary Figure S3B-C). 

   We performed a pseudo-bulk DEG analysis on all MK cells and identified 19 overt PMF-

specific DEGs (Figure 3D; Supplementary Table S2). Up-regulated genes, including 

COL24A1, CXCL2, and LTBP1, were related to fibrosis and enriched in the MK3 subset. For 

example, CXCL2, which is known to be associated with pulmonary fibrosis,28 was nearly 

absent in pre-PMF but was highly expressed in MK3 of overt PMF (0.9% vs 10.9% of MK, P 

= 2.3x10-12). LTBP1 is an extracellular matrix protein associated with fibrillin-microfibrils29 

and can induce TGF-β activation,30 which is essential for fibrosis development in PMF.31 

LTBP1 expression increased with the progression from pre-PMF to overt PMF (15.7% vs 

38.9%, P = 7.8x10-28). 

   Furthermore, we projected the MKs from 16 patients with non-PMF MPN (five with ET, 

one with PV, six with post-ET-MF, and four with post-PV-MF) onto those from patients with 

PMF to compare MK subset differences among MPNs. Most MK cells (96.6%) in the ET/PV 

cases were assigned to the MK2 subset. In contrast, the MK subset distribution of post-

ET/PV-MF was widespread and similar to those of PMF (Supplementary Figure S3D). 

Notably, MK5, the most overt PMF-specific subset, showed a similarly high distribution 

between overt PMF and post-ET/PV-MF (Supplementary Figure S3E). Collectively, scRNA-

seq identified MK5 as the most overt PMF-specific subset with an increased fibrosis 

signature. 

 

Overt PMF immune cells show immune dysfunction and suppression signatures 

We identified 15 subsets of T and NK cells in the BM aspirates (Figure 4A–B; 

Supplementary Table S1): naïve T (CD8+, CD4+, and CD3-CD4+), helper T, regulatory T 

(Treg), mucosal-associated invariant T (MAIT), γδ T, cytotoxic memory (Tmem), cytotoxic 
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terminal effector (Teff), CD56bright NK, NK (NK1, NK2, NK3, and NK4), and proliferating 

cell subsets. The subset distribution of T and NK was not significantly different between pre-

PMF and overt PMF, nor between ruxolitinib-exposed and unexposed patients, except for 

NK1: the NK1 subset significantly decreased in the ruxolitinib-exposed patients (P = 0.009; 

Supplementary Figure S4A). However, functional module analyses showed a significant 

increase in cytotoxic scores in most T cell subsets with the progression from pre-PMF to 

overt PMF (Figure 4C). Similarly, the dysfunctional module score of T cell activation, 

measured using PDCD1, LAG3, TIGIT, CD244, and CTLA4 expression analyses, increased in 

the γδ T and Teff subsets with the progression (Supplementary Figure S4B). For example, 

overt PMF exhibited a higher prevalence of LAG3-expressed Teff cells than pre-PMF (P = 

0.004) (Figure 4D). These were not significantly different according to the ruxolitinib 

exposure. 

   We identified eight CD14+ monocyte subsets among the myeloid lineages (Figure 5A–B; 

Supplementary Table S1). Of these subsets, mono3 increased from pre-PMF to overt PMF 

(24.5% vs 31.7% of CD14+ monocytes) (Figure 5C). Mono3 may be a variant of monocytic 

myeloid-derived suppressor cell (M-MDSC)32 that has immunosuppressive functions. Mono3 

expressed M-MDSC markers32 with higher MHC-II expression than that of conventional M-

MDSC (Figure 5B). Furthermore, we discovered that the interferon signature in overall 

CD14+ monocytes was significantly higher in overt PMF than pre-PMF (P = 5.9x10-131) 

(Figure 5D).  The scRNA-seq analysis revealed altered immune and inflammatory signaling 

in overt PMF compared to pre-PMF, potentially leading to reduced immune activity. 

 

Prediction of cell-cell communication 

Ligand-receptor (LR) interaction analysis using scRNA-seq revealed a higher number and 

strength of LR interactions in overt PMF than in pre-PMF (Supplementary Figure S5A). 
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Among the 90 putative interactions identified, 38 were significantly enriched in overt PMF, 

with 10 exclusive interactions (Figure 6). The difference in interactions between pre-PMF 

and overt PMF was primarily due to the increased interactions among HSPCs, MKs, T cells, 

and monocytes (Supplementary Figure S5B), which were identified as overt-PMF-driving 

cells using scRNA-seq. Overt-PMF-enriched interactions were largely categorized into four 

signatures (Supplementary Figure S6): MK differentiation (GP1BA and VWF),5 pro-

inflammatory/fibrotic signaling (CD34, CD40, EPHB, and TGF-β)19, 31, 33, 34, immunologic 

effector/dysfunction signaling (PROS, SN, THBS, TIGIT, LCK, CCL, and PARs)35-37, and 

tumor-associated signaling (ESAM, JAM, and HSPG)38, 39. 

   Ephrins and Eph receptors are known mediators of fibrosis.34 MK3 was identified as the 

most prominent source of the ephrin ligand (EFNB2) in overt PMF, affecting T cells 

(Supplementary Figure S6). This interaction was not observed in pre-PMF. CD34 and CD40 

signaling, which are known to be involved in inflammatory disease development,19, 33 were 

exclusively identified in overt PMF (Figure 7A and 7C). MK2 interacted with HSPCs, M-

MDSC, and mDC through the TGFB1-(TGFBR1+TGFBR2) axis in pre-PMF (Figure 7B). 

MK5 strongly expressed TGFB1, and HSPCs strongly expressed ACVR1, another receptor of 

the TGF-β signaling, in overt PMF (Figure 7C). This prediction suggests that the TGFB1-

(TGFBR1+TGFBR2) axis is activated in pre-PMF, with MK2 as a hub, whereas the TGFB1-

(ACVR1+TGFBR1) axis is activated in overt PMF, with MK5 as a hub (Supplementary 

Figure S7). TIGIT, a marker of T cell exhaustion,40 inhibits immune cell responses at 

multiple steps of the tumor�immunity cycle. TIGIT signaling in pre-PMF was predicted to 

originate from Tmem, whereas that in overt PMF was predicted to originate from Tmem and 

Treg (Supplementary Figure S6). T cell communication partners in TIGIT signaling were 

much more diverse in overt PMF than those in pre-PMF, primarily targeting HSPCs and 

MK3 (Figure 7C).
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Discussion 

Previous investigations of the molecular pathogenesis in PMF primarily relied on MK 

alterations. This informational gap led us to analyze pre-PMF, overt PMF, and other MPNs 

(ET/PV) using scRNA-seq. Our results indicated that the differences between pre-PMF and 

overt PMF were attributed to the inflammation/fibrosis and immunologic alterations of 

multiple cellular subsets, rather than one or two. First, specific subpopulations of HSPC, MK, 

monocyte, and lymphoid cells increased during the progression from pre-PMF to overt PMF. 

Second, pro-inflammatory/fibrotic and immunologic dysfunction signatures increased during 

the progression. Third, no single decisive subpopulation emerged during the progression of 

pre-PMF to overt PMF. These gradual alterations support the idea that pre-PMF and overt 

PMF are in a disease continuum, with many disease-progressing factors involved in the 

pathogenesis. 

   DIPSS-plus system uses eight prognostic survival factors of patients with PMF, including 

age >65 years, constitutional symptoms, and PB blasts ≥1%.41 PB blast increase is directly 

associated with leukemic transformation, plausibly indicating poor survival; however, other 

possibilities have remained uncertain. Approximately 20% of patients with PMF die from 

leukemic transformation, with most of them succumbing to BM failure and other 

complications.42 We found that the PB blast ≥1% predictor was related to the increase in 

HSPCs and MKs in PMF-BM, particularly in MEP1 and MK5 subsets. MEP1 was 

significantly enriched in overt PMF, with a corresponding increase in inflammatory and 

fibrotic functions. MK5 highly expressed EMT-related genes in our data. EMT and 

inflammation cooperate in the progression of organ fibrosis.43 EMT is identified as a 

hallmark signature of murine PMF,44 indicating that the PB blast ≥1% predictor may be 

associated with inflammation and fibrosis in PMF. These data suggest that the blast increase 
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may result from HSPC and MK proliferation in PMF-BM, which is related to non-leukemic 

hematologic complications rather than the leukemic transition itself. 

   Somatically mutated MKs induce or alter the development and progression of MPNs, where 

MK-derived TGF-β plays a primary role in HSC proliferation and BM fibrosis.31 Consistent 

with this, we observed increased TGF-β signaling in overt PMF compared with pre-PMF, 

particularly owing to high TGFB1 expression in MK5. MKs are essential in MPN 

pathogeneses; however, how MKs differ between yet-to-be-fibrotic ET/PV and PMF and 

between PMF and post-ET/PV-MF remains unclear. In our data, overt PMF exhibited a much 

higher proportion of MK5 than pre-PMF, with a higher expression of the TGF-β signature. 

Moreover, non-fibrotic ET/PV revealed lower MK5 abundance than PMF, whereas post-

ET/PV-MF showed a similar MK5 abundance to overt PMF. These findings suggest that 

MK5 may be one of the key determiners in the development and progression of BM fibrosis, 

irrespective of MPN subtypes. 

   Dysregulation of the immune system contributes to the expansion and survival of the 

neoplastic myeloid clone in MPNs.13 For example, differentiation of monocytes to dendritic 

cells is reduced in PB, whereas MDSCs increase in PMF.11, 45 Furthermore, reductions in 

CD56bright NK cells and CD3+ T cells and an increase in Treg cells have been reported in 

MPNs.12, 46 However, our study did not identify altered NK or T cell distribution in PMF-BM 

samples. Instead, we observed increased cytotoxicity and dysfunction scores in the T cell 

subpopulations of overt PMF. LR pair analysis showed that TIGIT (TIGIT-NECTIN2 axis) 

and PARs (mainly GZMA-F2R and GZMA-PARD3 axes) harboring NK and T cell 

suppressive functions were highly expressed in the cytotoxic cells of PMF interacting with 

HSPCs. Furthermore, we observed an increase of M-MDSC (immune-suppressive) in 

myeloid cells in overt PMF. These results indicate that the PMF-BM microenvironment alters 
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the immune and inflammatory responses of T cells and monocytes, which may lead to 

reduced immune activities in the BM of PMF.  

   JAK inhibitors targeting mutant hematopoietic clones have improved the symptoms, 

splenomegaly, and survival of patients with PMF. However, these drugs are not capable of 

curing progressed PMF, particularly when used as monotherapy.47 Inflammation and fibrosis 

are drivers of PMF pathogenesis; therefore, novel drugs targeting these factors, along with 

immune modulation, are currently being investigated in clinical trials.17 In this sense, our 

molecular data may precisely identify target subpopulations and molecules, enabling the 

combination of targeted therapy with JAK inhibitors. 

   Simultaneous BM aspirate and biopsy analysis is essential to precisely delineate the 

interactions between stromal cells and hematopoietic cells in the BM. However, our study 

focused on BM aspirates, primarily owing to the challenges of obtaining simultaneous BM 

biopsies suitable for scRNA-seq. Consequently, the analysis of non-hematopoietic BM cells 

involved in PMF, such as fibroblasts and myofibroblasts, was precluded. There is a likelihood 

that the BM aspirates were hemodiluted with contributions from the PB, likely due to 

extramedullary hematopoiesis. Current consensus suggests that extramedullary hematopoiesis 

in PMF results from the sequestration, accumulation, and proliferation of circulating 

progenitor cells.48, 49 Thus, even with hemodilution, the aspirates would still reflect the 

neoplastic nature of the BM in PMF patients. However, the impact of extramedullary 

hematopoiesis on the BM microenvironment in PMF requires further investigation. Second, 

our study was limited by the complexity of treatments received by the patients, influenced by 

the rarity of the disease, its broad spectrum, and the variability of therapeutic options. Many 

overt PMF patients in our study were treated with a JAK inhibitor (ruxolitinib), which would 

be expected to alter the inflammatory signaling in these patients. However, our findings in 

overt PMF were predominantly due to PMF progression rather than ruxolitinib treatment. The 
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small sample size may have led to an underestimation of the impact of ruxolitinib treatment. 

Therefore, further studies using extended serial BM sampling in a larger cohort of uniformly 

treated patients are necessary to identify preventive and therapeutic targets for PMF. 

Additionally, the scRNA-seq methodology we employed did not allow genotyping of driver 

mutations; therefore, the observed differences between pre-PMF and overt PMF could 

actually be due to the size of the mutated clones. Finally, there were no BM aspirate controls 

from healthy individuals. 

In summary, our study revealed the single-cell transcriptome signatures and cellular 

subsets of MK, HSPC, and immune cells, characterized according to PMF progression. 

However, no overt PMF-specific cell subset emerged during the progression. PMF 

progression may rely on multiple cell type alterations. MKs, HSPCs, monocytes, and 

lymphoid cells contributed to the progression, and subset specificity existed regarding 

inflammation/fibrosis and immunologic dysfunction. Our results may aid in defining the 

molecular diagnosis for PMF progression and discovering potential target subsets in PMF, 

such as the EMT-enriched MK5 subset. 
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Table 1. Clinicopathological features of the patients with primary myelofibrosis included in the study 

Sample 
ID 

Disease 
group 

Age/ 
Sex 

Grading 
of BM 

MF 

Prior 
exposure 

Driver 
mutation 

(VAF, %)* 

Spleen 
size 
(cm) 

PB 
blasts 
(%) 

Hb 
(g/L) 

Platelets 
(x 109/L) 

WBC  
(x 109/L) 

Neutrophil 
(x 109/L) 

IPSS 
DIPSS-

Plus 
MIPSS70 

v2 

MPN019 Pre-PMF 48/F - ANA Triple negative 13.3 0 11.4 531 7,960 5,010 Int-1 Int-1 High 
MPN038 Pre-PMF 55/F - HC CALR (44.2) 11 0 12.5 799 6,540 3,530 Int-1 Int-1 Low 
MPN052 Pre-PMF 56/M - HC JAK2 (1.1) 14 0 11.2 513 15,160 9,250 Int-2 Int-2 High 
MPN099 Pre-PMF 62/M - No JAK2 (50.5) 15.9 0 12.9 788 17,230 12,580 Low Low Low 
MPN111 Pre-PMF 76/F - No JAK2 (39.1) 11.6 0 13.9 1,256 20,240 15,990 Int-2 Int-2 Int 
MPN015 Overt PMF 68/M 3 No JAK2 (22.6) 11.6 0 6.9 37 1,900 1,060 High High High 
MPN016 Overt PMF 62/M 3 Off RUX CALR (8.5) 26.8 7 6.1 294 33,590 18,140 High High High 
MPN030 Overt PMF 38/F 2 HC, ANA CALR (4.7) 10 0 9.5 761 11,910 8,580 Int-2 Int-2 Int 
MPN035 Overt PMF 61/F 2 No JAK2 (74.3) 14.1 0 13.6 627 11,480 8,950 Low Low Low 

MPN060 Overt PMF 53/M 3 
Ongoing 

RUX 
CALR (8.8) >24 4 8.0 158 16,130 7,580 Int-1 Int-1 High 

MPN063 Overt PMF 61/F 2 HC JAK2 (92.4) 18 0 10.6 246 15,940 12,910 Int-2 Int-1 Int 

MPN068 Overt PMF 54/M 3 
Ongoing 

RUX 
CALR (5.3) >23.5 5 8.2 69 6,210 3,290 Low Low Low 

MPN071 Overt PMF 59/F 3 
Ongoing 

RUX 
JAK2 (84.6) 24 6 8.2 211 8,710 4,700 Int-2 Int-2 High 

MPN098 Overt PMF 61/M 3 No JAK2 (86.1) 30 1 10.9 287 12,300 7,380 Int-2 Int-2 Int 
MPN101 Overt PMF 63/M 3 Off RUX, HC CALR (8.5) >21 10 7.4 203 34,760 17,030 High High High 
MPN104 Overt PMF 53/M 3 No Triple negative 13.8 1 5.1 21 1,100 180 High Int-1 Int 

MPN136 Overt PMF 53/M 3 
Ongoing 

RUX 
CALR (8.8) >24 8 8.0 147 17,360 7,990 Int-1 Int-1 High 

 *All CALR mutations were type1, and the JAK2 mutations were p.V617F. The VAF of the driver mutation was measured by NGS testing. NGS 

testing was performed on samples collected from six patients during treatment (MPN016, MPN060, MPN063, MPN071, MPN101, and 

MPN136), and remaining patients at the time of diagnosis. 

PMF: primary myelofibrosis, F: female, M: male, ANA: agrylin, HC: hydrine, RUX: ruxolitinib, VAF: variant allele frequency, PB: peripheral 

blood, Hb: hemoglobin, WBC: white blood cell, IPSS: International Prognostic Scoring System, DIPSS: Dynamic International Prognostic 

Scoring System, MIPSS70: Mutation-enhanced International Prognostic Score System, Int: intermediate 
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Figure Legends 

Figure 1. Single-cell profiling of bone marrow (BM) aspirates of patients with primary 

myelofibrosis (PMF) (A) The single-cell RNA sequencing data of BM aspirates from 17 

patients with PMF were integrated. Two-dimensional uniform manifold approximation and 

projection (UMAP) visualization of 98,677 BM mononuclear cells identified 14 cell types 

after unsupervised clustering. Each point represents a single cell and is colored based on cell 

types. (B) UMAP plot colored by the clinical groups. (C) Cell type composition for each 

sample. Each box’s color is consistent with the cell type. (D) Box plots representing the 

proportion of each cell type between pre-PMF (n�=�5) and overt PMF (n�=�12). The 

mean and 95% confidence interval are represented with black lines. pre-PMF, pre-fibrotic 

PMF; HSPC, hematopoietic stem and progenitor cell; MK, megakaryocyte, mDC, myeloid 

dendritic cell; pDC, plasmacytoid dendritic cell; NK, natural killer; PC, plasma cell; MSC, 

mesenchymal stromal cell. 

 

Figure 2. Hematopoietic stem and progenitor cell (HSPC) subsets and their gene 

signatures (A) Uniform manifold approximation and projection (UMAP) plot colored by 

HSPC subsets. (B) Box plots representing the proportion of each HSPC subset. The mean and 

95% confidence interval are represented with black lines. (C) Megakaryocyte (MK) signature 

scores are shown in the UMAP plot by the clinical groups (upper panels) and the violin plot 

by HSPC subsets (lower panels). (D) The expression levels of MPIG6B and PF4 are shown 

by clinical groups. PMF, primary myelofibrosis; pre-PMF, pre-fibrotic PMF; HSC, 

hematopoietic stem cell; MEMP, megakaryocyte-erythroid-mast progenitor; MEP, 

megakaryocyte-erythroid progenitor; GMP, granulocyte-monocyte progenitor. 
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Figure 3. Megakaryocyte (MK) subsets and their gene signatures (A) Uniform manifold 

approximation and projection (UMAP) plot colored by MK subsets. (B) Box plots 

representing the proportion of each MK subset. The mean and 95% confidence interval are 

represented with black lines. (C) Signature scores are shown in the violin plot by MK subsets. 

(D) The heatmap shows the 19 differentially expressed genes in MK between pre-PMF and 

overt PMF. Red and blue colors indicate up-regulated and down-regulated genes, respectively. 

PMF, primary myelofibrosis; pre-PMF, pre-fibrotic PMF. 

 

Figure 4. T and natural killer (NK) subsets (A) Uniform manifold approximation and 

projection (UMAP) plot colored by T and NK subsets. (B) Dot plot of subset-specific marker 

genes per T or NK subset. Dot intensity (from blue to red) represents the average expression 

value of all cells per T or NK subset, whereas dot size represents the proportion of cells 

expressing the genes. (C) The expression level of cytotoxic signature score is shown in the 

violin plot by T and NK subsets. (D) Box plots represent the proportion of dysfunctional 

gene-expressing cytotoxic terminal effector cells by the clinical groups. The mean and 95% 

confidence interval are represented with black lines. PMF, primary myelofibrosis; pre-PMF, 

pre-fibrotic PMF; Treg, regulatory T; MAIT, mucosal-associated invariant T; Tmem, 

cytotoxic memory; Teff,  cytotoxic terminal effector. 

 

Figure 5. CD14+ monocyte subsets (A) Uniform manifold approximation and projection 

(UMAP) plot colored by CD14+ monocyte subsets. (B) Dot plot of subset-specific marker 

genes per monocyte subset. Dot intensity (from blue to red) represents the average expression 

value of all cells per monocyte subset, whereas dot size represents the proportion of cells 

expressing the genes. Monocytic myeloid-derived suppressor cell (M-MDSC) markers are 

highlighted in a red box. (C) Box plots represent the proportion of Mono3 (M-MDSC) subset 
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by the clinical groups. The mean and 95% confidence interval are represented with black 

lines. (D) The expression level of the interferon signature score is shown in the violin plot by 

monocyte subsets. PMF, primary myelofibrosis; pre-PMF, pre-fibrotic PMF. 

 

Figure 6. Cell–cell communication analyses A bar plot represents signaling pathways, 

ranked according to the differences in overall information flow within the inferred networks 

between pre-PMF and overt PMF. The overall information flow of a signaling network is 

calculated by summarizing all the communication probabilities within the network. Signaling 

pathways that are more enriched in overt PMF are marked in pink, whereas those more 

enriched in pre-PMF are marked in blue. PMF, primary myelofibrosis; pre-PMF, pre-fibrotic 

PMF. 

 

Figure 7. Representative interaction pathways (A-B) Circle plots represent the inferred 

interaction pathways of (A) CD34 and CD40, which were exclusively identified in overt PMF, 

and those of (B) TGF-β, identified in both pre-PMF and overt PMF. Edge width represents 

the communication probability (strength of the interactions) between cell populations. Edge 

colors are consistent with the signaling source. (C) The expression of ligands and receptors 

for EPHB, CD34, CD40, TGF-β, and TIGIT in each cell subset from pre-PMF (blue) and 

overt PMF (red) is shown. Genes corresponding to ligands in each signaling pathway are 

indicated in bold. Major sources and targets of each signaling pathway are highlighted with 

boxes. MK5 from pre-PMF was excluded owing to a low number of cells. Details are 

described in the Supplemental Methods. PMF, primary myelofibrosis; pre-PMF, pre-fibrotic 

PMF; HSC, hematopoietic stem cell; MEMP, megakaryocyte-erythroid-mast progenitor; 

MEP, megakaryocyte-erythroid progenitor; GMP, granulocyte-monocyte progenitor; MK, 

megakaryocyte; Treg, regulatory T; MAIT, mucosal-associated invariant T; Tmem, cytotoxic 
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memory; Teff,  cytotoxic terminal effector; NK, natural killer; CD56bright, CD56bright NK; 

CD14+, CD14+ monocyte; M-MDSC, monocytic myeloid-derived suppressor cell; CD16+, 

CD16+ monocyte; ERY, erythroid; PC, plasma cell; mDC, myeloid dendritic cell; NP, 

Neutrophil; MSC, mesenchymal stromal cell. 
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Supplemental Methods 

Bone marrow samples 

The PMF diagnosis was made with BM biopsies based on the 2016 WHO criteria and involved 

a composite assessment of clinical and laboratory features.1 The diagnosis of post-ET-MF and 

post-PV-MF adheres to the criteria published by the International Working Group for MPN 

Research and Treatment.2 For scRNA-seq, we used BM aspirates from 33 patients with MPN. 

The 33 patients consisted of five ETs, one PV, 17 PMF (five pre-PMFs and 12 overt PMFs), 

and ten post-MF (six post-ET-MFs and four post-PV-MFs). Among the 12 patients with overt 

PMF, six were treated with the JAK inhibitor ruxolitinib, while the remaining six were not 

treated with any JAK inhibitor. To minimize the risk of PB dilution in BM aspirate samples, 

we repeated the aspiration at a different site if a dry tap was encountered during the procedure. 

We also performed microscopic examination of the BM aspirates to assess their quality and 

composition. The patients’ BM fibrosis was confirmed by the BM biopsy, indicating that our 

aspirates represented remaining fluidic areas that the fibrotic PMF-BM surrounded. We 

obtained 16 mL (8 mL x 2 bottles) of BM aspirates from each patient. The mean of mononuclear 

cell yield for the MF patient aspirates was 1.1 x 108 cells (range, 1.9 x 107 – 2.5 x 108). This 

study was approved by the institutional review board of the Catholic University of Korea, 

College of Medicine (KC20TISI0206). All specimens from the patients in this study were 

obtained with appropriate consent in accordance with the declaration of Helsinki. 

   BM aspirates were filtered through a 100 μm Cell Strainer (SPL Life Sciences), then 

layered onto a Ficolle-Paque PLUS (GE Healthcare) gradient. The sample was centrifuged at 

2,500 rpm for 30 min. The isolated mononuclear cells were subsequently washed with 

Phosphate Buffered Saline (HyClone). After removing red blood cells using RBC lysis buffer 

(Miltenyi Biotec), the cells were counted and cryopreserved in freezing medium (10% DMSO 

+ 90% FBS) at −80 °C until use. 
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scRNA-seq library construction 

Chromium Single Cell 3’ v3 Reagent kit (10x Genomics, Pleasanton, CA, USA) was used for 

the library construction of scRNA-seq according to the manufacturer’s protocol. In brief, 

single-cell suspension was counted by hemocytometer (Thermo Fisher Scientific, Waltham, 

MA) and loaded into a Chromium instrument system targeting 10,000 cells. The cells were 

then partitioned into gel beads in emulsion in the Chromium instrument (10x Genomics), where 

cell lysis and barcoded reverse transcription of RNA occurred. Complementary DNA (cDNA) 

was synthesized and amplified for 14 cycles. cDNA clean-up was performed using a SPRIselect 

Reagent Kit (Beckman Coulter, Brea, CA). 50 ng of the amplified cDNA was used for each 

sample to construct indexed sequencing libraries. Sequencing libraries were sequenced on the 

Illumina NovaSeq platform (Illumina, San Diego, CA). Raw sequencing data generated for 

scRNA-sequencing have been deposited in Sequence Read Archive under accession number 

PRJNA1070224. 

 

scRNA-seq data analysis 

The sequenced data were processed into the expression matrices with the CellRanger 3.1.0 

(10x Genomics). Sequencing reads were mapped to the GRCh38 reference genome, followed 

by unique molecular identifier (UMI) and barcode counting, and the UMI count matrices were 

constructed. Bioinformatics processing of the scRNA-sequencing data was performed with the 

R package Seurat.3 To exclude low-quality cells in scRNA-sequencing, we filtered cells with 

an expressed gene count of fewer than 200 or cells with more than 20% of reads corresponding 

to mitochondrial genes. Additionally, doublets were excluded using Scrublet.4 Data was log-

normalized, and highly variable features were identified based on a variance stabilizing 

transformation method. All individual datasets were then integrated using the Harmony 
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algorithm.5 Principal components analysis and graph-based clustering were performed on the 

integrated datasets, and the clustering data were then applied to the uniform manifold 

approximation and projection. Each cell cluster was annotated for its cell type using the 

SingleR6 and the well-known cell-type-specific markers.  

   Cell cycle analysis was performed by using the ‘CellCycleScoring’ function in Seurat. 

Differentially expressed gene (DEG) analysis was used to identify significant DEGs within 

each cluster using the ‘FindMarkers’ function in Seurat. We kept only genes with an average 

log2 fold-change value greater than 1 and an adjusted P value (false discovery rate) lower than 

0.2 in the analysis. Gene signature scores were calculated based on the Mann-Whitney U 

statistic using UCell.7 Gene set enrichment analysis was performed using fgsea with the 

‘HALLMARK’ gene set downloaded from MSigDB.8 To compare MK subset abundance 

between PMF and other MPN diseases, MK cells of 16 MPN patients (five ET, one PV, six 

post-ET-MF, and four post-PV-MF) were projected onto the MK subsets of PMF patients using 

the “TransferData” function in Seurat.  

To examine the cell-to-cell communication between different cell subsets in the PMF-BM, 

receptor-ligand (LR) interactions were analyzed using CellChat.9 The LR pairs in CellChat 

retrieved from the previous studies were divided into four groups: cytokine/chemokine, 

immune checkpoint, growth factor, and others.9 Four rare cell populations (pDC, pre-B, and 

two HSPC subsets [early erythroid and lymphoid progenitor]) were excluded from the analysis. 

To simplify the data, some cell subsets were merged as follows; naïve T (CD8+Naïve T, 

CD4+Naïve T, and CD3-CD4+Naïve T), NK (NK1, NK2, NK3, and NK4), and monocyte 

(mono1, mono2, mono4, mono5, mono6, and mono7). To compare the CellChat results 

between normal BM and MM BM, the ‘liftCellChat’ function was used. Cell-cell 

communications, if there are only a few cells (< 10) in certain cell groups, were filtered out. 
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Supplementary Figures 

 

Supplementary Fig. 1. HSPC subsets and gene signatures. (A) The top 20 statistically-enriched 

‘HALLMARK’ gene sets for the HSC1 subset. The x-axis represents the normalized enrichment score. 

(B) The heatmap shows the eight DEGs in the HSC1 subset between pre-PMF and overt PMF (seven 

up-regulated and one down-regulated in overt PMF). Red and blue colors indicate up-regulated and 

down-regulated genes, respectively. (C) The top 20 statistically enriched ‘HALLMARK’ gene sets for 

MEP1 subset. GSEA analysis revealed enrichment in the MK-lineage differentiation,10-12 including 

‘oxidative phosphorylation’, ‘peroxisome’, and ‘coagulation’. The x-axis represents the normalized 

enrichment score. (D) The heatmap shows the eight DEGs in the MEP1 subset between pre-PMF and 
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overt-PMF (seven up-regulated and one down-regulated in overt PMFs). Red and blue colors indicate 

up-regulated and down-regulated genes, respectively. (E) Box plots representing the proportion of each 

cell type between pre-PMF (n = 5), ruxolitinib-unexposed overt PMF (n=6), and ruxolitinib-exposed 

overt PMF (n = 6). The mean and 95% confidence interval are represented with black lines. 
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Supplementary Fig. 2. HSPC subsets and their MK signature genes. The expression level of MK 

signature genes is shown in the UMAP plot by the clinical groups (left panels) and the violin plot by 

HSPC subsets (right panels).
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Supplementary Fig. 3. MK subsets and their gene signatures. (A) Dot plot of subset-specific 

marker genes per MK subset. Dot intensity (from blue to red) represents the average expression value 

of all cells per MK subset, whereas dot size represents the proportion of cells expressing the genes. (B) 

Box plots represent the proportion of each MK subset between pre-PMF (n = 5), ruxolitinib unexposed 

overt PMF (n=6), and ruxolitinib exposed overt PMF (n = 6). The mean and 95% confidence interval 

are represented with black lines. (C) Signature scores are shown in the violin plot by MK subsets. (D) 

MK subsets in non-PMF MPNs. UMAP plot colored by MK subsets. (E) Box plots represent the 

proportion of each MK subset between ET/PV (n = 6), pre-PMF (n = 5), overt PMF (n = 12), and post-

ET/PV-MF (n = 10). The mean and 95% confidence interval are represented with black lines. The 

overt-PMF-specific MK5 subset was observed in post-ET/PV-MF patients (three out of six patients 

with more than 10 MK cells), but not in ET/PV. 
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Supplementary Fig. 4. The subset abundance and dysfunctional module score of T and NK cell 

populations. (A) Box plots represent the proportion of each T and NK subset between pre-PMF (n = 5), 

ruxolitinib unexposed overt PMF (n=6), and ruxolitinib exposed overt PMF (n = 6). The mean and 95% 

confidence interval are represented with black lines. (B) The expression level of dysfunctional 

signature score is shown in the violin plot by T and NK subsets.
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Supplementary Fig. 5. Visualization of cell-cell communication. (A) Comparison of the total 

number of interactions and strength of these interactions between pre-PMF and overt PMF. (B) 

Differential number of ligand-receptor (LR) interactions between pre-PMF and overt PMF. The total 

number of enriched LR interactions is shown as a bar on the x-axis and y-axis, and the relative strength 

of the interactions (pre-PMF vs overt PMF) is shown in the heatmap. Red and blue indicate enrichment 

of overt PMF and pre-PMF, respectively.
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Supplementary Fig. 6. Cell-cell communications enriched in overt PMF compared with pre-PMF. 

Circle plots (left panel) represent the inferred interaction pathways of (A) VWF, (B) GP1BA, (C) CD34, 

(D) CD40, (E) SN, (F), EPHB, and (G) PROS, which were exclusively identified in overt PMF, as well 

as those of (H) JAM, (I) ESAM, (J) HSPG, (K) THBS, (L) TGF-β, (M) TIGIT, (N) LCK, (O) CCL, 

and (P) PARs, identified in both pre-PMF and overt PMF. Edge width represents the communication 

probability (strength of the interactions) between cell populations. Edge colors are consistent with the 

signaling source. The expression of ligands and receptors for each signaling pathway in each cell subset 

from pre-PMF (blue) and overt PMF (red) is shown. Genes corresponding to ligands in each signaling 

pathway are indicated in bold. MK5 from pre-PMF was excluded due to a low number of cells.
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Supplementary Fig. 7. The inferred TGF-β signaling network. The inferred TGF-β signaling 

network from (A) pre-PMF and (B) overt PMF. Edge width represents the communication probability. 
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Supplementary Table 1. Significantly enriched genes in each BM cell subset. 

The contents of Supplementary Table 1 are provided in a separate Excel file. 
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Supplementary Table 2. Pseudobulk DEGs of HSPC and MK between pre- and overt-PMFs 

Subset Gene Avg_log2FC* p_val** p_val_adj** pct.1§ pct.2§ 
HSC1 ANXA2 6.84 9.1x10-09 2.3x10-04 1.00 0.40 
HSC1 BACH2 5.54 1.3x10-08 3.2x10-04 1.00 1.00 
HSC1 CPPED1 5.46 3.1x10-07 0.008 1.00 0.80 
HSC1 RAMP1 6.62 6.0x10-07 0.015 1.00 0.40 
HSC1 ZNF804B 8.11 8.0x10-07 0.021 1.00 0.60 
HSC1 ZNF98 -1.16 1.1x10-06 0.028 0.55 0.60 
HSC1 AXL 7.47 3.8x10-06 0.098 0.91 0.40 
HSC1 ANO2 9.47 6.7x10-06 0.173 0.91 0.40 
MEP1 SPATS2 6.14 2.2x10-09 5.6x10-05 1.00 1.00 
MEP1 NAALADL2 6.11 3.2x10-08 8.2x10-04 1.00 1.00 
MEP1 NLGN1 12.90 3.3x10-08 8.6x10-04 1.00 0.00 
MEP1 PIEZO2 6.71 3.5x10-08 9.1x10-04 1.00 0.75 
MEP1 LINC00511 -1.41 4.8x10-08 0.001  0.80 0.50 
MEP1 PLEKHA5 5.25 2.1x10-06 0.054  1.00 1.00 
MEP1 IMMP2L 5.38 2.9x10-06 0.073  1.00 1.00 
MEP1 HERC2 5.87 4.9x10-06 0.126  1.00 1.00 
MK PRTN3 -1.14 1.1x10-11 2.7x10-07 0.58 0.60 
MK COL24A1 10.46 3.9x10-09 1.0x10-04 0.92 0.20 
MK FBXL7 -1.61 3.2x10-07 0.008  0.50 0.80 
MK MAML3 6.87 3.4x10-07 0.009  1.00 1.00 
MK KIAA1217 -1.05 3.7x10-07 0.010  0.58 1.00 
MK SCPEP1 1.78 4.2x10-07 0.011  0.92 0.80 
MK STXBP5 6.75 9.2x10-07 0.024  0.92 1.00 
MK YES1 7.07 1.4x10-06 0.036  0.92 0.80 
MK ARHGEF3 6.69 1.6x10-06 0.042  0.92 0.80 
MK LTBP1 8.17 1.6x10-06 0.042  0.92 1.00 
MK FAM30A 6.73 1.9x10-06 0.050  0.92 0.60 
MK INPP4B 7.73 2.0x10-06 0.052  0.92 1.00 
MK CXCL2 8.67 2.210x-06 0.057  0.83 0.40 
MK GRB10 7.46 2.6x10-06 0.066  0.92 0.40 
MK EFCAB13 9.17 3.5x10-06 0.089  0.83 0.60 
MK UBASH3B 7.34 3.8x10-06 0.097  0.92 0.80 
MK STEAP1B 1.44 4.9x10-06 0.126  0.83 1.00 
MK GFPT1 7.20 6.5x10-06 0.166  0.92 0.60 
MK SCFD2 6.75 6.7x10-06 0.173  0.92 1.00 

*Log fold-change of the average expression between the selected cell populations and all other 

cell groups.  

**p_val and p_val_adj represent the original p-value (unadjusted) and adjusted p-value based 

on Bonferroni correction using all features in the dataset, respectively. 
§pct.1 and pct.2 represent the percentage of cells, where the feature is detected in the selected 

cell population and all other cell groups, respectively.
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