# Temporal changes in erythroid progenitors in critically ill patients: a prospective cohort study

# Authors

Caroline Scott,<sup>1\*</sup> Isabella Dale-Harris,<sup>1\*</sup> Andrew E. Armitage,<sup>2</sup> Alexandra E. Preston,<sup>2</sup> Simon J. Stanworth,<sup>3,4</sup> Timothy James,<sup>5</sup> Stuart R. McKechnie,<sup>6</sup> Peter A. Robbins,<sup>7</sup> Hal Drakesmith,<sup>2</sup> Noémi B.A. Roy<sup>8,9#</sup> and Akshay Shah<sup>3,10#</sup>

<sup>1</sup>MRC Weatherall Institute of Molecular Medicine, University of Oxford; <sup>2</sup>MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford; <sup>3</sup>NIHR Blood and Transplant Research Unit in Data Drive Transfusion Practice, Radcliffe Department of Medicine, University of Oxford; <sup>4</sup>NHSBT Blood & Transplant; <sup>5</sup>Department of Clinical Biochemistry, Oxford University Hospitals NHS Foundation Trust; <sup>6</sup>Oxford Critical Care, Oxford University Hospitals NHS Foundation Trust; <sup>7</sup>Department of Physiology, Anatomy and Genetics, University of Oxford; <sup>8</sup>MRC Weatherall Institute of Molecular Medicine, University of Oxford; <sup>9</sup>Department of Haematology, Oxford University Hospitals NHS Foundation Trust and <sup>10</sup>Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK \*CS and ID-H contributed equally as first authors. #NBAR and AS contributed equally as senior authors.

Correspondence: A. SHAH - akshay.shah@linacre.ox.ac.uk

https://doi.org/10.3324/haematol.2024.285530

Received: March 23, 2024. Accepted: September 26, 2024. Early view: October 3, 2024.

©2024 Ferrata Storti Foundation Published under a CC BY license 🖭

# **Online Data Supplement**

# **Supplementary Table S1**

# Table S1A - Detailed inclusion and exclusion criteria;

# Inclusion criteria

• ICU patients (≥16 years old), both with capacity and without capacity (for medically induced reasons such as therapeutic sedation), who have required at least 72 hours of adult ICU care

# **Exclusion criteria**

- Active haematological malignancy
- Chemotherapy or myelosuppressive treatment within last 30 days
- Documented or suspected HIV infection
- Received massive transfusion during index admission defined as 'replacement of >1 blood • volume in 24 hours or >50% of blood volume in 4 hours'.
- Palliative care intent
- Participants who are lacking capacity for non-medically induced reasons e.g. dementia
- Death is imminent or likely during this admission •
- Patients residing outside a reasonable geographic follow-up area (defined as within 30 • miles of the John Radcliffe Hospital, Oxford, UK)

4 = \

| S1B - Characteristics of study cohort with paired samples (n=17) |                    |  |  |
|------------------------------------------------------------------|--------------------|--|--|
| Characteristic                                                   | Value              |  |  |
| Age (years)                                                      | 58 (50 – 63)       |  |  |
| Sex, n (%)                                                       |                    |  |  |
| Male                                                             | 8 (47.0)           |  |  |
| Female                                                           | 9 (53.0)           |  |  |
| BMI (kg.m <sup>-2</sup> )                                        | 27.0 (23.5 – 35.9) |  |  |
| Functional Comorbidity Index, n (%)                              |                    |  |  |
| 0                                                                | 5 (29.5)           |  |  |
| 1                                                                | 4 (23.5)           |  |  |
| 2                                                                | 4 (23.5)           |  |  |
| >3                                                               | 4 (23.5)           |  |  |
| APACHEII score                                                   | 21.8 (6.1)         |  |  |
| Admission diagnoses, n (%)                                       |                    |  |  |
| Elective operation                                               | 0(0.0)             |  |  |
| Emergency operation                                              | 9 (53.0)           |  |  |
| Medical                                                          | 8 (47.0)           |  |  |
| No. with septic shock, n (%)                                     | 8 (47.0)           |  |  |
| Organ support requirements, n (%)                                |                    |  |  |
| Advanced respiratory support                                     | 16 (94.1)          |  |  |
| Advanced cardiovascular support                                  | 9 (53.0)           |  |  |
| Advanced renal support                                           | 13 (76.4)          |  |  |
| PaO <sub>2</sub> / FiO <sub>2</sub> ratio (mmHg)                 | 160 (128 – 248)    |  |  |

| ICU length of stay, days 9 (6 - 17) |
|-------------------------------------|
|-------------------------------------|

APACHEII, Acute Physiology and Chronic Health Evaluation; BMI, Body mass index; CRP, C-reactive protein; EPO, erythropoietin; ICU, Intensive care unit; IQR, interquartile range; SD, standard deviation

# Supplementary Table S2: Details of antibodies used

| Anti-human antibodies used for analysis and sorting              |        |               |                   |  |
|------------------------------------------------------------------|--------|---------------|-------------------|--|
| Antibody                                                         | Clone  | Fluorochrome  | Supplier          |  |
| CD34                                                             | 4H11   | РЕ-Су7        | eBioscience       |  |
| CD36                                                             | CB38   | PerCP-Cy5.5   | BD Biosciences    |  |
| CD71                                                             | ОКТ9   | FITC          | eBioscience       |  |
| Lineage Cocktail (CD2, CD3,<br>CD14, CD16, CD19, CD56,<br>CC235) | n/a    | APC           | eBioscience       |  |
| CD105                                                            | 43A3   | PE            | Biolegend         |  |
| CD38                                                             | HIT2   | AF700         | eBioscience       |  |
| CD123                                                            | 7G3    | BV605         | BD Biosciences    |  |
| CD235a                                                           | HIR2   | PerCp-Cy5     | Biolegend         |  |
| CD45RA                                                           | HI100  | APC-eFluor780 | eBioscience       |  |
| CD90                                                             | 5E10   | BV711         | BD Biosciences    |  |
| CD41a                                                            | HIP8   | AlexaFluor405 | eBioscience       |  |
| Viability dye                                                    | na     | 7AAD          | Life Technologies |  |
| Antibodies used for FACS analysis of colonies                    |        |               |                   |  |
| CD235                                                            | HIR2   | PE            | Life Technologies |  |
| CD71                                                             | CY1G4  | PE-Cy7        | Biolegend         |  |
| CD36                                                             | CB38   | APC           | BD Bioscience     |  |
| CD11b                                                            | ICRF44 | FITC          | eBioscience       |  |
| CD14                                                             | 6ID3   | FITC          | Biolegend         |  |
| CD33                                                             | P67.6  | FITC          | Biolegend         |  |
| Viability dye                                                    | na     | Hoechst       | Invitrogen        |  |
|                                                                  |        |               |                   |  |

# Supplementary Figure S1



# **Supplementary Figure**

# S1A Overview of the experimental strategy.

CD34<sup>+</sup> haematopoietic and stem progenitor cells (HSPCs) were extracted from controls (n=7) or study participants within 72 hours of admission to an intensive care unit (ICU) (D0 baseline samples) or 28 days later (D28) and cryopreserved. We had seven controls in total – all of whom were healthy volunteers (4 males, 3 females, age range 24-48), and were recruited from our research facility. Four of these volunteers (all male) provided blood samples every 4-6 weeks in parallel with batch analysis of study participants' samples. Peripheral blood was also collected from the remaining three volunteers (all female) at one timepoint. Cells were immuno-stained with a 12-colour fluorochrome panel. For frequency analysis, proportions of different cellular subsets were determined from flow cytometry plots with gates set using Fluorescence-minus-one controls and single stains. For functional analysis, Megakaryocyte-Erythroid Progenitors (MEPs) were index sorted into 96 well plates containing Methocult; colonies were allowed to grow for 14 days before being imaged and selected for FACS analysis to determine colony lineage. Abbreviations: HSC = Haematopoietic Stem Cell; MPP = Multipotent Progenitor; CMP = Common Myeloid Progenitor; LMPP = Lymphoid-primed Multipotent Progenitor; MEP = Megakaryocyte-Erythroid Progenitor; GMP = Granulocyte-Monocyte Progenitor ; CLP = Common Lymphoid Progenitor ; BFU-E = Blast-forming Unit - Erythroid ; EEP = Early Erythroid Progenitor; CFU-E = Colony-forming Unit - Erythroid; LEP = Late Erythroid Progenitor; MKs = Megakaryocytes; NK = Natural Killer.

# S1B FACS gating/sorting strategy.

CD34<sup>+</sup> HSPCs were immuno-stained with a 12 colour fluorochrome panel and gates were set using FMOs and single stains.

### S1C Colony analysis by FACS.

Representative examples of a BFU-E and GM colony grown for 14 days in Methocult from single cell sorted MEPs (defined by flow cytometry as Lin<sup>-</sup> CD34<sup>+</sup> CD38<sup>+</sup> CD45RA<sup>-</sup> CD123<sup>-</sup>) (A) Flow cytometric analysis shows expression of the erythroid markers (CD71, CD36 and CD235) and myeloid markers (CD11b/CD14/ and CD33) (B) images of a BFU-E and GM colony.

**S1D** Patients admitted with sepsis showed a significant increase in the number of BFU-Es at D28 compared to baseline and this was not observed in non-sepsis patients. (A) Plating efficiency of single index sorted MEPs from all participants showing the effect of sepsis (n=8) vs non-sepsis (n=9). (B) The number of Burst Forming Units-Erythroid (BFU-Es) grown from MEPs 14 days after single-cell sorting into methylcellulose from pair-matched participants admitted with either sepsis (n=8) or non-sepsis (n=9). (C) Flow cytometric analysis of BFU-E colonies at day 14 showing the expression levels of the erythroid markers CD71<sup>+</sup> CD235<sup>+</sup> (data available from n=3 with sepsis and n=4 non-sepsis). Two-way repeated measures ANOVA; overall effect of timepoint in (A) p=0.024 and in (B) p=0.035; \*p<0.05 Sidak's multiple comparison test.