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ABSTRACT 

Multiple myeloma (MM) is a dreadful disease, marked by the uncontrolled proliferation of clonal 

plasma cells (PCs) within the bone marrow (BM). MM is characterized by a highly heterogeneous 

clinical and molecular background, supported by severe genomic alterations. Important de-

regulation of long non-coding RNAs (lncRNAs) expression has been reported in MM patients, 

influencing progression and therapy resistance. NEAT1 is a lncRNA essential for nuclear 

paraspeckles and involved in gene expression regulation. We showed that NEAT1 supports MM 

proliferation making this lncRNA an attractive therapeutic candidate.  

Here, we used a combinatorial strategy integrating transcriptomic and computational approaches 

with functional high-throughput drug screening, to identify compounds that synergize with NEAT1 

inhibition in restraining MM cells growth. AUKA inhibitors were identified as top-scoring drugs in 

these analyses. We showed that the combination of NEAT1 silencing and AURKA inhibitors in 

MM profoundly impairs microtubule organization and mitotic spindle assembly, finally leading to 

cell death. Analysis of the large publicly CoMMpass dataset showed that in MM patients AURKA 

expression is strongly associated with reduced progression-free (p < 0.0001) and overall survival 

probability (p < 0.0001) and patients displaying high expression levels of both NEAT1 and 

AURKA have a worse clinical outcome. Finally, using RNA-sequencing data from NEAT1 

knockdown (KD) MM cells, we identified the AURKA allosteric regulator TPX2 as a new NEAT1 

target in MM and as a mediator of the interplay between AURKA and NEAT1, therefore providing 

a possible explanation of the synergistic activity observed upon their combinatorial inhibition.  
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INTRODUCTION 

 

Multiple myeloma (MM) is an incurable bone marrow-resident hematological malignancy, 

characterized by an uncontrolled proliferation of clonal plasma cells (PCs)1. It is the second most 

common type of blood cancer, after non-Hodgkin Lymphoma, representing 10% of all 

hematological tumors2. MM presents a highly heterogeneous clinical and genetic background, 

characterized by both numerical and structural chromosomal abnormalities and gene mutations3,4. 

Long non-coding RNAs (lncRNAs) represent a heterogeneous class of transcripts that partake in all 

levels of genome organization5. These molecules are involved in the regulation of cell 

differentiation, development, response to DNA damage and regulation of metabolic processes.  In 

cancer, lncRNAs contribute to altering cell growth potential, invasion and metastatic ability, to 

impair cell death mechanisms, and to increase anti-tumor drug resistance6,7. Due to their biological 

relevance, it is not surprising that these molecules are regarded as new potential targets for 

innovative cancer treatments. 

In MM, lncRNAs expression profile was described to be significantly different between malignant 

and normal PCs, suggesting their pro-oncogenic function in this scenario8. Aberrant lncRNAs 

expression in myeloma cells can further contribute to the acquisition of genomic instability (GI), 

inducing cell transcriptome modification and interfering with chromatin structure9,10. 

NEAT1 is a mono-exonic lncRNA transcribed from the MEN type I locus, localized on human 

chromosome 11q13. NEAT1 gene produces two different isoforms that share the same 5’ terminus: 

a short and polyadenylated isoform (NEAT1_1) and a longer one (NEAT1_2) lacking a poly-A tail 

but endowed with a triple-helix structure that protects the transcript from degradation11,12. As in 

other types of cancer, increased NEAT1 expression has been shown to be a hallmark of MM and 

plasma cell leukemia13. 

NEAT1 mainly localizes in cell nuclei. The long NEAT1 isoform (NEAT1_2) acts as an essential 

architectural scaffold for stress-induced paraspeckles (PSs)14. PSs are sub-nuclear membranelles 

organelles that regulate gene expression through three main mechanisms: by acting as RNA binding 

proteins hub, miRNA sponge, and promoting mRNA retention15–17. By contrast, the short NEAT1 

(NEAT1_1) is the most abundant isoform but it is dispensable for PSs assembly and functioning, 

suggesting a putative independent role18. It has been already proved that NEAT1 is required to 

support MM cells proliferation and viability, both in vitro and in vivo19-20. In line with this 

observation, NEAT1 silencing causes a decreased resistance to standard myeloma treatments such 

as Bortezomib, Carfilzomib and Melphalan and improves Olaparib sensitivity, making this lncRNA 

an attractive candidate for the development of novel anti-myeloma strategies19.  
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In this work, we took advantage of an integrated approach combining computational predictive 

tools with a high throughput functional screening to identify small compounds that cooperate with 

NEAT1 inhibition in bursting its lethal effect on MM cells viability and growth. We identified 

Aurora kinase A (AURKA) inhibitors as top-scoring candidates in both analyses and validated this 

synergy using functional assays. Finally, we derived a potential model to explain the cooperation 

between NEAT1 and AURKA in controlling MM biology, providing novel insights into the 

pathophysiology of this disease. 

 

METHODS 

 

Full details of gymnotic delivery of gapmeRs, cell viability assessment, live cell imaging, cell cycle 

and drug synergy analyses, reverse transcription and quantitative PCR, western blot, 

immunofluorescence, DEGs, CoMMpass and survival analyses are provided in supplementary 

methods.  

 

MM Cell Lines and Drugs  

AMO-1, NCI-H929, and MM1.S were purchased from DSMZ. AMO-1 SAM gSCR and AMO-1 

SAM gN#8 cell lines were obtained as previously described20. Human MM cell lines (HMLC) were 

immediately expanded and frozen upon arrival and used from the original stock within 6 months. 

HMCL were cultured in RPMI-1640 medium (Gibco®, Life Technologies, Carlsbad, CA, USA) 

supplemented with 10% fetal bovine serum, 1% penicillin-streptomycin (Euroclone, Milan, Italy) at 

37°C in 5% CO2 atmosphere. All cell lines were routinely tested for Mycoplasma contamination 

using the Lonza Mycoalert Mycoplasma Detection Kit (Euroclone, Milan, Italy). Re-authentication 

by SNP profiling at Multiplexion GmbH (Heidelberg, Germany) was performed for AMO-1, NCI-

H929, MM1.S cell lines in 2023. Alisertib and AURKAi-I were purchased from Selleckem and 

resuspended in DMSO at a stock concentration of 10 mM.  

 

Highthroughput screening 

A primary screening using a library of 320 small-molecule inhibitors targeting 123 key proteins was 

conducted on AMO-1 cells, as previously described21-22. The cells were treated with gapmeR 

NEAT1 (gNEAT1 5 μM) or a control at day 0 and after 24 hours were exposed to the inhibitor 

library at three different concentrations or to DMSO (vehicle). Cell viability was measured 

CellTiter-Glo (Promega) luminescence assay at day 0 (d=0) and three days after treatment (d=3), in 

duplicate. Full details are reported in supplementary methods.  
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RNA-sequencing  

RNA seq libraries were obtained starting from 500 ng of total RNA following the TruSeq Stranded 

Total RNA (San Diego, CA, USA) protocol. Sequencing was performed with NextSeq 500 

sequencer (Illumina) using a 2 × 150 high-output flow cell with 8 samples/run.). Details are 

described in supplementary methods.  

 

Ethical approval 

All patients’ data are derived from the publicly available CoMMpass dataset.  

 

RESULTS 

 

AURKA inhibition mimics NEAT1 KD transcriptomic signature. 

 

To identify small compounds that could potentiate the effect of NEAT1 inhibition in MM, we 

developed an integrated combinatorial strategy (Figure 1A).  

First, we used a computational approach to select drugs whose activity could recapitulate the 

transcriptional perturbations induced by NEAT1 inhibition in MM cells. To this end, we performed 

bulk RNA-sequencing in NEAT1 KD AMO-1 cell line and the relative control. NEAT1 KD was 

obtained using LNA-GapmeR (gNEAT1), as previously described19 (Suppl. figure S.1). 

Differential analysis showed that NEAT1 KD strongly affected the gene expression program in MM 

cells. A total of 1710 genes resulted significantly deregulated (FDR < 0.05) in NEAT1 silenced 

AMO-1 cells as compared with control cells (Figure 1B). Of these, 753 genes (44%) were 

downregulated, and 957 genes (56%) were upregulated upon NEAT1 KD (Figure 1 C).   

We used this list to query the Connectivity Map (CMap) database, searching for compounds that 

could mimic the transcriptional perturbation caused by NEAT1 silencing. We identified 66 small 

molecules as significantly associated with NEAT1 transcriptomic profiles, including CDKi, 

MTORi, and AURKi.  

Of note, the AURKA inhibitor Alisertib, identified among the top-scoring drugs, has been used 

clinically in combination with proteasome inhibitors in treatment of MM patients23 (Figures 1D-E).  
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High-throughput drug screening identifies AURKA inhibitors synergizing with NEAT1 

inhibition in AMO-1 cell line. 

 

To identify drugs that could potentiate the anti-tumor effects of NEAT1 inhibition in MM cells and 

to support our computational analyses, we conducted a functional high-throughput screening using 

a library of 320 small-molecule inhibitors covering 123 pivotal signaling targets. Supplementary 

Table 1 lists the compounds included in the screening. Figure 2A illustrates the experimental 

timeline. Briefly, AMO-1 cells were exposed to the drugs at three different concentrations (10 μM, 

1 μM, or 100 nM) in the presence or absence of previous NEAT1 silencing and were evaluated at 

day 0 and 72 h post-treatment, using an ATP-based luminescent metabolic assay (Cell TiterGlo). 

The combination effect assessed by excess over Bliss (EOB) score with an arbitrary cut-off of 

EOB>0.2 defined 35 synergistic candidates, including four Aurora kinase inhibitors (Figures 2B-

C), A subsequent independent validation in AMO-1 cells measuring both metabolic activity and 

apoptosis by tetrametylrodamine methyl ester (TMRM) staining confirmed AURKA inhibitors 

Alisertib (ALS) and Aurora A inhibitor I (AURKAi-I) among the most effective drugs (Figure 2D), 

consistent with the results of the in-silico predictions.  

 

 

Aurora kinase inhibitors increase the cytostatic effect of NEAT1 inhibition in MM cells. 

 

To explore the potential synergy between NEAT1 and AURKA inhibition, we performed an in-

depth validation. IC50 for Alisertib and Aurora kinase A inhibitor- I was assessed in three different 

MM cell lines (AMO-1, NCI-H929, and MM1.S). All three cellular models showed a robust and 

consistent sensitivity to both drugs with IC50 values in the range of nM for Alisertib and of µM for 

AURKAi-I (Supplementary table 2). NEAT1 silencing was effective in all three cell models tested 

(Suppl. figure S.1) 

Due to the role of AURKA in promoting mitosis, we evaluated the effect of the drugs on the cell 

cycle profile in the three MM cell lines, through flow cytometry (Figures 3A-B and Suppl. Figures 

S.2A-B). As expected, the drugs induced a significant increase in the percentage of cells in G2/M 

supported by a reduction of pAURKA/AURKA ratio (Figure 3C) and, as already described, an 

increase of PLK1 and CyB124, (Figure 3D) confirming the proper on-target effects in our system. 

To assess the level of synergism between NEAT1 and AURKA inhibition, we calculated the 

synergy score based on cell proliferation. Two different sublethal concentrations of anti-NEAT1 

oligos and three different drug concentrations (corresponding to IC20, IC50 and IC70) were used 
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(Figures 4A-B). The combination matrix showed a global moderate synergism between NEAT1 

inhibition and both AURKA inhibitors in all three cell models tested (Suppl. Figure S.3A-B).  

To corroborate these data, we monitored the effect of the combination treatment on cell 

proliferation over time, using a sublethal concentration of both targeting agents. Figures 5A-C 

show the proliferation curves obtained in these experiments. In all three MM cell models, the 

combination of NEAT1 KD and Alisertib displayed a major effect compared to the single agents 

alone. Similarly, AURKAi-I used in combination with NEAT1 KD improved the proliferation 

inhibition in AMO-1 and NCI-H929 but not in MM1.S. 

 

 

NEAT1 transactivation reduces the effect of AURKA inhibition on MM cell proliferation.  

 

Given the synergy observed between NEAT1 and AURKA inhibition in MM cells, we aimed to 

assess whether NEAT1 overexpression could rescue the cell growth inhibition caused by AURKA 

inhibitors. Of note, we recently showed that a high level of NEAT1 expression in MM cells 

provides a pro-survival advantage upon cellular stressor stimuli20. To this end, we used an AMO-1 

cell line engineered with CRISPRa exploiting the SAM system, to constitutively transactivate 

NEAT120.  

As already reported by us, a 2-fold increase of NEAT1 expression in transactivated cells, namely 

AMO-1 SAM gN#8 cells, as compared to the scramble condition, namely AMO-1 SAM gSCR was 

observed (Suppl. Figure S.4). Of note, transactivation of NEAT1 determined an increased 

resistance to AURKA inhibitors as shown by the higher value of IC50 observed in NEAT1 

overexpressing cells as compared to the scramble. (Figures 6A-B.) Evaluation of the number of 

cells 72 hours after treatment showed that NEAT1 transactivation exerted a significant protective 

effect on MM cell viability at all doses of drugs tested (Figure 6C). 

This evidence is in line with the reported role of NEAT1 in promoting drug resistance19 and 

supports the hypothesis of a potential interplay between AURKA and NEAT1 in sustaining MM 

cell growth.  

 

NEAT1 controls AURKA activity through TPX2 transcriptional modulation.  

 

We performed IF staining by using α-tubulin antibodies to monitor the biological effects of NEAT1 

KD on mitosis in NCI-H929 and AMO-1 cells treated with Alisertib. 
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As already reported25, we confirmed that Alisertib administration impaired the proper bipolar 

mitotic spindle formation by causing abnormal and unfunctional structures (Figure 7A panel ii). 

Interestingly, NEAT1 inhibition induces a prominent reorganization of microtubules (MTs) within 

the cells with evident local alterations in mitotic spindle orientation (Figure 7A panel i). 

Noticeably, NEAT1 KD in Alisertib treated cells resulted in a dramatic increase of spindle 

abnormalities, that worsened the effect of the drug alone. In particular, we observed a marked 

increase in the number of mono-polar and/or multi-polar spindles, as well as the presence of 

spindles with disorganized MTs (Figure 7A panel iii, Figure 7B). These morphological alterations 

are indicative of a defective division mechanism, in line with the observed proliferation impairment. 

Besides, these data indicate a previously underscored interplay between NEAT1 and AURKA in 

MM cells.  

This hypothesis was further confirmed by the analysis of the RNA-seq data obtained in AMO-1 

upon NEAT1 silencing (Figure 1B). Gene Ontology (GO) analysis of the genes downregulated 

upon NEAT1 KD highlighted several relevant biological processes affected by this lncRNA. In 

particular, microtubular cytoskeleton and mitotic spindle organization upon cell division scored 

among the top ten enriched pathways in this analysis (Figure 7C). Several genes involved in 

microtubular organization during mitosis were observed to be significantly downregulated upon 

NEAT1 KD in AMO-1 cells (Supplementary table 3). Most of these genes were also validated 

through qRT-PCR in both AMO-1 and NCI-H929 cell lines (Suppl. figures S.5A-B). Furthermore, 

we took advantage from our gene expression profiling data previously obtained in NEAT1 KD 

NCI-H929 cells19 to perform GO analysis. The results of this analysis revealed the same enriched 

biological processes also in NCI-H929 cells upon NEAT1 silencing (Suppl. figure S.6).  

Among these genes, we identified TPX2, which is an allosteric regulator of AURKA and serves to 

position AURKA at the level of the mitotic spindle during cell division26,27 (Figure 7D). We 

confirmed that upon NEAT1 KD, TPX2 is downregulated both at the transcript and protein level in 

AMO-1 and NCI-H929 cells (Figure 7E). Besides, NEAT1 transactivation in AMO-1 cells resulted 

in a significant trend toward upregulation of TPX2 transcript and protein confirming a positive 

regulation of NEAT1 on this gene (Figure 7F). NEAT1-mediated perturbation of genes, like TPX2, 

involved in the control of AURKA activity could destabilize further cell division AURKA 

inhibitors administration, thus explaining the combinatorial effect observed in drug screening.  

 

AURKA and NEAT1 expressions stratify survival in MM patients. 

We took advantage of the publicly available CoMMpass dataset to explore the association of 

AURKA expression with genetic and clinical features of MM patients. To assess AURKA 
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expression profiles in relation to major molecular aberrations in MM, we investigated 660 MM 

patients of the CoMMpass cohort for which expression, Non-Synonymous (NS) somatic mutations, 

and Copy Number Alterations (CNAs) data were available (Supplementary methods and 

Supplementary table 4). Significantly higher AURKA expression levels were observed in MM 

patients carrying markers of highly aggressive disease as 1q gain/amp, 1p loss, 17p deletions, TP53 

alterations, MAF and MYC translocations, and 13q deletion, whereas lower expression levels were 

evidenced in hyperdiploid (HD) cases (Suppl. Figure S.7). No significant differences in AURKA 

expression levels were observed in relation to t(11;14) and t(4;14) translocations, or the occurrence 

of NS somatic mutations in RAS/BRAF, TRAF3, DIS3, or FAM46C genes (data not shown). We 

investigated the clinical impact of AURKA starting from a dataset of 761 patients for whom 

survival data was available, focusing on those with low (first quartile) and high (fourth quartile) 

expression of AURKA. Survival curve analysis showed that AURKA expression was associated 

with both reduced progression-free survival (PFS) and overall survival (OS) probability (Suppl. 

Figures S.8A-B).  

To verify if high AURKA expression levels may represent an independent variable in predicting OS 

and PFS, we tested high AURKA expression condition and other main molecular or clinical 

features by Cox regression univariate analysis in 489 MM samples for which all information were 

available.  

Concerning OS, a significantly higher risk of death was observed for cases with higher AURKA 

expression level (Hazard Ratio, HR=1.54, 95% CI 1.11-2.13, BH adj. p-value=0.030); with regards 

to PFS, higher AURKA expression level was associated with a significantly higher risk of disease 

progression (Hazard Ratio, HR=1.57, 95% CI 1.23-2.01, BH adj. p-value=0.0016) (Supplementary 

table 5A-B). Interestingly, when all significant variables were tested in multivariate analysis, we 

observed that AURKA expression retained its independent prognostic impact on PFS, but not in OS 

(Suppl Figures S.9A-B).  

Finally, we evaluated whether AURKA and NEAT1 expression level when considered together, 

could impact patient's clinical outcome. Despite the finding that NEAT1 expression levels alone do 

not have a significant impact on patients’ survival13, patients having both high AURKA and 

NEAT1 expression levels displayed the worst survival curve (Suppl. Figure S.10).  

 

DISCUSSION  
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Despite the significant improvement in the treatment opportunities observed over the past years, 

most MM patients suffer from relapse and frequently develop highly aggressive disease, 

experiencing drug resistance to almost all currently available therapeutic options28,29. De-regulation 

of non-coding transcripts contributes to the progression of this disease affecting essential PCs 

biological processes8. We previously described that MM patients frequently show altered 

expression lncRNAs, which contribute to tumor progression30. Among them, we showed that the 

lncRNA NEAT1 is crucial in promoting the survival of MM cells and enhancing their resistance to 

stress stimuli13. NEAT1 represents the essential architectural structure of nuclear PSs and is 

involved in several type of cancers. Besides having a role in transcription regulation, this lncRNA 

has been described to modulate the expression of genes which are fundamental for the subsistence 

of cancer cell increasing their ability to withstand treatments31. We previously demonstrated that 

NEAT1 silencing reduces MM cells viability by modulating several genome-associated processes. 

In particular, we observed that NEAT1 is essential for a proficient activity of the homologous 

recombination (HR) DNA repair process and that its downregulation caused increased genomic 

damage19. Furthermore, we showed that NEAT1 is essential for the maintenance of the genome 

integrity that controls through at least two separate mechanisms. On one side, NEAT1 promotes 

paraspeckles assembly by sustaining the stabilization of essential PSs proteins as NONO, SFPQ and 

FUS. On the other hand, NEAT1 exercises a tight regulation on DNA damage response by 

modulating the activation of the molecular axis involving ATM, DNA-PKs kinases and their direct 

targets pRPA32 and pCHK220.  Taken together this evidence supports the rational that MM patients 

with high genomic instability and harboring higher NEAT1 expression levels could benefit from 

NEAT1 inhibition. For this reason, NEAT1 is currently regarded as an attractive candidate for 

therapeutic intervention in MM, prompting the need to develop strategic approaches to counteract 

its pro-tumoral function. Currently, therapeutic modalities targeting lncRNAs in cancer are under 

investigation in most in vivo models32. Encouraging results have been obtained after the 

implementation of delivery systems for antisense oligonucleotides and antagomirs that can be 

conjugated with cholesterol or delivered with lipid nanoparticles and liposomes to improve the 

intracellular affinity for target specific lncRNAs33.  

Despite the advances in targeting lncRNAs in human diseases, it is currently challenging to find a 

robust strategy that counteracts their action in RNA-based therapies in clinical practice. Given the 

complexity of targeting RNA molecules, approaches such as the one developed in this work may be 

of relevance to identify combinations able to burst the effect of specific lncRNAs antisense 

oligonucleotides, as well as alternative strategies that mimic the transcript inhibition. Within this 

framework, we developed an integrated computational and functional approach aimed at identifying 
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drug-based strategies that could potentiate NEAT1 inhibition in impairing MM growth and survival. 

Two separate strategies were employed. The first was based on the transcriptional alterations 

induced in MM cells by NEAT1 silencing. The NEAT1 KD-associated gene expression profile was 

used to search for compounds that could recapitulate the NEAT1 KD transcriptional phenotype, by 

using a computational strategy. The second was based on the functional high-throughput screening 

of over 300 small compounds, searching for molecules that could amplify the cytostatic effect of 

NEAT1 KD on MM cells growth. Both these very different approaches converged on identifying 

for the first time AURKA inhibitors as a promising cooperating agent for NEAT1 inhibition. 

AURKA has been already implicated in the progression of MM by regulating the activation of 

autophagy which represents one of the main causes of drug resistance in MM34-37.  Indeed, AURKA 

inhibitors were tested in clinical trials in combination with Bortezomib in relapsed MM confirming 

that targeting AURKA can potentially overcome the issue of therapy resistance likely, restraining 

the activation of autophagy when the proteasome is impaired23. 

AURKA is a central serine/threonine kinase for regulating the cell cycle and promoting mitosis, 

participating in the correct maintenance of the genome information. In mitotic cells, the 

phosphorylation at Tyr288 promotes the activity of AURKA that localizes at centrosomes to control 

their maturation and at the mitotic spindle to modulate MT dynamics and chromosomes 

segregation38. Furthermore, AURKA full activation requires the interaction with allosteric 

regulators, which favors its proper activity during mitosis39,40. Due to its central role in cell cycle 

regulation, AURKA is considered as a pan-essential gene for cancer cells that need to maintain 

high-speed cell proliferation41. For this reason, several AURKA inhibitors have been developed and 

used in different clinical settings. In our drug screening, 4 different compounds (over 20% of the 

total drugs identified) targeting this protein were identified. Of these, we fully validated two distinct 

compounds, Alisertib and Aurora A inhibitor-I by using three different cell lines. Both drugs target 

the active loop of AURKA, in proximity of Tyr288, blocking its catalytic activity. When 

administered to MM cells, both drugs resulted in a relevant inhibition of cell growth, independently 

to the used MM cellular model. These effects were maximized upon NEAT1 silencing. Indeed, 

combination of NEAT1 KD and AURKA inhibition in all three models showed the strongest 

impairment of cell proliferation supporting and further validating the synergistic action of these 

agents. Conversely, we also demonstrated that overexpression of NEAT1 reduces the inhibitory 

effect of AURKA inhibitors on cell proliferation confirming the potential interplay between the 

mitotic kinase and this lncRNA.  

Searching for the molecular basis of this cooperation, we observed that NEAT1 KD deregulated a 

large set of genes involved in cytoskeleton organization and microtubular assembly during mitosis. 
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Noticeably, when we looked at the morphology of MM cells under treatment, we observed that the 

combination of AURKA inhibitors and NEAT1 KD led to severe cytoskeleton abnormalities with 

the appearance of monopolar and multipolar spindle, abnormal mitotic structure, and incomplete 

cytokinesis. Coherently, among the genes that were significantly altered upon NEAT1 silencing in 

MM cells, we observed several genes that partake to these functions and that affect AURKA 

function directly or indirectly. Of particular interest, we identified TPX2 as NEAT1 target in MM. 

This gene encodes a microtubule-associated protein that co-localizes at the spindle level during the 

M-phase. TPX2 acts as an allosteric regulator of AURKA helping its correct positioning at the 

mitotic spindle and promoting the active conformational state of the protein25,42,43. Downregulation 

of this mediator, as the consequence of NEAT1 silencing, could further compromise the AURKA 

activity supporting the effect of the drugs. Indeed, it has been already shown that Alisertib also 

destabilizes the binding selectivity of TPX2 for AURKA44. 

Even if preliminary and requiring further investigations, this evidence points to a new potential 

nuclear function of NEAT1 in controlling the cytoskeleton dynamics associated with cell division. 

The potential involvement of NEAT1 on cytoskeleton dynamics was previously suggested in the 

context of Alzheimer disease, where this lncRNA was shown to modulate microtubules 

polymerization in vitro and in vivo. Specifically, NEAT1 KD mediates the depolymerization of 

microtubules by regulating the FZD3/GSK3β/p-tau pathway, thus exerting a relevant role 

concerning the etiology of the disease45. Furthermore, in hepatocellular carcinoma ROS-stress 

induction promotes nuclear PSs disassembly and NEAT1 translocation to the cytosol, where it 

interacts with the kinesin KIF11 enhancing protein degradation and thus contributing to defective 

spindle formation46. Since AURKA is the master regulator of the structural apparatus of mitosis, the 

observation that NEAT1 controls cytoskeleton during cell division, offers a potential readout of the 

synergistic effects that we observed by inhibiting both and highlights the existence of a functional 

interplay between them. However, we cannot exclude that the interaction between these two 

molecules can occur also at different levels. In particular, the NEAT1 function in keeping genomic 

stability and orchestrating the DNA damage response could be a relevant issue. Indeed, it has been 

reported, in ovarian cancer models, that AURKA inhibition unbalances the DNA damage repair 

system towards the NHEJ error-prone pathway by promoting DNA-PKCs activity. In the meantime, 

AURKA inhibition impairs the HR mechanism, through the downregulation of PARP, mimicking a 

BRCAness condition47. 

In line with a previous report, we confirmed that AURKA is an unfavorable prognostic factor for 

MM patients being negatively associated with OS and PFS48. Conversely, NEAT1 alone as 

previously described, had limited impact on disease progression and patient prognosis13. However, 
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based on the CoMMpass dataset, MM patients that have high AURKA and high NEAT1 display the 

worst outcome, compared with the other categories, suggesting that high expression of NEAT1 

worsens the prognostic effect of AURKA expression, on MM patients. 

Even if it is not a direct proof, this observation strongly supports the hypothesis that NEAT1 and 

AURKA functionally interact in supporting MM growth and progression, and that combinatorial 

approaches to target both may represent an effective strategy and a new opportunity in the treatment 

of MM patients.  
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LEGENDS TO FIGURES 

Figure 1. AURKA inhibition mimics NEAT1 KD transcriptomic signature. A) Framework 

overview: computational and functional approaches adopted to identify compounds exerting a 

synergistic activity with total NEAT1 silencing in MM cells.  

B) Volcano plot showing significantly down (green) and up (red) - regulated genes in AMO-1 

NEAT1 KD cells compared to scramble condition (lnFC ≤ │ 0,7 │ padj ≤ 0.05). C) Pie chart 

showing the number of significantly down and up-regulated genes in AMO-1 NEAT1 KD cells 

compared to scramble condition (lnFC ≤ │ 0,7 │padj ≤ 0.05). D) Alluvial plot depicting top scoring 

molecules derived from cMap query, in particular: inhibitors (left), the class of perturbation they 

belong (middle), and their target genes (right). E) Heatmap showing the relative cMap score of the 

33 top-scoring candidate compounds with score >90. 

 
Figure 2. HT drug screening identifies AURKA inhibitors as promising synergistic agents 

when combined with NEAT1 inhibition. A) Experimental overview of drugs screening. AMO-1 

cells were seeded and silenced for NEAT1 expression (day -1) through gymnotic delivery of LNA-

GapmeR (gNEAT1). Cell viability was assessed using ATP assay after 24 hours (day 0) followed 

by treatment with three different concentrations of compounds. At 96 hours of NEAT1 silencing 

and 72 hours of compounds treatment (day 3) cells viability was assessed by ATP assay and 

NEAT1 expression was quantified through qRT-PCR. Combined drug effect was determined by 

Excess over Bliss (EOB) analysis. B) Diagram illustrating the top 35 top candidates (EOB > 0.2) 

exhibiting synergistic effect when combined with NEAT1 silencing. C) Sunburst diagram depicting 

the category of compounds and the name of the drugs that exert a synergistic activity with NEAT1 

KD. D) AMO-1 cells viability was evaluated by ATP assay (upper diagram) in duplicate and flow-

cytometry (lower diagram) in the presence or absence of gNEAT1. Statistical significance was 

measured with Student’s t test *p < 0.05 **P<0.01 or ***P<0.001. 

 
Figure 3. HMLCs showed a robust sensitivity to AURKA inhibitors. FACS analysis of cell 

cycle phases distribution after Alisertib (A) and AURKAi-I (B) treatments (24 hours) in AMO-1, 

NCI-H929 and MM1.S cells. The histogram chart shows the percentage of cell cycle distribution is 

represented in the histogram; standard deviation of three replicates is reported, *p < 0.05, **p < 

0.01, ***p < 0.001, Student’s t test. C) WB analyses showing pAURKA and AURKA protein 

expression after Alisertib (24 hours) and AURKAi-I (6 hours) treatments in AMO-1, NCI-H929 

and MM1.S cells. D) WB analyses showing CyCB1 and PLK1 cell cycle checkpoints proteins after 

Alisertib and AURKAi-I treatments (24 hours).  
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Figure 4. Synergy assessment through the calculation of CI.  Histograms depicting raw-data of 

combination indexes (CI): fraction of viable AMO-1, NCI-H929, and MM1.S cells after four days 

NEAT1 silencing and three days of treatment with the indicated concentrations of Alisertib (A) and 

AURKAi-I (B). 

 

Figure 5. AURKAi increases the cytostatic effect of NEAT1 inhibition in MM overtime.  

Live cell imaging analysis: proliferation rate was measured relative to T = 0 h, in AMO-1 (A), NCI-

H929 (B), MM1.S (C) MM cell lines with Incucyte S3 Live Cell Analysis (Sartorius). AMO-1, 

NCI-H929 and MM1.S were silenced for NEAT1 expression with different concentrations of 

GapmeR and treated with IC20 concentration of Alisertib or AURKAi-I. Values are represented as 

the ratio between the treated sample over the vehicle. The graph shows the mean ± SEM of two 

independent experiments. Statistical significance was measured with Student’s t test *p < 0.05 

**P<0.01 or ***P<0.001. 

 

Figure 6. NEAT1 transactivation determines an increased resistance to AURKA inhibitors.  

IC50 curve of Alisertib and AURKAi-I in AMO-1 SAM cell lines. IC50 value was calculated at 72 

hours of treatment using the Compusyn software. Fraction of alive cells (%) is provided on vertical 

axis and log (concentration) [µM] of Alisertib (A) and AURKAi-I (B) on horizontal axis. C) 

Histogram showing the biological effect obtained in AMO-1 SCR and AMO-1 N#8 SAM treated 

with Alisertib and AURKAi-I. Values are represented as the ratio between the treated samples over 

the vehicle. The graph shows the mean ± SEM of two independents biological replicates. Statistical 

significance was measured with Student’s t test *p < 0.05, **P<0.01 or ***P<0.001.  

 
Figure 7. NEAT1 is involved mitotic spindle dynamics by controlling AURKA activity 

through TPX2 transcriptional modulation.  A) Representative images of metaphase spindles. 

AMO-1 and NCI-H929 cells treated with Vehicle, gNEAT1, Alisertib, Alisertib + gNEAT1. α-

Tubulin was stained in green and DAPI was used to stain cell nuclei. Scale bar 20 µm. B) Bar plot 

representing the percentage of mitotic cells with defective spindles in AMO-1 and NCI-H929 

treated with Vehicle, gNEAT1, Alisertib, Alisertib + gNEAT1. C) Dot plot of the top ten down-

regulated significant biological processes (FDR<0.05) obtained in AMO-1 NEAT1 KD cells. D) 

STRING node depicting functional and physical protein –protein interaction among the down-

regulated genes related to mitotic spindle and microtubule organization in AMO-1 NEAT1 KD 

cells. E) Quantitative real-time PCR of TPX2 in AMO-1 and NCI-H929 cells silenced for NEAT1 

expression (gNEAT1) and in the relative control condition (gSCR), after gapmeRs delivery and WB 
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analysis of TPX2 protein in AMO-1 and NCI-H929 cells silenced for NEAT1 expression 

(gNEAT1) and in the relative control condition (gSCR), after gapmeRs delivery (n = 3).   F) 

Quantitative real-time PCR of TPX2 in AMO-1 SAM gSCR and AMO-1 SAM gN#8 cells and WB 

analysis of TPX2 protein in AMO-1 SAM gSCR and AMO-1 SAM gN#8 cells (n = 2). 
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Gymnosis  

Cells were seeded at low plating density (5 × 104/ml) and concurrently treated with the naked 

gapmeR NEAT1 (gNEAT1) and the scrambled (gSCR), at a final concentration of 1.5, 2.5, 5, 

7 μM. Table showing the LNA-gapmeRs used: 

 

Name 

 

Sequence ( 5’ - 3’ ) Mw calc (Da) 

gNEAT1 

 

AGTGACCACAAAAGGT 5276.2 

gSCR 

 

GCTCCCTTCAATCCAA 5184.2 

 

Drug synergism analysis 

For HT experiments, Growth Rate (GR) was calculated as the ratio between luminescence 

values at the two time points, normalized to DMSO-treated cells. Combined drug effect was 

determined by Excess over Bliss (EOB) analysis on GR value for all concentrations, 

according to the formula: 

EOB=[1−GR(combination)]−[1−GR(DMSO)]−[1−GR(drug)]+[1−GR(DMSO)][1−GR(drug)

]2. EOB cut off >0.2 was used to select the most synergistic drugs (TOP35) in combination 

with NEAT1 KD. 

During the validation step, drug combination studies and synergy quantification were realized 

with CompuSyn software based on Chou-Talalay method that calculates the combination index 

(CI). Dose-effect curves were determined by counting viable cells after 72 hours of Alisertib 

and AURKAi-I treatment and 96 hours after NEAT1 silencing. At least three different 

concentrations of each drug were combined to two concentrations of gNEAT1 gapmeR (2,5 – 

7 µM)  

 

Cell cycle analysis 

Cell cycle analyses were performed in AMO-1, NCI-H929 and MM1.S cells after 24 hours of 

Alisertib and AURKAi-I treatments. Cells were analyzed with the hypotonic propidium iodide 

(PI) method1 and samples were acquired with FACS Canto II Cell Analyzer (BD Bioscences).  

 



 

Cell viability assessment 

MM cells proliferation was assessed through Trypan-exlusion method and live cell imaging.  

 

Live cell imaging and analysis   

For proliferation assays, cells were seeded in coated 96-well plates (4000 cells/well). Cell 

coating was performed using 50 µL of 0.005% Poly-L-ornithine solution per well. The plate 

was incubated for 1 hour at room temperature then, poly-L-ornithine solution was removed 

from the well to allow the plate to dry for 15 minutes. Cells were stained for 20 minutes at 37 

°C using 0,5 µM Citolight Red (4706) (Sartorius AG, Goettingen, Germany), resuspended in 

PBS 1X. Then, cells were centrifuged at 900 rpm for 5 minutes and resuspended in the 

appropriate amount of standard medium supplemented with different drugs. 

Cell proliferation analysis was performed with the Incucyte® Live-Cell Analysis Systems 

(Model S3; Sartorius AG, Goettingen, Germany). Cells were imaged within 20 minutes of 

plating using phase contrast and red (400 ms exposure) image channels in the Incucyte® 

platform. Five images from distinct regions per well using a 10x dry objective lens were taken 

every 8 hours.  Independent experimental condition was run in triplicates. The IncuCyte 

software’s analysis definition was set to recognize red-stained cells. Top-Hat segmentation 

method was used for background correction. For accurate quantification of closely spaced 

objects edge split tool was used.  Cell objects count was finalized by applying specific filter 

for each cell line:  <120 µm2 for AMO-1 and for NCI-H929 and <110 µm2 for MM1.S cells. 

Red object counts per image, for all the five images acquired in each independent technical 

replicate were used to determine the average number of cells per well.   

 

RNA extraction, reverse transcription and quantitative PCR  

Total RNA was extracted using RNeasy kit (Qiagen) according to manufacturer’s instructions. 

The purity and concentration of total RNA was determined by the NanoDrop 1000 

spectrophotometer (Thermo Fisher Scientific). The ratios of absorption (260 nm/280 nm) of all 

samples were between 1.8 and 2.0. 500 ng of total RNA was retrotranscribed with iScript cDNA 

kit (Bio-Rad, Hercules, California, USA). Quantitative Real-Time PCR (qRT-PCR) was 

performed for 40 cycles using Sso Fast EvaGreen Super Mix (Bio-Rad, Hercules, California, 

USA) in a CFX96 Real Time PCR Detection System (Bio-Rad, Hercules, CA, USA). Relative 

expression of target genes was calculated using the 2-ΔΔCt method by normalizing to the 



housekeeping gene expression. To determine transcript levels by qPCR, the following primers 

were used: 

 

 

Primer Name Sequence (5’ – 3’) 

Total NEAT1_FW 5' - GCCTTGTAGATGGAGCTTGC - 3' 

Total NEAT1_RW 5' - GCACAACACAATGACACCCT - 3' 

TPX2_FW 5’ – TTCAAGGCTCGTCCAAACACCG -3’ 

TPX2_RW 5’ – GCTCTCTTCTCAGTAGCCAGCT -3’ 

GAPDH_FW 5’ – ACAGTCAGCCGCATCTTCTT – 3’ 

GAPDH_RW 5’ – AATGAAGGGGTCATTGATGG – 3’ 

ACTIN_FW 5’ - TGCGTTACACCCTTTCTTGA – 3' 

ACTIN_RW 5’ - AAAGCCATGCCAATCTCATC – 3' 

FOXM1_FW 5’ – TCTGCCAATGGCAAGGTCTCCT  - 3’ 

FOXM1_RW 5’ – CTGGATTCGGTCGTTTCTGCTG – 3’ 

KIF11_FW 5’ – ACAGCTGACATGGATGGGAA - 3’ 

 

KIF11_R 5’ – TCTGAAAGCTGGATGTGGGT – 3’ 

 

NUF2_FW 5’ – CTGCTTCCAAACCATGCACT – 3’ 

NUF2_RW 5’ – AAAATCCCAGCTGCACAAGG – 3’ 

CLASP2_FW 5’ – CTGTTAGTGCCATGCGAGTC – 3’ 

CLASP2_RW 5’ – TTCTGCCACATCTTCCGTCT – 3’ 

AURKA_FW 5’ – TCCTGAGGAGGAACTGGCATCAAA – 3’ 

AURKA_RW 5’ – TACCCAGAGGGCGACCAATTTCAA – 3’ 

INCEP_FW 5’ - AGGCTCCTGAATGTTGAGGTGC – 3’ 

INCEP_RW 5’ - GTGTGCTGTTGGCAATCTCCGT – 3’ 



E2F1_FW 5’ – AGCTGGACCACCTGATGAAT – 3’  

E2F1_RW 5’ – GAGGGGCTTTGATCACCATA –  3’  

PRKCA_FW 5’ – GCCTATGGCGTCCTGTTGTATG – 3’ 

PRKCA_RW 5’ – GAAACAGCCTCCTTGGACAAGG – 3’ 

KIF23_FW 5’- GTAGCAAGACCTGTAGACAAGGC – 3’ 

KIF23_RW 5’ – TTCGCATGACGGCAAAGGTGGA – 3’ 

EXO-1 FW 5’ – AGCTACGCTGGGCAATATGT - 3’ 

EXO-1_RW 5’ – ACTTCTTGAATGGGCAGGCA – 3’ 

FEN1_FW 5’ – AGTGGAGCGAGCCAAATGAA – 3’ 

FEN1_RW 5’ – TACTCAGCCTCTTGACCCCA – 3’ 

BRCA1_FW 5’ – GTCCCATCTGTCTGGAGTTGA – 3’ 

 

BRCA1_RW 5’ – GGCCCTTTCTTCTGGTTGAGA – 3’ 

 

HELLS_FW 5’ – AGCGGTTGTGAGGAGTTAGC – 3’ 

 

HELLS_RW 5’ – CATGCCTGGACACTCACCC – 3’ 

 

CDC6_FW 5’ – AAGCTGTCTCGGGCATTGAA – 3’ 

 

CDC6_RW 5’ – GCTGAGAGGCAGGGCTTTTA – 3’ 

 

POLD1_FW 5’ – AAACGCTGTTTGAAGCGGCA – 3’ 

 

POLD1_RW 5’ – GAGGTGCATCATCATCATCCCA – 3’ 

 

 

 

Western blot analysis 

Cells were homogenized with PLB lysis buffer (Promega, Madison, WI, USA) supplemented 

with Protease Inhibitors cocktail (Bimake, Houston, TX, USA). 25-40 µg of total cell lysate 

were separated using SDS–PAGE using Bio-Rad apparatus (Bio-Rad, Hercules, CA, USA) 



with precast Any kD Acriliamide Gels (Bio-Rad, Hercules, CA, USA), electro-transferred onto 

nitrocellulose membranes (Bio-Rad, Hercules, CA, USA). Membranes were blocked with 5% 

milk-PBST for at least 2 hours and then immunoblotted with primary antibodies overnight at 

4°C in BSA 2%-PBS Tween 0.1% (PBST). Membranes were washed three times in PBST 

solution and then incubated with a secondary antibody diluted in milk 2% - PBST for 2 hours 

at room temperature. Chemiluminescence was detected using WESTAR ECL substrate for 

western blotting (Cyanagen) and the ChemiDoc MP System (Bio-Rad).  

The experiments were repeated at least three times. 

The table below reported the antibody used: 

 

 

Antibody Company Code Source Dilution 

Anti-AURKA Cell signalling 

technology 

14475 

 

Rabbit pAb 1:1000 BSA 2%-PBST 

Anti-pAURKA 

Thr 288 

Cell signalling 

technology 

3079 

 

Rabbit pAb 1:500 BSA 2%-PBST 

Anti-PLK1 Cell signalling 

technology 

4513 Rabbit pAb 1:1000 BSA 2%-PBST 

Anti-CCNB1 

(Anti-CycB1) 

Santa Cruz 

Biotechnology 

sc-245 Mouse mAb 1:500 BSA 2%-PBST 

Anti-TPX2 Cell signalling 

technology 

12245 Rabbit pAb 1:1000 BSA 2%-PBST 

Anti-GAPDH Cell signalling 

technology 

12245 Rabbit pAb 1:2000 BSA 2%-PBST 

Anti-ACTIN Santa Cruz 

Biotechnology 

sc-8432 Mouse mAb 1:2000 BSA 2%-PBST 

Anti-mouse IgG Amersham NXA931 HRP-linked 1:2000-1:5000 milk 2%-

PBST 

Anti-rabbit IgG Amersham NA934 HRP-linked 1:2000-1: 5000 milk 2%-

PBST 

 

 

 



Immunofluorescence  

0,15 x 106 cells for each condition were harvested, immobilized onto glass slides through 

Cytospin (Thermo Scientific), fixed in 4% paraformaldehyde in PBS for 7 minutes at 22°C, 

then washed three times with PBS. Cells were permeabilized (0.5% Triton X-100 in PBS) for 

15 minutes, washed three times with PBS and blocked for 1 hour at 22°C with 1.5% BSA in 

PBS. After blocking, slides were washed three times in PBS and incubated for 1 hour at 22°C 

in the dark with Anti-α-Tubulin Alexa Fluor 488 (Abcam; #185031, 1:100) to stain 

microtubules. After three PBS washes nuclei staining was performed with DAPI (Sigma-

Aldrich) and mounted under coverslips with Glycerol-PBS mounting media. Images were 

acquired by Leica TCS SP8 confocal laser scanning microscope (DMi8); acquisitions were 

performed with 63X immersion oil objectives. Conversion of imaged z-stacks into average 

intensity projections were processed by Leica Microsystem software (Leica Application Suite 

X - LAS X). 

 

Sequencing and DEG analysis 

Before library preparation, RNA concentration was evaluated through Qubit™ RNA Broad 

Range Assay Kit (Invitrogen, Walthman, MA, USA) while RNA quality was established on 

4200 Tapestation (Agilent Technologies, Santa Clara, CA, USA) using RNA Screen tape kit 

(Agilent Technologies, Santa Clara, CA, USA). According to the TruSeq Stranded Total RNA 

(San Diego, CA, USA) protocol, 500 ng of RNA for each sample with RIN value between 9 

and 10, were used for RNA sequencing. Final libraries with optimal quality and quantity 

criteria, assessed by D1000 Screen tape kit (Agilent Technologies) and by Qubit® dsDNA High 

Sensitivity Assay Kit (Invitrogen). Sequencing read quality was assessed with FastQC 

(v.0.11.9)3. Total-RNA (stranded) sequences were aligned to the reference human genome 

(GRCh38) using STAR (v.2.7.9a)4 in two-pass mode. Gene expression was quantified at the 

gene level, utilizing comprehensive annotations from Gencode (v38 GTF File). Samples were 

normalized and adjusted for library size using the variance stabilizing transformation in the R 

statistical environment via the DESeq2 (v1.28.1)5 pipeline. Differential expression analysis 

between groups employed the embedded Independent Filtering procedure to exclude genes 

with low expression across most samples. Unless specified otherwise, limma (v.3.44.3) 

package was used for GSEA (Camera, use ranks set to FALSE), and geneset collections were 

obtained from the Molecular Signature Database (MSigDB)6. P-values underwent false 

discovery rate (FDR) correction (threshold: 0.05) for multiple testing. Data are available at 

ArrayExpress; access code: E-MTAB-13925.  



 

 

 

Enrichment analysis  

Biological processes analyses were performed by EnrichR enrichment website tool 

(https://maayanlab.cloud/Enrichr/).Genes from differential expression analyses with a fold 

change ≤ - 0,7 and padj ≤ 0,05 were used to identify GO and pathways (n = 88) and were used 

to perform GO and pathways analyses Enriched biological processes were considered 

significant by applying a threshold of 0.05 on p-value adjusted by Benjamini-Hochberg 

correction for multiple testing.  

 

Connectivity Map  

Differential gene expression signature obtained comparing AMO-1_NEAT1 KD and AMO-

1_SCR cells, was used as input of the Connectivity Map (cMap, v1.1.1.43, dataset v1.1.1.2, 

accessed via https://clue.io). cMAP output is list of perturbagenes (pharmacological and 

genetic strategies - the latter not considered in this study) ranked according to the similarity 

between the input and the signature they induce in a set of cell lines. 

Since at the time of our query, none of the cell lines present on the cMap database were of 

multiple myeloma cells, we used the option “summary” which, given a set of connectivity 

scores for a particular inhibitor, summarizes those scores across all the eight cell lines tested. 

Compounds presenting a similar transcriptional signature to our query were selected 

considering a connectivity score > 90.  

 

Multi-Omics Data in CoMMpass Study 

Multi-omics data about bone marrow MM samples at baseline (BM_1) were publicly 

accessible from MMRF CoMMpass Study (https://research.themmrf.org/) including more than 

1000 MM patients from several worldwide sites and retrieved from the Interim Analysis 20 

(MMRF_CoMMpass_IA20, accessed on 19 January 2023). Transcript per Million (TPM) reads 

values of the AURKA transcript were retrieved using Salmon gene expression quantification 

data (MMRF_CoMMpass_IA20_salmon_geneUnstranded_TPM) in 767 BM_1 MM patients. 

Clinical data regarding Overall Survival (OS) and Progression free Survival (PFS) were 

considered in 767 MM patients for which both RNA-seq expression and survival data were 

available. Non-synonymous (NS) somatic mutation variants and counts data were obtained 

from whole exome sequencing (WES) analyses, main IgH translocations were inferred from 

https://clue.io/


RNA-seq spike expression estimates of known target genes and Copy Number Alteration 

(CNA) data were retrieved by means of Next generation Sequencing (NGS)-based fluorescence 

in situ hybridization (FISH)7 in 489 MM cases for which all data were available8. The presence 

of a specific CNA was considered when occurring in at least one of the investigated cytoband 

at a 20% cut-off for each considered chromosomal aberration, as previously reported7. 

 

 

Survival analyses  

Survival analyses were performed using survival9,10 and survminer11 packages in R 

Bioconductor (version 4.1.2). Kaplan-Meier analysis was applied on OS and PFS data in 

patients stratified in quartiles and by comparing the first and fourth quartiles. Log-Rank test p-

value was calculated to measure the global difference between survival curves. Cox 

proportional hazards model was applied as univariate analysis on single molecular variables, 

age and International Staging System (ISS) groups in relation to OS and PFS data in 489 MM 

cases for which all information were accessible. Cox regression multivariate analysis was 

applied on all significant features after BH correction. Forest plot was used to summarize Cox 

Proportional Hazard Model.  

 

Statistical analysis  

For functional assays statistical analysis was performed using GraphPad Prism Software 

(version 9.5.1 for Windows, GraphPad Software, San Diego, CA, USA). Statistical significance 

was determined using the Student’s t-test. Differences were considered significant 

when P values were *P<0.05, **P<0.01 or ***P<0.001. 
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Supplementary table 1   

    

Cat n° Drug Target Pathway 

S2698 RS-127445 5-HT Receptor Neuronal Signaling 

S2894 SB742457 5-HT Receptor Neuronal Signaling 

S1549 Nebivolol HCl Adrenergic Receptor Neuronal Signaling 

S8114 ICI-118551 Hydrochloride Adrenergic Receptor GPCR & G Protein 

S1078 MK-2206 2HCl Akt PI3K/Akt/mTOR 

S2808 Ipatasertib (GDC-0068) Akt PI3K/Akt/mTOR 

S4854 Bedaquiline fumarate Anti-infection Microbiology 

S1188 Anastrozole Aromatase 
Endocrinology & 

Hormones 

S8292 Selonsertib (GS-4997)  ASK Apoptosis 

S1092 KU-55933 (ATM Kinase Inhibitor) ATM/ATR DNA Damage 

S1570 KU-60019 ATM/ATR DNA Damage 

S7102 VE-822 ATM/ATR PI3K/Akt/mTOR 

S8556 AZ31 ATM/ATR DNA Damage 

S8666 BAY 1895344 (BAY-1895344) ATM/ATR DNA Damage 

S8680 AZD1390 ATM/ATR PI3K/Akt/mTOR 

S1048 Tozasertib (VX-680, MK-0457) Aurora Kinase Cell Cycle 

S1133 Alisertib (MLN8237) Aurora Kinase Cell Cycle 

S1147 Barasertib (AZD1152-HQPA) Aurora Kinase Cell Cycle 

S1451 Aurora A Inhibitor I Aurora Kinase Cell Cycle 

S2740 GSK1070916 Aurora Kinase Cell Cycle 

S2770 MK-5108 (VX-689) Aurora Kinase Cell Cycle 

S7065 MK-8745 Aurora Kinase Cell Cycle 

S2744 CCT137690 Aurora Kinase Cell Cycle 

S1023 Erlotinib HCl (OSI-744) Autophagy,EGFR 
Protein Tyrosine 

Kinase 

S1049 Y-27632 2HCl Autophagy,ROCK Cell Cycle 

S7849 BDA-366 Bcl-2 Apoptosis 

S8048 
Venetoclax (ABT-199, GDC-

0199) Bcl-2 Apoptosis 

S7790 A-1210477 Bcl-2 Apoptosis 

S8591 FX1 Bcl-6 Apoptosis 

S2899 GNF-2 Bcr-Abl Angiogenesis 

S2680 Ibrutinib (PCI-32765) BTK Angiogenesis 

S7173 Spebrutinib (CC-292, AVL-292) BTK Angiogenesis 

S7257 CNX-774 BTK Angiogenesis 

S7734 LFM-A13 BTK Angiogenesis 

S8777 Evobrutinib BTK 
Protein Tyrosine 

Kinase 

S1094 PF-04217903 c-Met 
Protein Tyrosine 

Kinase 



S1114 JNJ-38877605 c-Met 
Protein Tyrosine 

Kinase 

S2747 AMG-458 c-Met 
Protein Tyrosine 

Kinase 

S2753 Tivantinib (ARQ 197) c-Met 
Protein Tyrosine 

Kinase 

S2761 NVP-BVU972 c-Met 
Protein Tyrosine 

Kinase 

S7067 Tepotinib (EMD 1214063) c-Met 
Protein Tyrosine 

Kinase 

S7674 Savolitinib(AZD6094, HMPL-504) c-Met 
Protein Tyrosine 

Kinase 

S8167 AMG 337 c-Met 
Protein Tyrosine 

Kinase 

S7564 SAR125844 c-Met 
Protein Tyrosine 

Kinase 

S1112 SGX-523 c-Met 
Protein Tyrosine 

Kinase 

S2788 Capmatinib (INCB28060) c-Met 
Protein Tyrosine 

Kinase 

S7436 NH125 CaMK Neuronal Signaling 

S7499 ESI-09 cAMP GPCR & G Protein 

S7500 HJC0350 cAMP GPCR & G Protein 

S8012 Otenabant (CP-945598) HCl Cannabinoid Receptor GPCR & G Protein 

S7461 LDC000067 CDK Cell Cycle 

S7992 LDC4297 (LDC044297) CDK Cell Cycle 

S8652 Skp2 inhibitor C1 (SKPin C1) CDK Cell Cycle 

S8727 Atuveciclib (BAY-1143572) CDK Cell Cycle 

S1116 Palbociclib (PD-0332991) HCl CDK Cell Cycle 

S1579 
Palbociclib (PD0332991) 

Isethionate CDK Cell Cycle 

S2626 Rabusertib (LY2603618) Chk Cell Cycle 

S2683 CHIR-124 Chk Cell Cycle 

S8253 CCT245737 Chk Cell Cycle 

S8632 Chk2 Inhibitor II (BML-277) Chk Cell Cycle 

S2903 Lumiracoxib COX Neuronal Signaling 

S4136 Carprofen COX Neuronal Signaling 

S7725 BLZ945 CSF-1R 
Protein Tyrosine 

Kinase 

S8042 GW2580 CSF-1R 
Protein Tyrosine 

Kinase 

S7651 SB225002 CXCR GPCR & G Protein 

S8813 LIT-927 CXCR 
Immunology & 
Inflammation 

S1115 Odanacatib (MK-0822) Cysteine Protease Proteases 

S7241 AGI-6780 Dehydrogenase Metabolism 

S8619 NCT-503 Dehydrogenase Metabolism 

S2868 Alogliptin（SYK-322）benzoate DPP-4 Proteases 

S3031 Linagliptin DPP-4 Proteases 



S4002 
Sitagliptin phosphate 

monohydrate DPP-4 Proteases 

S4697 Saxagliptin hydrate DPP-4 Proteases 

S5063 Trelagliptin succinate DPP-4 Proteases 

S5079 Sitagliptin DPP-4 Proteases 

S5365 Alogliptin DPP-4 Proteases 

S5909 Anagliptin DPP-4 Proteases 

S7513 Trelagliptin DPP-4 Proteases 

S8565 Omarigliptin (MK-3102) DPP-4 Proteases 

S7140 TCID DUB Ubiquitin 

S8047 Dynasore Dynamin Cytoskeletal Signaling 

S7129 PYR-41 E1 Activating Ubiquitin 

S1173 WZ4002 EGFR 
Protein Tyrosine 

Kinase 

S2185 AST-1306 EGFR 
Protein Tyrosine 

Kinase 

S7206 CNX-2006 EGFR 
Protein Tyrosine 

Kinase 

S7786 Erlotinib EGFR 
Protein Tyrosine 

Kinase 

S8724 Lazertinib (YH25448,GNS-1480) EGFR 
Protein Tyrosine 

Kinase 

S1167 CP-724714 EGFR,HER2 
Protein Tyrosine 

Kinase 

S2192 Sapitinib (AZD8931) EGFR,HER2 
Protein Tyrosine 

Kinase 

S1456 Zibotentan (ZD4054) Endothelin Receptor GPCR & G Protein 

S2097 Ambrisentan Endothelin Receptor GPCR & G Protein 

S5916 GSK 5959 Epigenetic Reader Do Epigenetics 

S8296 dBET1 Epigenetic Reader Do Epigenetics 

S1216 PFI-1 (PF-6405761) Epigenetic Reader Domain Epigenetics 

S7110 (+)-JQ1 Epigenetic Reader Domain Epigenetics 

S7620 GSK1324726A (I-BET726) Epigenetic Reader Domain Epigenetics 

S7835 I-BRD9 Epigenetic Reader Domain Epigenetics 

S7906 PFI-4 Epigenetic Reader Domain Epigenetics 

S8180 PF-CBP1 HCl Epigenetic Reader Domain Epigenetics 

S8190 CPI-637 Epigenetic Reader Domain Epigenetics 

S8265 GSK6853 Epigenetic Reader Domain Epigenetics 

S7525 XMD8-92 ERK MAPK 

S7709 VX-11e  ERK MAPK 

S8534 LY3214996 ERK MAPK 

S2631 URB597 FAAH Metabolism 

S2666 PF-3845 FAAH Metabolism 

S2828 JNJ-1661010 FAAH Metabolism 

S1593 Apixaban Factor Xa Metabolism 

S3002 Rivaroxaban Factor Xa Metabolism 



S7167 SSR128129E FGFR Angiogenesis 

S8493 PD-166866 (PD166866) FGFR Angiogenesis 

S8503 BLU-554 (BLU554) FGFR Angiogenesis 

S8675 H3B-6527 FGFR 
Protein Tyrosine 

Kinase 

S8548 FGF401 FGFR 
Protein Tyrosine 

Kinase 

S8023 TCS 359 FLT3 Angiogenesis 

S2861 CTEP (RO4956371) GluR Neuronal Signaling 

S2251 (-)-Huperzine A (HupA) GluR,AChR Neuronal Signaling 

S8452 BAY-876 GLUT Metabolism 

S7753 BPTES Glutaminase Proteases 

S7263 AZD1981 GPR 
Endocrinology & 

Hormones 

S1263 CHIR-99021 (CT99021) GSK-3 PI3K/Akt/mTOR 

S2729 SB415286 GSK-3 PI3K/Akt/mTOR 

S2745 CHIR-98014 GSK-3 PI3K/Akt/mTOR 

S2924 CHIR-99021 (CT99021) HCl GSK-3 PI3K/Akt/mTOR 

S7063 LY2090314 GSK-3 PI3K/Akt/mTOR 

S7193 1-Azakenpaullone GSK-3 PI3K/Akt/mTOR 

S7435 AR-A014418 GSK-3 PI3K/Akt/mTOR 

S7915 BIO-acetoxime GSK-3 PI3K/Akt/mTOR 

S4935 Asunaprevir HCV Protease Proteases 

S5402 Dasabuvir(ABT-333) HCV Protease Proteases 

S2012 PCI-34051 HDAC Epigenetics 

S7229 RGFP966 HDAC Epigenetics 

S7473 Nexturastat A HDAC DNA Damage 

S7595 Santacruzamate A (CAY10683) HDAC DNA Damage 

S7596 CAY10603 HDAC DNA Damage 

S2216 Mubritinib (TAK 165) HER2 
Protein Tyrosine 

Kinase 

S2816 Tyrphostin AG 879 HER2 
Protein Tyrosine 

Kinase 

S8362 Irbinitinib (ARRY-380, ONT-380) HER2 
Protein Tyrosine 

Kinase 

S2919 IOX2 HIF Angiogenesis 

S2905 JNJ-7777120 Histamine Receptor Neuronal Signaling 

S5926 Pitolisant hydrochloride Histamine Receptor Neuronal Signaling 

S8776 WM-1119 Histone Acetyltransf Epigenetics 

S4800 Daminozide Histone Demethylase Epigenetics 

S7574 GSK-LSD1 2HCl Histone Demethylase Epigenetics 

S7680 SP2509 Histone Demethylase Epigenetics 

S7795 ORY-1001 (RG-6016) 2HCl Histone Demethylase Epigenetics 

S7079 SGC 0946 Histone Methyltransferase Epigenetics 

S7165 UNC1999 Histone Methyltransferase Epigenetics 

S7230 UNC0642 Histone Methyltransferase Epigenetics 



S7294 PFI-2 HCl Histone Methyltransferase Epigenetics 

S7572 A-366 Histone Methyltransferase Epigenetics 

S7575 LLY-507 Histone Methyltransferase Epigenetics 

S7656 CPI-360 Histone Methyltransferase Epigenetics 

S7748 EPZ015666(GSK3235025) Histone Methyltransferase Epigenetics 

S7820 EPZ020411 2HCl Histone Methyltransferase Epigenetics 

S7983 A-196 Histone Methyltransferase Epigenetics 

S8340 SGC2085 Histone Methyltransferase Epigenetics 

S8479 LLY-283 Histone Methyltransferase Epigenetics 

S7004 EPZ005687 Histone Methyltransferase Epigenetics 

S7061 GSK126 Histone Methyltransferase Epigenetics 

S7128 Tazemetostat (EPZ-6438) Histone Methyltransferase Epigenetics 

S7282 NMS-E973 HSP (e.g. HSP90) Cytoskeletal Signaling 

S7751 VER155008 HSP (e.g. HSP90) Cytoskeletal Signaling 

S2695 Nepicastat (SYN-117) HCl Hydroxylase Metabolism 

S4926 (R)-Nepicastat HCl Hydroxylase Metabolism 

S8657 PF-06840003 IDO Metabolism 

S1093 GSK1904529A IGF-1R 
Protein Tyrosine 

Kinase 

S7668 Picropodophyllin (PPP) IGF-1R 
Protein Tyrosine 

Kinase 

S8660 GI254023X 
Immunology & Inflammation 

related 
Immunology & 
Inflammation 

S7809 MCC950(CP-456773) 
Immunology & Inflammation 

related 
Immunology & 
Inflammation 

S2005 Raltegravir (MK-0518) Integrase Microbiology 

S5245 Raltegravir potassium Integrase,HIV Protease Microbiology 

S4907 SC-514 IκB/IKK NF-κB 

S8044 BMS-345541 IκB/IKK NF-κB 

S5903 JANEX-1 JAK JAK/STAT 

S8538 PF-06651600 JAK JAK/STAT 

S8541 FM-381 JAK JAK/STAT 

S7508 JNK Inhibitor IX JNK MAPK 

S8201 BI-78D3 JNK MAPK 

S1452 Ispinesib (SB-715992) Kinesin Cytoskeletal Signaling 

S2182 SB743921 HCl Kinesin Cytoskeletal Signaling 

S5933 K 858 Kinesin Cytoskeletal Signaling 

S4904 JZL184 Lipase Metabolism 

S7364 Atglistatin Lipase Metabolism 

S7457 XEN445 Lipase Metabolism 

S1472 Safinamide Mesylate MAO Metabolism 

S7875 NVP-CGM097 Mdm2 Apoptosis 

S1008 Selumetinib (AZD6244) MEK MAPK 

S1020 PD184352 (CI-1040) MEK MAPK 

S1036 PD0325901 MEK MAPK 



S1066 SL-327 MEK MAPK 

S1089 
Refametinib (RDEA119, Bay 86-

9766) MEK MAPK 

S1102 U0126-EtOH MEK MAPK 

S1475 Pimasertib (AS-703026) MEK MAPK 

S2673 Trametinib (GSK1120212) MEK MAPK 

S8041 
Cobimetinib (GDC-0973, 

RG7420) MEK MAPK 

S7430 SB-3CT MMP Proteases 

S7421 CGP 57380 MNK MAPK 

S7632 TH588 MTH1 DNA Damage 

S1226 KU-0063794 mTOR PI3K/Akt/mTOR 

S1266 WYE-354 mTOR PI3K/Akt/mTOR 

S1555 AZD8055 mTOR PI3K/Akt/mTOR 

S2624 OSI-027 mTOR PI3K/Akt/mTOR 

S2689 WAY-600 mTOR PI3K/Akt/mTOR 

S2783 Vistusertib (AZD2014) mTOR PI3K/Akt/mTOR 

S2811 
Sapanisertib (INK 128, 

MLN0128) mTOR PI3K/Akt/mTOR 

S7035 XL388 mTOR PI3K/Akt/mTOR 

S7886 CC-223 mTOR PI3K/Akt/mTOR 

S8040 GDC-0349 mTOR PI3K/Akt/mTOR 

S8642 GSK'963 NF-κB,TNF-alpha NF-κB 

S5476 Rolapitant NK1-receptor GPCR 

S5696 JNJ0966 Others Others 

S7213 Thiamet G  Others Others 

S7270 SRPIN340 Others Others 

S7272 4μ8C Others Others 

S9360 4-Hydroxyquinazoline Others antiplatelet  

S1195 TAK-700 (Orteronel) P450 (e.g. CYP17) Metabolism 

S2921 PF-4981517 P450 (e.g. CYP17) Metabolism 

S3673 Sulfaphenazole P450 (e.g. CYP17) Metabolism 

S7093 IPA-3 PAK Cytoskeletal Signaling 

S1004 Veliparib (ABT-888) PARP DNA Damage 

S1060 
Olaparib (AZD2281, Ku-

0059436) PARP DNA Damage 

S2741 Niraparib (MK-4827) PARP DNA Damage 

S7238 NVP-TNKS656 PARP DNA Damage 

S8363 NMS-P118 PARP DNA Damage 

S8592 Pamiparib (BGB-290) PARP DNA Damage 

S1512 Tadalafil PDE Metabolism 

S1550 Pimobendan PDE Metabolism 

S2312 Icariin PDE Metabolism 

S2687 Mardepodect (PF-2545920) PDE Metabolism 

S4019 Avanafil PDE Metabolism 



S5837 BRL-50481 PDE Metabolism 

S2620 GSK256066 PDE Metabolism 

S1536 CP-673451 PDGFR 
Protein Tyrosine 

Kinase 

S7087 GSK2334470 PDK PI3K/Akt/mTOR 

S7033 GSK2656157 PERK Apoptosis 

S7307 GSK2606414 PERK Apoptosis 

S7400 ISRIB (trans-isomer) PERK Apoptosis 

S8278 SHP099 dihydrochloride phosphatase Others 

S2717 CP-91149 Phosphorylase Metabolism 

S1169 TGX-221 PI3K PI3K/Akt/mTOR 

S1352 TG100-115 PI3K PI3K/Akt/mTOR 

S2636 A66 PI3K PI3K/Akt/mTOR 

S5818 acalisib (GS-9820) PI3K PI3K/Akt/mTOR 

S7335 IPI-3063 PI3K PI3K/Akt/mTOR 

S7938 GSK2292767 PI3K PI3K/Akt/mTOR 

S7980 VPS34-IN1 PI3K PI3K/Akt/mTOR 

S8330 IPI-549 PI3K PI3K/Akt/mTOR 

S8456 
VPS34 inhibitor 1 (Compound 

19, PIK-III analogue) PI3K PI3K/Akt/mTOR 

S8581 
Serabelisib (INK-1117,MLN-

1117,TAK-117) PI3K PI3K/Akt/mTOR 

S8672 Tenalisib (RP6530) PI3K PI3K/Akt/mTOR 

S8005 SMI-4a Pim JAK/STAT 

S7208 
Bisindolylmaleimide I 

(GF109203X) PKC TGF-beta/Smad 

S1109 BI 2536 PLK Cell Cycle 

S2193 GSK461364 PLK Cell Cycle 

S7248 Ro3280 PLK Cell Cycle 

S7255 NMS-P937 (NMS1286937) PLK Cell Cycle 

S7720 SBE 13 HCl PLK Cell Cycle 

S2871 T0070907 PPAR DNA Damage 

S7767 AZ6102 PPAR DNA Damage 

S2224 UK 383367 Procollagen C Proteinase Metabolism 

S7462 PI-1840 Proteasome Proteases 

S8651 bpV (HOpic) PTEN Others 

S3057 Azilsartan Medoxomil RAAS 
Endocrinology & 

Hormones 

S4102 Eprosartan Mesylate RAAS 
Endocrinology & 

Hormones 

S5069 Dabrafenib Mesylate Raf MAPK 

S7964 PLX7904 Raf MAPK 

S8745 LXH254 Raf MAPK 

S8031 NSC 23766 Rho Cell Cycle 

S1474 GSK429286A ROCK Cell Cycle 

S8489 GSK180736A (GSK180736) ROCK Cell Cycle 



S7176 SKI II S1P Receptor GPCR & G Protein 

S7177 PF-543 S1P Receptor GPCR & G Protein 

S7218 Alvelestat (AZD9668) Serine Protease Proteases 

S8457 UK-371804 HCl Serine Protease Proteases 

S8465 GSK'872 (GSK2399872A) Serine/threonin kinase Apoptosis 

S7188 CID755673 
Serine/threonin 
kinase,CaMK Apoptosis 

S1548 Dapagliflozin SGLT GPCR & G Protein 

S2760 Canagliflozin SGLT GPCR & G Protein 

S5566 
Dapagliflozin propanediol 

monohydrate SGLT GPCR & G Protein 

S5901 Canagliflozin hemihydrate SGLT GPCR & G Protein 

S8022 Empagliflozin (BI 10773) SGLT GPCR & G Protein 

S8558 Tofogliflozin(CSG 452) SGLT GPCR & G Protein 

S8637 Ipragliflozin (ASP1941) SGLT GPCR & G Protein 

S5413 Ertugliflozin SGLT2 Ion-Channel 

S1541 Selisistat (EX 527) Sirtuin Epigenetics 

S2804 Sirtinol Sirtuin Epigenetics 

S7845 SirReal2 Sirtuin Epigenetics 

S8245 Thiomyristoyl Sirtuin DNA Damage 

S2785 A-803467 Sodium Channel 
Transmembrane 

Transporters 

S2285 Cryptotanshinone STAT JAK/STAT 

S7024 Stattic STAT JAK/STAT 

S7501 HO-3867 STAT JAK/STAT 

S1189 Aprepitant Substance P Others 

S7006 BAY-61-3606 Syk Angiogenesis 

S1186 BIBR 1532 Telomerase DNA Damage 

S1067 SB431542 TGF-beta/Smad TGF-beta/Smad 

S7146 DMH1 TGF-beta/Smad TGF-beta/Smad 

S7624 SD-208 TGF-beta/Smad TGF-beta/Smad 

S7959 SIS3 HCl TGF-beta/Smad TGF-beta/Smad 

S7507 LDN-193189 2HCl TGF-beta/Smad TGF-beta/Smad 

S7148 ML347 TGF-beta/Smad,ALK TGF-beta/Smad 

S5074 Argatroban Monohydrate Thrombin Others 

S1577 Tie2 kinase inhibitor Tie-2 
Protein Tyrosine 

Kinase 

S8677 Cu-CPT22 TLR 
Immunology & 
Inflammation 

S8641 Nec-1s (7-Cl-O-Nec1) TNF-alpha Apoptosis 

S8787 GSK'547 TNF-alpha Apoptosis 

S7465 FTI 277 HCl Transferase Metabolism 

S2891 GW441756 Trk receptor 
Protein Tyrosine 

Kinase 

S7960 Larotrectinib (LOXO-101) sulfate Trk receptor 
Protein Tyrosine 

Kinase 



S2773 SB705498 TRPV Others 

S8238 SB366791 TRPV 
Transmembrane 

Transporters 

S5623 Bedaquiline tuberculosis Immunology 

S2896 ZM 323881 HCl VEGFR 
Protein Tyrosine 

Kinase 

S5667 Fruquintinib VEGFRs VEGFR 

S9500 Valbenazine tosylate VMAT2 Others 

S1525 Adavosertib （MK-1775） Wee1 Cell Cycle 

S2662 ICG-001 Wnt/beta-catenin Stem Cells &  Wnt 

S8327 KYA1797K Wnt/beta-catenin Stem Cells &  Wnt 

S8644 GNF-6231 Wnt/beta-catenin Stem Cells &  Wnt 

 

Supplementary table 1. List of drugs used for the high-throughput screening.  



Supplementary table 3. List of top-thirty significant down-regulated genes belonging to mitotic spindle
 and microtubule organization  (GO:0007052; GO:1902850) in AMO-1 NEAT1 KD cells compared to the scramble
 condition. Down-regulated  genes are ordered according to the fold change.    

IC 50 (72 hous) 

Alisertib 
AMO-1 32 nM 

NCI-H929 18 nM 

MM1.S 10 nM 

IC 50 (72 hous) 

AURKAi-I 
AMO-1 0,28 µM 

NCI-H929 0,2 µM 

MM1.S 0,11 µM 

Supplementary table 2

Supplementary table 2. IC50 calculation  at 72 hours of Alisertib and AURKAi 
for AMO-1, NCI-H929 and MM1.S cell lines. 

Supplementary table 3

Gene ID Gene name Gene type Fold change p adj value 
ENSG00000174442 ZWILCH protein coding -2,33 4,14E-132

ENSG00000138160 KIF11 protein coding -1,54 2,07E-66

ENSG00000163539 CLASP2 protein coding -1,21 8,12E-106

ENSG00000143228 NUF2 protein coding -1,11 2,38E-32

ENSG00000161888 SPC24 protein coding -1,01 2,18E-42

ENSG00000088325 TPX2 protein coding -0,96 1,05E-74

ENSG00000123219 CENPK protein coding -0,94 6,13E-14

ENSG00000117724 CENPF protein coding -0,93 6,36E-39

ENSG00000152253 SPC25 protein coding -0,92 8,91E-14

ENSG00000126787 DLGAP5 protein coding -0,92 9,11E-26

ENSG00000102384 CENPI protein coding -0,92 1,61E-22

ENSG00000112029 FBXO5 protein coding -0,88 8,72E-26

ENSG00000156970 BUB1B protein coding -0,87 2,03E-42

ENSG00000142945 KIF2C protein coding -0,86 1,03E-49

ENSG00000112742 TTK protein coding -0,85 3,44E-18

ENSG00000118193 KIF14 protein coding -0,83 1,15E-22

ENSG00000129810 SGO1 protein coding -0,81 2,27E-18

ENSG00000121152 NCAPH protein coding -0,81 1,50E-33

ENSG00000101639 CEP192 protein coding -0,81 3,96E-39

ENSG00000138778 CENPE protein coding -0,80 4,36E-07

ENSG00000237649 KIFC1 protein coding -0,80 3,27E-33

ENSG00000076382 SPAG5 protein coding -0,79 3,17E-38

ENSG00000164109 MAD2L1 protein coding -0,79 2,56E-14

ENSG00000109805 NCAPG protein coding -0,79 3,01E-21

ENSG00000138180 CEP55 protein coding -0,77 1,17E-24

ENSG00000071539 TRIP13 protein coding -0,76 4,53E-41

ENSG00000136824 SMC2 protein coding -0,76 1,28E-19

ENSG00000121621 KIF18A protein coding -0,75 3,56E-15

ENSG00000184445 KNTC1 protein coding -0,74 2,24E-24

ENSG00000113810 SMC4 protein coding -0,71 6,56E-17



IgH trx (RNA-seq) N (%)

t(11;14)/CCND1 136 (20.6%)

t(6;14)/CCND3 9 (1.4%)

t(4;14)/WHSC1/FGFR3 89 (13.5%)

t(14;16)/MAF;t(14;20)/MAFB; t(8;16)/MAFA 42 (6.4%)

t(8;14)/MYC 27 (4.1%)

CNA (FISH-WES) N (%)

del(13)(q14)/(q34)/RB1_20% 346 (52.4%)

1q21 gain_20% 240 (36.4%)

del(1)(p22)/CDKN2C_20% 199 (30.2%)

del(17)(p13)/TP53_20%  74 (11.2%)

HD  375 (56.8%)

NS Soma�c Muta�on (WES) N (%)

DIS3 71 (10.8%)

N-RAS 146 (22.1%)

H-RAS 0 (0%)

K-RAS 160 (24.2%)

BRAF 51 (7.7%)

TP53 30 (4.5%)

FAM46C 66 (10%)

TRAF3 50 (7.6%)

Supplementary table 4

Supplementary Table 4. Number and relative frequency of main IgH translocations (trx), 
copy number alterations (CNAs) and non-synonymous (NS) somatic mutations,  in 660 BM-1 
MM cases of MMRF_CoMMpass_IA20 cohort with available data  about AURKA expression by 
RNA sequencing (RNA -seq), IgH trx by RNA-seq, NS somatic mutations by Whole Exome 
sequencing (WES)  and CNAs by  next generation sequencing (NGS)-based FISH (FISH-WES).  



Supplementary table 5. Results of Cox regression univariate analysis using OS (A) or 

PFS (B) data on AURKA expression groups, age equal to or greater than 65 years, ISS 

subgroups and main molecular alterations in 489 BM-1 MM cases for which all data 

were available. Number (N) of positive cases is indicated for each variable. Hazard

Ratio, 95% Confidence Interval and Log-rank p-value are reported for each variable. In 

red bold are depicted all significant variables after BH correction. 

*≤0.05; **≤0.01;***≤0.001;****≤0.0001

Supplementary table 5 

A

B



Supplementary figures 
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Supplementary figure 1 (S.1). NEAT1 silencing in MM cells. Quantitative real-time PCR of NEAT1 in AMO-1, NCI-H929 and 
MM1.S after NEAT1 KD (gNEAT1), compared to the scramble condition  (96 hours of gapmeR delivery). NEAT1 expression 
was expressed as 2-ΔΔCt relative to thescramble gapmer (gSCR) at the same timepoint (n = 3).

Supplementary figure 2. Effect of AURKA inhibition on cell cycle. Representative cell cycle profiles obtained through 
FACS analysis, of AMO-1, NCI-H929, MM1.S  cells after 24 hours of Alisertib (S.2A) and AURKAi-I (S.2B) tretaments..



Supplementary figure 3. Synergy assessment. Combination matrix showing combination indexes (CI) resulting
 from combinatorial treatments of AMO-1,NCI-H929, MM1.S with GapmeR targeting total NEAT1 and Alisertib 
(S.3A) and  AURKAi-I (S.3B) (3-day time point).
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Supplementary figure 4 (S.4). NEAT1 transactivation in AMO-1 SAM gN#8 cell line.  
Quantitative real time PCR showing NEAT1 expression  level in AMO-1 SAM cells. 
NEAT1 expression was expressed as 2^-ΔΔCt. 
Satistical significance was measured with Student's t test. 

S.4
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Supplementary figure 6 (S.6) Gene expression profiling data. Dot plot of the top ten down-regulated significant
biological processes obtained in NCI-H929 NEAT1 KD cells following gNEAT1 delivery. 

Supplementary figure 5. Molecular validation of the most significant down-regulated genes in NEAT1 silenced cells.
 qRT-PCR validation of differently expressed genes invovled in spindle assembly,mitotic regulation and DNA processes 
in NCI-H929  (S.5A) and AMO-1 silenced for NEAT1 expression (S.5B) following gNEAT1 delivery, compared to 
scramble condtion. (gSCR =1). Statistical significance was measured with Student's t test. 



Supplementary figure 7 (S.7).

420 MM_1q gain neg 240 MM_1q gain pos 461MM_1p loss neg 199MM_1p loss pos

341 MM_del13 neg 586 MM_del17 neg 74MM_del17 pos346 MM_del13 pos

285 MM_HD neg 630 MM_P53 WT 30 MM_P53 MUT
375 MM_HD pos

618 MM_MAFtrx neg 633MM_MYCtrx neg 27MM_MYCtrx pos42 MM_MAFtrx neg

S.7
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Supplementary figure 8. Survival analysis. Overall survival (S.8A) and progression-free survival (S.8B)
 probability calculated in the CoMMpass dataset which includes 761 patients with MM, stratified in high 
and low AURKA expression groups, according to quartile, across the dataset. 
Log-rank test p-value measuring the global difference between survival curves and number of samples at 
risk in each group across time is reported 



S.9A

S.9B

Supplementary figure 9. Multivariate analysis. Forest plots of Cox regression multivariate analyses considering 

all features  with adjusted -value <0.05 in univariate analysis regarding to overall survival (S.9A) and 

progression-free survival (S.9B), in 489 patients with MM from the CoMMpass cohort.The hazard ratio, 95% confidence

 interval and P-value are reported or each variable. A global log-rank P-value is reported for each analysis 
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Supplementary figure 10 (S.10). Effects of AURKA and NEAT1 expression on MM patients survival. 
Kaplan-Meier survival curves of 761 patients stratified into four molecular groups based on NEAT1 and AURKA 
expression, according to quartile, across the CoMMpass dataset. Statistical  significance between each curve was reported 


