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Contribution of copy number to improve risk stratification 
of adult T-cell acute lymphoblastic leukemia patients 
enrolled in measurable residual disease-oriented trials

T-cell acute lymphoblastic leukemia (T-ALL) is a genetically 
heterogeneous disease characterized by a complex multistep 
mutagenic process in which different alterations cooperate 
to transform T-cell precursors. However, the clinical impact 
of most of these alterations remains unclear, which partly 
explains why T-ALL subtypes are still defined on morpho-
logical and immunophenotypic grounds in the current World 
Health Organization (WHO) 2022 classification. Here, we used 
single nucleotide ploymorphism (SNP) arrays to investigate 
the frequency of common copy number variations (CNV), 
and integrated the results obtained with single nucleotide 
variants (SNV)/insertions deletions (indel) data on the same 
homogeneously treated T-ALL cohort, to evaluate their im-
pact on disease outcome.
A total of 146 T-ALL samples were previously analyzed by 
target deep sequencing.1 From those, 134 patients were fur-
ther studied by SNP arrays to identify CNV (CytoScanTM HD, 
Thermo Fisher). Samples and clinical data were obtained 
and stored in accordance with the declaration of Helsinki. 
The study was approved by the Institutional Review Board 
of the Hospital Germans Trias i Pujol. CNV and SNV results 
were integrated to assess their prognostic value in a group 
of 107 patients, homogeneously enrolled in two consecutive 
Spanish PETHEMA trials.2,3 Only recurrent alterations found 
in ≥5 patients were considered. Patient’s characteristics at 
diagnosis and follow-up are summarized in Table 1.
Focusing on SNP array data, among patients with CNV, 124 
of 130 (95.4%) had deletions (del) and 72 of 130 (55.4%) du-
plications (dup), 66/130 (50.8%) showing a combination of 
both events (Online Supplementary Figure S1). There were 
CNV targeting a single T-ALL driver gene (LEF1, CDK6, PTPN2, 
ELF1, WT1, TET2, PHF6, and MYB). The smallest alteration 
identified was the deletion of LEF1 (22 kbp). Other recurrent 
alterations were heterogeneous in size and affected multiple 
genes (Online Supplementary Figure S2A). In turn, for another 
subset of alterations the minimum altered region overlapped 
with a T-ALL driver gene, suggesting that this would be the 
target gene of the alteration (Online Supplementary Figure 
S2B-M). Other recurrent and larger CNV detected included 
del(5q), del(6q), dup(5p) and dup(17q) (Online Supplementa-
ry Figure S2N-Q). Finally, alterations resulting in STIL::TAL1 
(Online Supplementary Figure S2R) and NUP214::ABL1 (Online 
Supplementary Figure S2S) fusions, as well as trisomy of 
chromosomes 10 and 19, and gains of chromosome X, were 
also observed.
Among patients with complete genomic data (N=134), 88.8% 
(119/134) had both SNV and CNV (Online Supplementary Figure 

Patient-related features

Median age in years (range) 37 (16-61)
Sex: M/F, N 79/28
Biological features, N (%)

Cytogenetics
 <3 alterations 59/107 (55)
≥3 alterations 10/107 (9)

NE 38/107 (36)

Immunophenotype

ETP-ALL 20/102 (20)
Pre-T 18/102 (18)

Cortical 42/102 (41)
Mature 22/102 (21)

Disease-related features

Median WBC x109/L (range) 52.8 (0.5-525.4)

ECOG score, N (%)

0 40/103 (39)
1 49/103 (47)
2 12/103 (12)
≥3 2/103 (2)

Adenopathy, N (%) 49/90 (54)
Splenomegaly, N (%) 36/102 (35)
Hepatomegaly, N (%) 25/101 (25)
Mediastinal mass, N (%) 44/104 (42)
CNS involvement, N (%) 14/110 (13)
Response-related features, N (%)

Slow response on day +14 44/91 (48)
Number of induction 
cycles to CR

1 87 (81)
2 20 (19)

CR post induction-1 87 (81)
CR (indunction-1 + induction-2) 96 (87)
MRD <0.1% on day +35 68/81 (84)
Post consolidation 
treatment

Chemotherapy 54/74 (73)
Allo-SCT 20/74 (27)

Outcome features, % (95% CI)

OS prob. at 5 years 37 (27-48)
CIR at 5 years 54 (43-64)

*Twenty-seven of 134 initial patients were excluded (1 pediatric; 3 
intermediate risk; 4 older; 14 patients treated with an ongoing trial; 
and 4 without clinical data). Results expressed as number of cases/
total cases (percentage) when not otherwise indicated. +MRD values 
were considered for those patients that reached complete remission 
(CR). M: male; F: female; NE: non-evaluable; ETP-ALL: early T-cell 
precursor acute lymphoblastic leukemia; WBC: white blood cell count; 
CNS: central nervous system; MRD: measurable residual disease; day 
+14: 14 days after induction treatment; day +35: 35 days after induction 
treatment; allo-SCT: allogeneic stem cell transplantation; OS: overall 
survival; prob.: probability; CIR: cumulative incidence of relapse; CI: 
confidence interval; ECOG: Eastern Cooperative Oncology Group.

Table 1. Clinical and biological characteristics, response to treat-
ment and outcome of T-cell acute lymphoblastic leukemia patients 
(N=107)*.
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S1) with a median of five alterations/patient (range, 1-13). The 
frequency and distribution of recurrently identified alterations 
are in concordance to those previously reported in another 
adult cohort (Figure 1A).4 Notably, there were patients with 
concomitant SNV/indel and CNV affecting DNMT3A, PTEN, 
FBXW7, TET2, TP53, CTCF and RPL5 genes, suggesting that 
a double-hit event was required for these genes to drive 
leukemogenesis in T-ALL (Figure 1A).
To evaluate how genetic events cooperate to develop T-ALL 
in a specific context, we assessed pairwise associations 
between mutated genes identified in the same patient. We 
observed co-occurrence of RB1 with i) BCL11B (odds ratio 
[OR]=13.3, q=0.008), ii) CDKN2A/B (OR=102, q=0.07) and iii) 
NOTCH1 (OR=92.3, q=0.07) alterations. BCL11B gene alter-
ations co-existed with i) NOTCH1 (OR=169.4, q=0.003) and ii) 
CDKN2A/B (OR=17, q=0.01) alterations. STIL::TAL1 gene fusion 
co-occurred with del(6q) (OR=7.1, q=0.09). The strongest 
association was found between JAK3 and JAK1 mutations 
(OR=115, q=0.003).5 JAK3 was also frequently mutated in 
patients with PHF6 mutations (OR=5.1, q=0.09). 6 Moreover, 
mutual exclusion was observed between CDKN2A/B and 
DNMT3A alterations (OR=0.09, q=0.01) (Figure 1B, left panel).
From the immunophenotypic point of view, CDKN1B, CD-
KN2A/B, RB1 deletions and MYB duplications were more 
frequently observed among cortical T-ALL (OR=10.6, q=0.003; 
OR=4.8, q=0.005; OR=10.3, q=0.02; OR=7.8, q=0.07 respec-
tively). Conversely, N/KRAS mutations and cortical immuno-
phenotype were mutually exclusive (OR=0.1, q=0.07). These 
mutations were co-occurrent with the ETP-ALL immunophe-
notype (OR=4.7, q=0.07)1, similarly like DNMT3A and RUNX1 
alterations (OR=8, q=0.01; OR=5.6, q=0.06, respectively). In 
turn, CDKN2A/B, BCL11B and FBXW7 mutations (OR=0.04, 
q=9x10-6; OR=0, q=0.07; OR=0.1, q=0.07, respectively), were 
mutually exclusive with ETP-ALL (Figure 1B, right panel).
To infer the potential sequence of acquisition of the differ-
ent genetic events, we used variant allele frequency (VAF), 

CN values and tumor cell contents to calculated the cancer 
cell fraction (CCF) for each sample. All patients had at least 
one clonal alteration, defined by a CCF >50% (Figure 1C). 
The median CCF of the CNV was higher than that of SNV/
indel (1 ; [range, 0.15-1] vs. 0.83 [range, 0.04-1]; P<0.0001), 
indicating earlier occurrence of the former. In fact, only two 
genes altered by CNV had more than 35% of their variants as 
subclonal, CDK6 and CTCF (Figure 1C, left panel). In case of 
SNV, a large number of genes presented subclonal variants 
(IL7R, KMT2C, PTEN, BCL11B, NOTCH1 and JAK1), suggesting 
a later acquisition of these events, according to the CCF 
model7 (Fig. 1C, right panel). Similarly, the clonal profile of 
PTEN varied according to the type of alteration, with CNV 
having higher CCF than SNV/indel (1 [range, 0.4-1] vs. 0.51 
[range, 0.08-1]; P=0.001).
Subsequently, we explored potential genetic-clinical cor-
relations based on a total of 44 different genetic subgroups 
(Table 2; Online Supplementary Table S1). Thus, we focused 
on those alterations that affected >5 patients (Figure 1A) and 
their correlation with T-ALL biological features at diagnosis, 
treatment response and survival data. We excluded genes 
that were only affected by SNV, because their prognostic 
impact had been previously investigated.1 In parallel, we also 
evaluated the clinical impact of the statistically significant 
pairwise associations described above (Figure 1B). Finally, 
we assessed the impact of genetic complexity, defined as 
the sum of SNV and CNV per patient.
Regarding individual alterations, del(5q) (N=8) and ETV6 
gene alterations (ETV6alt, 4 SNV and 2 CNV) had an impact 
on overall survival (OS), while alterations in TP53 (TP53alt, 
4 CNV, 1 SNV plus CNV) showed a trend (Table 2). Of note, 
patients with del(5q) showed worse response to treatment: 
slower response after 14 days of induction (≥10% blasts) 
(100% of deleted patients vs. 40% of non-deleted; P=0.005), 
lower complete remission (CR) rates even, after two cycles 
of induction therapy (50% of deleted patients vs. 91% of 

Alteration
Frequency of alteration

OS prob. time 
point in years

  OS (95% CI)
PPatients with 

alteration, N (%)
Patients without 
alteration, N (%)

Patients with 
alteration

Patients without 
alteration

Del(5q) 8/114 (7) 106/114 (93) * 0.17
(0.02-0.74)

2.02
(1.53-4.88) <0.001

ETV6alt 6/107 (5.6) 101/107 (94.4) 5 67
(5-95)

35
(25-46) 0.041

TP53alt 5/107 (4.7) 102/107 (95.3) * 0.11
(0.05-0.17)

2.02
(0.7-3.32) 0.100

Cortical** & CDKN2A/B 33/102 (32.4) 69/102 (67.6) 5 50
(40-60)

34
(27-41) 0.12

N alt >14*** 16/107 (15) 91/107 (85) 5 26
(14-38)

40
(34-46) 0.006

*Results are expressed as median of overall survival (OS) as most patients do not reach 1 year of OS. CI: confidence interval. Alt: alterations 
(sum of single nucleotide variant [SNV]/insertions deletions [indel] and copy number variants [CNV]). OS was estimated using Kaplan-Meier 
method. **P value =0.189 for OS of cortical vs. no-cortical patients. ***We used the maxstat test (R test) to determine that a cutoff of 14 
alterations was the most significant threshold to stratify the patients according their OS. prob.: probabilty.

Table 2. Prognostic impact of genetic alterations and associations in the adult T-cell acute lymphoblastic leukemia cohort.
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non-deleted; P=0.008), resulting in an increase of deaths 
during induction therapy (62.5 % of deleted patients vs. 5.7% 
of non-deleted; P=0.0002). Such an adverse response and 
outcome was also observed among patients with DNMT3A/ 
N/KRAS/MSH2/U2AF1 SNV, collectively defined as variable 
as the worse outcome genetic profile (WOG), previously 
described for the same study cohort.1 In fact, six of eight 
patients with del(5q) had WOG mutations and consequently, 
patients with both alterations (WOG + del(5q)) exhibited 
significantly shorter OS compared to those with only WOG 
mutations (median OS of 0.16 [range, 0.02- not applicable 
(NA)] vs. 0.81 [range, 0.45-1.75]; P<0.001), emphasizing the 
deleterious effect of an additional del(5q) in the WOG pa-
tient group.
In T-ALL, the prognostic significance of PTEN alterations 
remains controversial. Our results showed that neither PTEN 

CNV nor SVN nor CNV plus SNV had an impact on patient 
outcome (Online Supplementary Table S1), consistent with 
previous studies.8,9 Thereby, the genetic signature NOTCH1/
FBXW7wt and/or N/KRASmut and/or PTENalt did not have prog-
nostic value in our series (data not shown), and, therefore, 
our results do not validate the genetic score proposed by 
Trinquand A. et al.10 to stratify adult T-ALL patients.
Regarding the clinical impact of pairwise genetic associations, 
we observed that patients with deletions in CDKN2A/B genes 
and cortical immunophenotype exhibited a trend for better 
OS (Table 2). Finally, patients with a complex tumor genome, 
defined as >14 alterations (14alt), had poorer OS (Table 2) and 
lower CR rates (68.8% patients with >14alt achieved CR vs. 
97.8% of patients with ≤14alt; P=0.002).
Overall, our results suggest that CNV seem to cooperate 
with specific SNV/indel, delineating recurrent onco-genet-

Continued on following page.
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ic pathways that define the transformation of each T-cell 
precursor at a particular stage of differentiation. Thus, alter-
ations in RB1, BCL11B, CDK1NB lead to a T-cell transformation 
at a cortical thymocyte, while N/KRAS mutations, DNMT3A 
or RUNX1 alterations, would block the T-cell differentiation 
process at an earlier stage (ETP-ALL). Based on these find-
ings, we would not expect CNV to substantially improve the 
risk stratification provided by immunophenotypic groups.11 
Interesting, we observed that patients with CDKN2A/B gene 
deletions and a cortical immunophenotype had a trend for 
better outcomes.
We have also shown that some CNV identify patients with 

poor outcome. That is the case of del(5q), the CNV with the 
highest impact on OS in our cohort. Del(5q) has been pre-
viously described in a small cohort of adult T-ALL patients 
to be associated with an immature immunophenotype and 
the presence of stem cell/myeloid markers.12 Most patients 
showed a WOG signature that mainly identifies patients 
with ETP-ALL and advanced age,1 which might explain their 
poorer outcome. We could not validate the impact, previ-
ously shown, of TP53alt in this cohort,13 due to the limited 
number of positive cases, although we see a trend to worse 
outcome. The limited number of patients with ETV6alt also 
abort the possibility to assess their outcome.

Figure 1. Genetic profile of adult T-cell acute lymphoblastic leukemia at diagnosis. (A) Mutational landscape of adult T-cell acute 
lymphoblastic leukemia (T-ALL) patients. Only alterations found in at least 5 patients are shown. Genes affected by both sum of 
single nucleotide variant (SNV)/insertions deletions (indel) and copy number variants (CNV) in the same patient are highlighted 
in brown. (B) Pairwise associations between altered genes identified in the same patient (left panel) and between genetic alter-
ations and immunophenotype (right panel). Associations are shown only for alterations present in at least 10 patients. Combina-
tions were tested using the Fisher test corrected by the Benjamini-Hochberg multiplicity test (considering significant co-existence 
when q<0.1). Positive correlations are represented by the blue range color and negative correlations by the red range color. (C) 
Box and whisker representation of cancer cell fractions (CCF) for CNV (left panel) and SNV/indel (right panel). The threshold to 
define clonality (0.5) is indicated by the dashed line. All statistical analyses were performed using SPSS version 24 (IBM Corp. 
Armonk, NY), GraphPad Prism® version 10 (GraphPad Software Inc., La Jolla, CA) and R version 4.1.0.
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We also studied the value of genomic complexity to stratify 
adult T-ALL patients, based on the number of CNV and SNV 
per patient, which could provide information of the plasticity 
of blast cell. We showed that an increased number of >14alt 
was associated with worse outcomes, similarly to what has 
been described with karyotype studies.14,15 This may be due to 
the higher genetic heterogeneity of leukemic cells in these 
patients, which provides more opportunities for the leuke-
mia to evade treatment. However, limitations in the cohort 
size, precluded the evaluation of the prognostic impact of 
this genetic marker by multivariable analysis.
In summary, herein we show that CNV, that are essential 
for T-cell leukemia development, help to improve genetic 
risk stratification of T-ALL. Further studies in larger T-ALL 
cohorts with complete genomic data (i.e., inclusion of re-
arrangements) are needed to confirm our findings and to 
delineate an integrative genetic approach to assess clinically 
relevant onco-genetic pathways.
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