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Abstract 

Adult T-cell leukemia-lymphoma (ATLL) is an aggressive Human T-cell Leukemia Virus Type 1 

(HTLV-1)-driven malignancy. Although Western hemisphere (Afro-Caribbean and South 

American) patients face worse prognoses, our understanding of ATLL molecular drivers derives 

mostly from Japanese studies. We performed multi-omic analyses to elucidate the genomic 

landscape of ATLL in Western cohorts. Recurrent deletion and/or damaging mutations involving 

FOXO3, ANKRD11, DGKZ, and PTPN6 implicate these genes as potential tumor suppressors. 

RNA-seq, published functional data and in vitro assays support the roles of ANKRD11 and 

FOXO3 as regulators of T-cell proliferation and apoptosis in ATLL, respectively. Survival data 

suggest ANKRD11 mutation may confer a worse prognosis. Japanese and Western cohorts, in 

addition to acute and lymphomatous subtypes, demonstrated distinct molecular patterns. 

GATA3 deletion was associated with unfavorable chronic cases. IRF4 and CARD11 mutations 

frequently emerged in relapses after interferon therapy. Our findings reveal novel putative ATLL 

driver genes and clinically relevant differences between Japanese and Western ATLL patients. 

  



 6

Introduction 

Adult T-Cell Leukemia/Lymphoma (ATLL) is an aggressive hematologic malignancy 

caused by the human T-cell leukemia virus type I (HTLV-1), which is endemic in South America, 

the Caribbean, western Africa, and southern Japan.1, 2 Clinically, ATLL is often characterized by 

lymphadenopathy with or without lymphocytosis, organomegaly, multi-organ involvement (more 

commonly skin), and immunosuppression.3, 4 It can be classified into at least four clinical 

subtypes. Acute and lymphomatous are by far the most common and lethal variants, while 

chronic and smoldering forms tend to behave indolently until they ultimately progress to more 

aggressive subtypes. A chronic variant with unfavorable features (“unfavorable chronic”) 

presents with lymphocytosis and elevated LDH, has a worse prognosis, and progresses to 

acute subtypes in a shorter time period.5  

The prognosis of ATLL is dismal. The 4-year survival rates for lymphomatous and acute 

forms are less than 20%, with median survival less than 11 months.6, 7 First-line treatment 

options include multi-agent chemotherapy, biologics such as the anti-CCR4 antibody 

mogamulizumab,8 zidovudine (AZT), and interferon-alfa (IFN).4 However, disease relapse 

occurs in nearly all patients, and even those who undergo allogeneic stem cell transplantation 

have median survival of less than 6 months.6  

Afro-Caribbean ATLL patients present with distinct, more severe clinical features than 

their Japanese counterparts in published cohorts.9, 10 These include a younger age at diagnosis 

by >10 years and a worse overall survival. Despite the clinical impact of these discrepancies, 

the molecular features of ATLL have not been well characterized among patients in the Western 

hemisphere. Comprehensive studies of ATLL using genome-wide approaches have come 

primarily from Japan.11-13 Western hemisphere studies have been limited in number, size, and 

breadth.14, 15 These limitations are due in part to the broad geographic spread of ATLL in the 

Western hemisphere, encompassing HTLV-1 endemic areas that have not traditionally 
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participated in research programs.16 More generally, these features reflect a widespread 

underrepresentation of Afro-Caribbean and Hispanic patients in genomic research.16, 17 In the 

International Cancer Genome Consortium, less than 1% of donors hail from the Caribbean or 

South American countries.18 The National Cancer Institute’s Genomic Data Commons includes 

>10% of donors who report African ancestry and >5% who report Hispanic ethnicity.19

Underrepresentation of these populations in genomic research affects both patients and 

researchers: it impedes patient inclusion in the growing benefits of personalized medicine and 

withholds valuable information from our collective knowledge of cancer biology. 

Our group sought to overcome these challenges by assembling the largest cohort of 

Western hemisphere (“Western”) ATLL patients to date. We acquired samples from 

underserved and indigenous populations in South America, the Caribbean, and immigrant 

communities in the United States. We undertook genome-wide characterization of these 

patients’ molecular features to gain an unparalleled view into the mechanistic basis of ATLL in 

Western patients. Our multimodal genomic study employed whole-exome sequencing (WES), 

copy number variation (CNV) data and RNA-seq corroboration to seek novel driver genes. We 

then looked for molecular drivers of clinical phenotypes including variation in geographic 

regions, clinical subtypes, and response to therapies.  

Our approach is the first to use exome-wide analysis to identify population-based 

differences between the molecular landscape of Japanese and Western ATLL. Furthermore, the 

inclusion of underrepresented populations in our genome-wide analysis uncovered novel driver 

gene candidates that affected apoptosis and T-cell proliferation in vitro. Finally, we examined 

the relationships between molecular features and clinical outcomes in ATLL patients and newly 

elucidated distinct molecular features characterizing acute and lymphomatous subtypes. 

Together, these foundational analyses illustrate global patterns of ATLL molecular features. 

They also yield novel genetic perspective on Western ATLL, thus providing a basis for future 

pre-clinical and clinical investigation. 
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Methods 

Patient Characteristics and Sample Collection. 165 patients with a confirmed diagnosis of 

ATLL were included in this study after quality control (Supplemental Table S9). Twelve patients 

contributed both pre- and post-relapse samples to this study. Specimens for molecular study 

were obtained from the blood of patients with leukemic presentation or from formalin-fixed, 

paraffin-embedded (FFPE) or frozen tissue of patients who presented with solid tumors. 

Immunohistochemistry was performed on representative sections of 32 patient samples, with 

scoring performed by two independent blinded dermatopathologists. All patient samples were 

collected under protocols approved by the local Internal Review Boards from participating 

institutions in accordance with the Declaration of Helsinki.  ATLL diagnosis criteria, subtype 

classification, and methodologies for immunohistochemistry, nucleic acid extraction and 

sequencing can be found in Supplemental methods.  

 

Statistical Analysis. Where possible, statistical analyses used have been indicated in the text. 

Survival data was analyzed using the R package Survival.20 Mutual exclusivity analyses used 

the R Package Discover.21 Numerical values (e.g. log fold change, RNA-seq counts) were 

compared between two groups using a student’s two-tailed T-test.  Frequencies of mutations or 

clinical outcomes between groups were compared using Fisher’s exact test. Specific 

methodologies used for mutational, CNV and RNA-seq analyses can be found in the 

Supplemental Methods. 

 

T-cell proliferation assay pipeline. Human T-cells were isolated from enriched leukapheresis 

products and transfected with Caspase 9-sgRNA ribonucleoprotein (crRNP) complex as 

previously described (Supplemental Methods). After CRISPR knockdown, cells were stimulated 

with plate-bound anti-human CD3/CD28 and IL-2 as described in the Supplemental Methods. 

On day 13, cells were stained with CFSE (Supplemental Methods) and cultured for 4 days in 
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complete RPMI media without IL-2 and with or without stimulation. After 4 days, cell proliferation 

was assessed by Fluorescent-activated Cell Sorting (FACS). Gating strategy, including positive 

controls, is illustrated in Supplemental Fig. S6 

 

FOXO3 gene overexpression and knockdown constructs in patient-derived ATLL cell 

lines. ATLL-84c and ATLL-97c are clonally-proven ATLL cell lines derived from tumor cells 

carrying the typical CD4+CD25+ ATLL phenotype (established at Ramos lab). ATLL lines were 

transduced as described in the Supplemental Methods. Protein levels were verified by Western 

blot, and the nucleotide composition of FOXO3 mutant vectors was verified by DNA PCR and 

sequencing. Transduced cells were exposed to etoposide, belinostat and/or DMSO vehicle. 

Annexin V staining as an indicator of apoptosis was then evaluated with flow cytometry 

(Supplemental Methods).  

Results 

Multimodal analysis of the ATLL genomic landscape.  

We compiled a multimodal dataset from 165 Western ATLL patients (Fig. S1A). ATLL 

diagnoses were confirmed by histopathologic findings, HTLV-1 serologic assays, clonal T-cell 

populations as determined by immunophenotyping and gene rearrangement studies, and HTLV-

1 PCR validation in skin biopsy cases of limited quantities. The geographic coverage of this 

cohort was broad: countries-of-origin were largely South American (Brazil, Peru, Panama, and 

Ecuador; N = 76) and the Caribbean (Haiti, Jamaica, Trinidad, Dominican Republic, Bahamas, 

Antigua, Martinique, St. Vincent, Tortola, West Indies and US Virgin Islands; N = 76). We also 

included patients of reported African descent from France (N = 6) and Miami, Florida, USA (N = 

7). For subsequent data analysis, patient ethnicity was categorized based upon single 

nucleotide polymorphisms (SNPs) using EthSeq22 (Table 1). 

Data modalities used in this study included Oncoscan Copy Number Variation (CNV), 

whole-exome sequencing (WES) and RNA-sequencing (RNA-seq). We combined these data 
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with WES and CNV data from 83 and 426 Japanese patients, respectively.12 Consistent with the 

literature,9 Western patients presented with disease at a younger age (51 vs. 65, p = 6.62 x 10-

14, student’s two-tailed t-test) and with a greater proportion of aggressive (acute and 

lymphomatous) subtypes (79% vs 63%, p =1.8 x 10-5, Fisher’s exact test). 

We first sought to identify novel genomic drivers in our Western cohort using previously 

validated methods.23-26 Our methods included multiple orthogonal analyses. First, we analyzed 

WES data from 122 patients. We approached mutation calling conservatively, employing 

previously validated approaches to remove possible sources of sequencing or alignment errors 

or ambiguity23-26 (Supplemental Methods; Supplemental Figs. S1 - 2). To further validate these 

data against independent datasets as well as to identify low-prevalence driver mutations shared 

with other cancers, we integrated our data with Japanese ATLL data (83 patients),12 a cohort of 

published T-cell lymphoma data (699 patients),24, 25 and publicly available libraries of mutation 

data across cancer types (>1.4 million tumor samples).27 

The distribution of mutations within cancer driver genes is not random; we have 

leveraged these patterns to identify novel cancer-promoting mutations in other T-cell 

lymphomas.23-26, 28 Thus, we prioritized mutations that demonstrated patterns characteristic of 

oncogenes and tumor suppressors (Supplemental Fig. S2). To identify putative oncogenes, we 

looked for characteristic recurrent “gain-of-function” mutations at amino acid hotspots. Twenty-

seven genes harbored recurrent non-synonymous amino acid alterations (Supplemental Tables 

S1, S2). Tumor suppressors generally contain recurrent damaging mutations, i.e. mutations 

having a high likelihood of inducing loss-of-function (e.g. stop-gain, start-loss, or splice-site 

mutations). Thirteen genes had a statistically significant burden of damaging mutations 

(Supplemental Table S3).  

Next, we analyzed exome-wide CNV data from 128 Western ATLL patients in 

combination with previously published data from 426 Japanese patients.12, 13 We chose 

Oncoscan, a clinically utilized and industry-validated commercial CNV assay, for analysis of our 
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Western datasets.29 In the combined Japanese and Western dataset, we identified 17 and 35 

chromosomal regions subject to statistically significant rates of duplication or deletion, 

respectively, by methods previously described24, 25, 30 (Fig. 1A). Identifying potential gene targets 

of CNVs can be difficult, in part because these CNVs are by nature polygenic. To identify 

putative tumor suppressors and oncogenes in these recurrent CNV regions, we employed a 

previously validated stepwise hierarchical algorithm23-26 (Supplemental Fig. S3). This analysis 

identified a putative target gene in 39 chromosomal regions (Supplemental Tables S4-5).  

In total, we identified 64 putative ATLL driver genes distributed across 15 biologically 

relevant pathways (Fig. 2A) (Supplemental Table S6). 13 genes were significant by both 

orthogonal WES and CNV analyses (GATA3, CCR7, TP53, ARID2, CSNK2B, NOTCH1, CBLB, 

CD58, ANKRD11, IRF4, CARD11, CTNNB1, CD28) (Fig. 1B-E). Twenty-five genes were 

implicated by point mutation analysis alone (Supplemental Tables S1-3) and 26 by copy number 

mutation analysis alone (Supplemental Tables S4-5). Our results confirmed 42 driver genes 

reported in Japanese ATLL populations.12, 13, 31, 32. Twenty-two genes were newly implicated in 

ATLL by this analysis (Supplemental Table S6). Four novel putative driver genes were mutated 

at frequencies of 10% or greater (FOXO3, APC, WNK1, ANKRD11). Collectively, mutations in 

the 22 novel putative driver genes are found in 80% of samples.   

Of the 22 genes newly implicated in ATLL, 14 have mutations that have been 

functionally validated as driver genes in cell or animal models of other cancer types. For an 

additional 3 genes, we identified new cancer-associated hotspots: in WNK1 (p.Ala372), RBBP4 

(p.Arg131) and FOXO3 (p.Asp199) (Fig. 1G; Supplemental Fig. S4A-B). Five genes were not 

previously recognized as recurrently mutated in cancer (CD3E, ANKRD11, DGKZ, PTPN6, 

RHOB) (Fig. 1B-F; Supplemental Fig. S4C). Collectively, 44% of samples have at least one 

mutation in a gene not previously reported in cancer. 

The pathways most commonly affected by driver gene mutations include CD28/PI3K-

AKT signaling (CD28, VAV1, PLCG1, PRKCQ, FOXO3, and negative regulators CBLB, 
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INPP4B, PTPN6), T-Cell Receptor (TCR)/NF-κB signaling (CD3E, PLCG1, VAV1, PRKCQ, 

PRKCB, PTPRN2, CARD11, IKBKB, RLTPR, CSNK2B, IRF4, and negative regulators CBLB, 

PTPN6, DGKZ, NFKBIA, TNFAIP3, TRAF3), and cell migration (CCR7, CCR4, RHOA, RHOB, 

GPR183, NRXN3, VAV1, WNK1). The TCR and PI3K mediated CD28 co-receptor pathways 

intersect at the activation of PKCθ (PRKCQ) via PCLγ1 (PLCG1) and PDK1, respectively, which 

connect proximal TCR and CD28 co-receptor signaling events, ultimately leading to NF-κB 

activation (Fig. 2B).  

 

Genomic and functional validation of novel putative driver genes.  

Our mutational analyses allowed us to identify both known and novel putative driver 

genes; however, their biological roles in ATLL are not implicit. For example, despite its recurrent 

damaging mutations (often characteristic of tumor suppressors28), CCR4 has been shown to be 

an oncogene with functionally validated gain-of-function truncated variants.33 For this reason, 

we classified putative driver genes as suspected oncogenes or tumor suppressors based upon 

their pattern of point mutations leveraged against CNV mutational patterns and published 

functional studies (Supplemental Table S6). We then sought to validate the functional 

consequences of these putative oncogenes or tumor suppressors in vitro. 

To do this, we first utilized previously published, publicly available genome-wide 

CRISPR screens for T-cell activation. These included two CRISPR interference screens for 

genes mediating TCR-independent cytokine production, two amplification screens for TCR-

independent cytokine production, and an interference screen for TCR-dependent cell 

proliferation.34, 35 We predicted that single-guide RNAs (sgRNAs) for oncogenes should show 

patterns of alteration in CRISPR screens consistent with the promotion of T-cell proliferation or 

cytokine production. sgRNAs for tumor suppressors should show the opposite patterns.  
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97% (N = 62) of putative driver genes showed a pattern of sgRNA alteration in one or 

more CRISPR screens consistent with their predicted tumor suppressor/oncogene roles. The 

only exceptions were TP53 and PDCD1. Presumably the effects of these genes cannot be 

easily modeled in short-term cultures (TP53) or without ligands (PDCD1).  86% (N = 55) 

displayed the predicted patterns across multiple orthogonal CRISPR screens. 39% (N = 25) 

showed the predicted sgRNA up- or down-regulation at magnitudes significantly greater than 

chance (False Discovery Rate, FDR < 0.05) (Fig. 3A-B, S5A).  

We next examined novel putative driver genes individually, including novel putative 

driver genes ANKRD11, DGKZ, PTPN6 and CD3E, and novel hotspots in cancer-associated 

gene FOXO3. We examined the function of each of these genes in the previously published 

CRISPR screens described above and performed orthogonal validation assays where possible. 

Implicated by both point mutation and copy number mutation analysis, ANKRD11 

encodes a chromatin scaffolding protein binding histone deacetylases involved in the 

differentiation of neural cells. It has also been postulated to interact with p53 in breast cancer 

models.36, 37 Its role in T-cells is unknown. In the Western dataset, 2.5% of samples were 

affected by recurrent ANKRD11 damaging mutations (p.Arg838*, p.Arg1007*, p.Ser2208*; p = 

4.31 x 10-4) (Supplemental Table S3).  By orthogonal CNV analysis, we found that ANKRD11 

falls within a 2.5 MB region of significant deletion on chromosome 16 (q = 2.4 x 10-13, 

GISTIC2.0) deleted in 15% of patients (N = 84) (Fig. 1A-C; Supplemental Table S5). Among all 

the genes in this region, ANKRD11 has an outsized proportion (likelihood ratio > 5) of gene-

localizing mutations, suggesting it is the target gene of this recurrently deleted chromosomal 

segment. In 3.5% (N = 6) of samples with both CNV and WES data, both ANKRD11 alleles 

were mutated either via biallelic deletion or mutation plus loss of heterozygosity. By RNA-seq, 

samples with ANKRD11 deletions had significantly decreased expression of ANKRD11 

transcripts (p = 0.004, student’s two-tailed T-test) (Fig. 3C). Finally, we decided to examine the 

role of ANKRD11 in vitro. We performed CRISPR knockout of ANKRD11 in human T-cells. 
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Carboxyfluorescein succinimidyl ester (CFSE) proliferation assays showed significant increases 

in cell division in ANKRD11 knockout cells upon TCR stimulation (p = 0.0045; student’s two-

tailed T-test) (Fig. 3D-E). 

DGKZ is a protein kinase responsible for dampening the effects of TCR stimulation by 

catalyzing breakdown of the downstream signaling molecule phosphatidic acid.38 Consistent 

with its putative tumor suppressor function, DGKZ significantly inhibited TCR-mediated 

proliferation in previously published CRISPR screens (FDR = 5.5 x 10-4). In tumor samples from 

Western ATLL patients, we saw reduced or absent DGKZ protein in 10/10 (100%) of patients 

regardless of DGKZ mutation status, suggesting that it could be transcriptionally downregulated 

in ATLL (Supplemental Fig. S5B). 

PTPN6 and CD3E are two novel putative driver genes implicated by recurrent point 

mutations. CD3E encodes a subunit of the CD3/TCR complex.39 Samples in Western, 

Japanese, and publicly available TCL cohorts were recurrently mutated at p.Ser41Cys (N = 1 

Western, 1 Japanese, 1 TCL). Additional samples contained mutations at nearby p.Ser39Cys (N 

= 1 Western, 1 Japanese, 1 TCL) (Fig. 1F). In genome-wide CRISPR screens, CD3E was a 

significant positive regulator of TCR-mediated cell proliferation (FDR = 3.5 x 10-5) (Fig. 3B). 

PTPN6 encodes for the protein SHP-1, a negative regulator of T-cell activation and PI3K 

signaling.40 2.5% of samples (N = 3) contained damaging mutations in PTPN6. By genome-wide 

CRISPR screen, PTPN6 was a significant inhibitor of TCR-independent IL-2 production (FDR = 

7.2 x 10-5). By western blot (WB) analysis, 50% of Western ATLL samples showed no significant 

PTPN6 expression. (Supplemental Fig. S5C).  

We noted recurrent mutations at a novel hotspot in cancer-associated gene FOXO3 (Fig. 

1G) (Supplemental Table S2). FOXO3 encodes a transcription factor regulating T-cell 

differentiation.41 It has been functionally validated as a tumor suppressor in several solid-organ 

malignancies.42 Mechanistic studies have shown that HTLV-1 viral proteins HBZ and Tax 

suppress FOXO3 protein function;43, 44 however, FOXO3 genetic mutations have not been 
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directly implicated in ATLL by published genomic studies. 10% of Western cohort patients had 

FOXO3 hotspot mutations (Supplemental Tables S1-2). While 31% of these samples contained 

mutations at cancer hotspot p.Asp199Asn, 54% (N = 7) of Western FOXO3 mutations occurred 

in a previously unidentified hotspot, p.Arg177Trp. Both hotspots fall within the FOXO3 DNA-

binding forkhead domain in proximity to the validated dominant negative variant p.Ser256Ala, 

suggesting they could act as dominant negative mutations (Fig. 1G). By orthogonal CNV 

analysis, FOXO3 also falls within a broad region (51MB) of significant deletion (q = 3.35 x 10-40, 

GISTIC2.0). It is deleted in 9.4% (N = 52) of samples. By WB analysis of a random selection of 

ATLL patients, FOXO3 protein expression was reduced or absent in 11/13 patients (85%) 

(Supplemental Fig. S5C-D), including 5/6 (83%) of patients with deletions or mutations. 

Weighted gene correlation analysis45 of RNA-seq data suggests that HBZ expression relates to 

expression of FOXO3 as well as ANKRD11 (Fig. S5E-F). Consistent with prior large-scale 

studies on ATLL tumors, we did not find significant expression of Tax in the samples analyzed.12  

We performed CRISPR and shRNA-mediated knockdown of FOXO3 in our patient-

derived ATLL cell lines. We subjected these cells to anti-neoplastic chemotherapy (etoposide) 

and biological (belinostat) agents used to treat T-cell lymphomas. Knockdown of Foxo3 protein 

expression in ATLL cell lines by FOXO3-specific sgRNAs (sgRNA1 and sgRNA2) conferred 

resistance to drug-induced apoptosis, as compared to cells transfected with scrambled-(SCR)-

sgRNA (Fig. 4A). Similarly, knockdown of FOXO3 via tetracycline-inducible shRNA protected 

ATLL cells from dose dependent drug-induced apoptosis (Fig. 4C). In contrast, mCAT-1+ ATLL 

cells transduced with FOXO3-overexpressing pseudoviral particles showed higher rates of drug-

induced apoptosis in comparison to cells transduced with empty controls (Fig. 4B). Finally, we 

examined cells transfected with mutant FOXO3 p.Asp199Asn and p.Arg177Trp-expressing 

lentiviral vectors. These cells resembled FOXO3 knockdown in their phenotype: compared to 

cells transfected with empty vectors, they showed resistance to drug-induced apoptosis (Fig. 

4D). Because the p.Arg177Trp and p.Asp199Asn mutations both map to the Foxo3a DNA-



 16

binding domain, we hypothesized that the effect of FOXO3 mutation could affect T-cell 

apoptosis by affecting transcription of pro-apoptotic target genes. However, knockdown of 

Foxo3a did not appear to affect protein levels of BIM and p21, both encoded by known pro-

apoptotic Foxo3a target genes (BCL2L11 and CDKN1A, respectively)(Supplemental Fig. S6B). 

Collectively, these data support the pro-apoptotic role of FOXO3 in ATLL, although the 

mechanisms by which it exerts these effects remains yet to be identified. 

 

The ATLL genomic landscape differs among Western and Japanese patients.  

Previous exome-wide studies of ATLL have been conducted in Japanese populations.11, 

12 We sought to determine whether there exist molecular differences between Western and 

Japanese cohorts that could be associated with the known differences in clinical presentation.9, 

10 We observed broad similarities in commonly mutated genes, but several were mutated at 

significantly different frequencies. For example, Japanese patients had a significantly greater 

burden of point mutations in CCR4, the most commonly mutated putative driver gene overall 

(34% versus 16% of patients in the Western populations, p = 0.006, Fisher’s exact test) (Fig. 5).  

PTPRN2 (34% vs 13%, p = 0.002) and TRRAP (43% vs 14%, p = 3.2 x 10-5) were also both 

more commonly mutated in Japanese than Western samples (Fig. 5C) (Fisher’s exact test).  

Several putative driver genes were deleted or mutated with significantly greater 

frequency in the Western cohort. These include INPP4B (21% vs 6%, p = 0.006), ANKRD11 

(34% vs 11%, p = 4.10 x 10-4) and CBLB (27% vs 13%, p = 0.035) (Fig. 5D)(Fisher’s exact test). 

Of Western patients, 8/13 (62%) had clearly reduced CBLB expression; 50% of these had 

mutation or deletions (Supplemental Fig. S5C-D). FOXO3 point mutations were eight times 

more common in Western patients (10% versus 1.2%, p = 0.017, Fisher’s exact test) (Fig. 5A). 

Mutations at the novel hotspot FOXO3 p.Arg177Trp occurred only in Western patients of African 

descent with aggressive leukemic ATLL subtypes (acute N=7, unfavorable chronic N = 1). 
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Different ATLL clinical subtypes are characterized by distinct mutational patterns.  

We next sought to identify molecular drivers of clinical behavior in different ATLL 

subtypes. Consistent with observations from the Japanese cohort, we identified in the Western 

cohort enrichment of STAT3 mutation in “indolent” ATLLs (chronic and smoldering) (37% vs 

11%, p = 1.2x10-4), enrichment of total number of mutations in “aggressive” ATLLs (acute and 

lymphomatous) (119 vs 47 mutations, p = 4.3x10-7), and enrichment of TP53, CDKN2A and 

IRF4 mutations in aggressive ATLLs (31% vs 12%, p = 0.01; 40% vs 16%, p = 0.002; 38% vs 

18%, p = 0.02, respectively) (Fisher’s exact test).11  

The enrichment of aggressive clinical subtypes in our Western dataset allowed us to 

distinguish molecular features of acute versus lymphomatous cases in the Western cohort. 

NRXN3 and CCR4 were commonly mutated (>30% of samples) in both subtypes. CDKN2A 

mutations (46% vs 25%, p = 0.009) and PLCG1 amplification/mutation (37% vs 14%, p = 0.002) 

were mutated significantly more often in acute cases compared to lymphomatous cases. In 

contrast, TP53, WWOX, CD3E, TBL1XR1 and NFKBIA were genetically altered significantly 

more often in lymphomatous cases (Supplemental Table S7). Consistent with their enrichment 

in distinct disease subtypes, TP53 and PLCG1 mutations showed significant mutual exclusivity 

(q = 0.004).21 

There is little molecular information available about chronic ATLL subtype with 

unfavorable features.9 In our dataset, unfavorable chronic cases (N=17) resembled aggressive 

cases in their mutational and CNV burden (Fig. 6A-B). They were characterized by an increased 

frequency of heterozygous GATA3 deletions. Of the 11 unfavorable chronic cases with CNV 

data, 45% (N = 5) had GATA3 deletions (3.8-fold enrichment compared to other cases, p < 

0.001, Fisher’s exact test). Immunohistochemistry analysis of GATA3 expression in ATLL 

patient samples confirms that GATA3 protein levels are lower in unfavorable chronic cases than 

in other aggressive subtypes (p = 0.05, student’s two-tailed T-test) (Fig. 6C). 
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ATLL molecular features are associated with survival and response to therapy.  

In addition to clinical subtype and mutational status, we annotated our dataset with 

patient survival and response to chemo- and/or AZT-interferon therapy. We used a Cox 

multivariate regression analysis to test the effect of gene mutation on survival. We limited our 

analysis to patients with well-annotated clinical data who were seen for at least one follow-up 

visit (Supplemental Table S9). As expected, indolent subtypes were associated with significantly 

longer survival times than aggressive subtypes (HR 0.15, 0.26 and 0.26 for smoldering, 

unfavorable chronic and chronic subtypes, respectively). Treatment type (chemotherapy, 

zidovudine-interferon, both or neither) did not influence survival.  Consistent with previous 

studies, STAT3 mutation trended towards significantly decreased mortality in dataset-wide 

analyses. However, in analyses controlled for clinical subtype and treatment modality and 

corrected for multiple comparisons, only ANKRD11 and TP53 mutation were significantly 

associated with increased mortality (HR 2.70 and 2.67 respectively, Fig. 6D-E). Pairwise 

analysis did not show significantly different outcomes for patients with both mutations than 

patients with either driver mutation alone.  

One mutation was associated with response to therapy in the Western cohort: Patients 

with CDKN2A loss were significantly more likely to experience a complete response (CR) to 

chemotherapy (24% complete response vs 0%, p = 0.025) (Fig. 6F). Unfortunately, this 

mutation was not associated with decreased mortality. 

 

Newly acquired IRF4 and CARD11 mutations in relapsed ATLL.  

Consistent with the literature, disease relapse was common in our cohort.6 Our dataset 

included 10 patients who experienced disease relapse after receiving AZT-interferon treatment 

as initial therapy. Two of these patients experienced multiple relapses. We investigated whether 

the variability in mortality present within our dataset could be related to genomic patterns 

conferring a high likelihood of relapse. 



 19

 We first examined patterns of malignant clonality in relapsed samples. As expected, 

relapse samples shared the same HLA genotype as initial samples, except for one patient who 

underwent loss of heterozygosity in HLA-A upon relapse. Comparison of transcription data-

derived TCR clonotypes in initial versus relapsed samples demonstrated that all relapses 

harbored the same TCR as the initial clone (Fig. 7A). Interestingly, relapsed samples generally 

shared few point mutations with initial tumor samples but did share most CNV mutations. 

Patients generally accumulated additional CNV mutations with relapse (Fig. 7B). We then 

sought to determine if there were any specific genomic change associated with disease relapse. 

We found recurrent mutations in CARD11 (3 samples) and IRF4 (4 samples) that were acquired 

in disease relapse samples after AZT-interferon therapy. Although uncommon in the general 

cohort, IRF4 mutations were significantly more common in the disease relapse (33% vs 10% of 

samples, p = 0.038, Fisher’s Exact Test) (Fig. 7C). Of 12 samples taken after disease relapse, 

four had new IRF4 mutations (3/9 patients). One patient who experienced relapse twice 

developed two different IRF4 mutations in each relapse instance. Manual review of sequencing 

data confirmed that none of the IRF4 mutations in relapsed samples were present even at a 

subclonal level in parent samples. We further analyzed 7 additional relapsed samples for 

p.Leu70Val or p.Lys59Arg, the most common IRF4 mutations in our cohort, by standard Sanger 

sequencing (Supplemental Table S8)(Fig. 7D). P.Lys59Arg mutations were found in 2 samples 

from relapsed patients for whom no baseline samples were available. Within the entire cohort, 

no patient with an IRF4 mutation experienced complete response to AZT-interferon therapy, 

suggesting it may be associated with primary or acquired resistance (Supplemental Table S9).  

 

Discussion 

Through multimodal exome-wide analysis, we have identified novel genomic features of 

ATLL that highlight differences between the genomic landscapes of Japanese and Western 

cohorts.  
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Newly identified putative driver genes include FOXO3 and ANKRD11. FOXO3 encodes 

a transcription factor that has been postulated to be a tumor suppressor and mediator of 

apoptosis via the PI3K pathway.46 Our in vitro experiments using patient-derived ATLL cell lines 

demonstrated the acquisition of antineoplastic drug resistance after FOXO3 knockdown and the 

augmentation of drug-induced apoptosis with FOXO3 overexpression, suggesting that FOXO3 

may have a pro-apoptotic role in ATLL. Similar to the p.Asp199Asn variant previously observed 

in solid malignancies,40 expression of the novel p.Arg177Trp variant observed in our cohort also 

conferred resistance to antineoplastic drugs in vitro. ANKRD11 is a novel driver gene identified 

as significant through both mutational and CNV analysis and validated through in vitro 

proliferation assays. ANKRD11 is especially relevant due to its association with increased 

mortality. While Japanese studies have noted recurrent deletion of ANKRD11 in ATLL, it was 

previously dismissed as breakage at a putative fragile site.13 Our analysis was the first to 

distinguish ANKRD11 and FOXO3 as putative driver genes through mutational analysis and 

functional assays. Because both ANKRD11 and FOXO3 mutations were significantly enriched in 

Western patient cohorts, their elucidation as putative driver genes was only possible after the 

inclusion of underrepresented Western patient cohorts in our analysis. 

Previous studies have demonstrated that Western ATLL patients have more severe 

outcomes than Japanese patients.9, 10 While differences in medical infrastructure likely 

contribute to these discrepancies, health care inequalities alone appear inadequate to explain 

all observed clinical disparities (e.g. the earlier diagnosis of ATLL by >10 years earlier in 

patients from medical resource-poor regions of the Caribbean).9 It is plausible that differences in 

the distribution of ATLL driver mutations may also contribute to the disparate clinical outcomes 

in Western vs. Japanese ATLL cases.9, 15  

Our data supported the presence of molecular differences in ATLL that correspond to 

geography and clinical outcome.  For example, mutations in INPP4B and ANKRD11 are more 

common in Western patients and predict worse survival, revealing potential tumor-associated 
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causes of disparate clinical outcomes in the West. In contrast, CCR4 mutations were more 

common in Japanese patients. Such a finding might account for the better therapeutic 

responses to mogamulizumab seen in Japanese patients compared to the rates seen in the 

US.47  

These data also suggest new clinical targets for ATLL. The collective enrichment of 

FOXO3, INPP4B, CBLB, DGKZ, PTPN6 mutations in Western ATLL patients suggest a 

potentially mounting role of the PI3K-AKT pathway in ATLL oncogenesis. PI3K inhibitors are 

FDA- and National Comprehensive Cancer Network-approved therapies for chronic lymphocytic 

leukemia48 and non-Hodgkin’s lymphomas.49, 50 In recent trials, they have shown to be promising 

agents in PTCL patients51 and in preclinical studies of ATLL.52 These results support 

investigating further the potential of the PI3K-AKT pathway as a therapeutic target in ATLL, 

particularly in Western patients. 

Our combined Western and Japanese dataset was the largest cohort of exome-wide 

sequencing data to date. Because of this, we were able to make novel observations regarding 

the patterns of genomic alterations in different clinical subtypes. TP53 and CDKN2A alterations 

have previously been shown to be increased in aggressive cases (acute and lymphomatous 

combined). Our analysis examined acute and lymphomatous cases separately and found that 

TP53 loss is more characteristic of lymphomatous cases while CDKN2A loss is more 

characteristic of acute cases. These molecular differences could account for the distinct clinical 

presentations of acute and lymphomatous ATLL. They might also guide treatment in the future 

as more targeted therapies become available for ATLL. We also identified GATA3 deletion as a 

putative tumor suppressor associated with chronic ATLL with unfavorable features, as it is 

characterized by recurrent deletion and damaging mutation in our cohort. Consistent with this, it 

has been implicated in constraining regulatory T-cell proliferation.53 

In our dataset, disease relapse after AZT-interferon therapy was associated with the 

acquisition of IRF4 mutations affecting DNA binding domain. This mutational pattern could be 
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the result of AZT-interferon treatment-driven selection. IRF4, also known as MUM1, is a 

transcription factor that regulates the expression of interferon-inducible genes in leukocytes.54 

Lack of IRF4 protein expression has been previously associated with response to AZT-

interferon therapy in patients with ATLL.55 

It has become increasingly evident that different ethnic groups have disparate prognoses 

for the same diseases. However, our understanding of diversity in disease pathogenesis is 

limited by the underrepresentation of certain patient populations in genomic research. To 

address these challenges in the context of ATLL, we generated the largest dataset of 

untargeted genomic information in Western ATLL patients, including diverse African 

descendants from North and South America, the Caribbean, and South American indigenous 

populations, to date. Through the analysis of this dataset, we identified novel molecular ATLL 

features, some of which are associated with more aggressive disease. Several of these 

features, including ANKRD11, INPP4B and FOXO3, were mutated significantly more often in 

Western patients. Our functional assays support the roles of these genes as tumor suppressors 

in vitro. Other mutations associated with treatment outcomes (e.g. CCR4) were more common 

in Japanese cohorts. Our present findings augment current knowledge and reflect the diversity 

of ATLL’s molecular landscape. Furthermore, they emphasize the need for the inclusion of 

underrepresented populations in genomic research to better understand and address disparate 

factors in patient outcomes. 
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Table 1 | Demographic characteristics of patient cohorts. Patient demographics are summarized 

(“total Western”) as well as broken down by data type. Numbers represent distinct patients, some of 

whom may have contributed both pre- and post-relapse samples. Japanese cohort demographics are 

also summarized (right two columns). Demographics of Japanese CNV data were obtained from 

published descriptions12 rather than in-house review. 

  

 TOTAL 
WESTERN 

WES Oncoscan RNA Japanese 
WES 

Japanese 
CNV 

N 165 122 128 92 83 426 

Disease Subtype: 
Acute 
Chronic with: 
    -Favorable features 
    -Unfavorable features 
Lymphomatous 
Smoldering 
Unclassified 

  
84 
 
9 
17 
45 
9 
1 

  
63 
 
5 
15 
31 
7 
1 

  
70 
 
7 
11 
31 
8 
1 

  
39 
 
2 
13 
31 
7 
 

  
39 
 
26 
0 
13 
5 

 
194 
95 
 
 
97 
24 

Sex: 
Female 
Male 

  
82 
83 

  
64 
58 

  
68 
60 

  
48 
44 

  
43 
40 

 

Age (Avg) 51.48 51.73 51.42 52.18 65.23  

Region: 
Caribbean 
Europe 
North America 
South America 

  
76 
6 
7 
76 

  
69 
4 
7 
42 

  
61 
5 
7 
55 

  
38 
5 
3 
46 

N/A  

Ethnicity: 
African 
Native South American 
South American/Asian 
European 
European/South 
American 
South Asian Islander 
Unclassified 

  
78 
29 
11 
2 
 
3 
42 

  
78 
29 
9 
2 
 
3 
1 

  
63 
17  
9 
1 
 
2 
36 

  
42 
21 
8 
 
1 
 
3 
17 

N/A  

Survival Time (Weeks) 83.74 93.03 83.42 97.15 N/A  
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Figure 1 | Putative ATLL driver genes discovered through mutation analysis. a, Plot of GISTIC 

amplification/deletion peaks labeled with their corresponding driver genes. Amplifications are depicted in 

red and deletions in blue. Peaks are displayed along the genome represented lengthwise. Peak heights 

indicate GISTIC-calculated significance (G-score). Genes newly implicated in ATLL and/or cancer are 

highlighted in magenta. Patients included in this analysis include both Western and Japanese cohorts (N 

= 554).  b, d, f, g Point mutation burden among Western ATLL patients (N = 122), Japanese ATLL 

patients (N = 83), and published T-cell lymphoma patients (N = 800) across b, ANKRD11, d, GATA3. f, 

CD3E g, FOXO3. Shapes and colors indicate mutation type and cohort, respectively, as indicated in the 

legend. f-g Right panels show recurrently mutated residues in magenta color within the context of their 

respective protein structures; ligands are shown in yellow. f, CD3E is shown in dark gray. CD3-zeta and 

CD3-gamma are shown in light gray. Bound T-cell receptor is shown in yellow. g. A novel FOXO3 variant 

is shown with mutant tryptophan in hot pink and nearby isoleucine shown in orange. Zoomed-in panel 

shows predicted steric clashing between these residues as red discs, suggesting that a tryptophan 

mutation may be energetically unfavorable. The other subunit in the FOXO3 homodimer is shown in light 

gray. DNA is shown in yellow. c, e, Histograms indicating segments of overlapping deletion in c, 

ANKRD11 and e, GATA3. Depicted cohort includes both Japanese and Western patients (N = 554). 

Surrounding genes are indicated at the bottom of the figure.  

 

Figure 2 | Key pathways involving recurrent mutations identified in Western and Japanese 

samples. a, Frequencies and types of copy number variation (CNV) and point mutations in Western and 

Japanese samples. Only samples with both CNV and WES data available are portrayed in this plot (N = 

168). Mutation type is indicated by square color. Bars on the bottom indicate gross number of mutations. 

Colored bars to the left indicate SNP-determined ethnic classification of patients and categorization of 

their disease subtype. Significance of GISTIC peak in which the mutation is found, if applicable, is 

indicated by the heatmap on top (values indicate negative logarithm of the q-value). Novel mutations are 

indicated by gene names bolded in blue (newly implicated in ATLL) or red (newly implicated in cancer). 

Genes with mutational frequencies differing between subtypes or population cohorts are indicated with a 

triangle and a star, respectively. b, An illustration of CD28- and T-cell receptor (TCR)-initiated signaling 
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pathways and their associated molecules based on current literature review. Cytoplasmic and nuclear 

compartments are separated by dashed red nuclear membrane. Downstream DNA-bound transcription 

factors (FOXO3a, AP-1, NFAT) and pathway- inducible genes (BIM, FOXP3, IFNG, IL2, IRF4) are shown. 

Percentage of Western ATLL samples affected by mutation (Mut), deletion (Del), or amplification (Amp) 

are shown for each molecule. Stars mark putative driver mutations. HBZ (HTLV-1 bZIP factor) viral 

protein is shown as dashed oval shape. 

 

Figure 3 | Functional validation of putative driver genes. a, Violin plots showing log fold change (LFC) 

of sgRNAs (N = 19114) for putative oncogenes and putative tumor suppressors in genome-wide CRISPR 

interference screens for T-cell receptor dependent proliferation and cytokine production. sgRNA changes 

for putative oncogenes are shown on the left; those for putative tumor suppressors are shown on the 

right. P-value represents the significance of the difference between these distributions (student’s two-

tailed t-test). A similar analysis of CRISPR amplification screens is included in Supplemental Figure S5. b, 

Patterns of sgRNA alteration for putative oncogenes/tumor suppressors in a genome-wide CRISPR 

interference screen of T-cell receptor dependent proliferation. X-axis represents the logarithm of the fold 

change; y-axis represents the negative logarithm of the false discovery rate. Putative oncogenes are 

shown in red and putative tumor suppressors in blue. CRISPR interference and amplification screens for 

TCR-independent cytokine production were similarly analyzed. c, ANKRD11 RNA transcript levels in 

ANKRD11 mutant (blue) and wildtype (red) samples. Dots represent individual values, central horizontal 

bar represents mean, and error bars represent standard error. Comparison by student’s two-tailed t-test.  

d, Targeted CRISPR knockout screens in normal T-cells for ANKRD11. CFSE dilution progresses (CFSE 

dye diminishes) from right to left. Stimulated cells are shown in red and unstimulated in blue.  e, Division 

index in targeted CRISPR knockout screens in normal T-cells for ANKRD11 versus control. Error bars 

represent standard error. Statistical comparison by paired-ratio T-test. 

 

Figure 4 | Functional validation of FOXO3 pro-apoptotic role in ATLL cells. Percent apoptotic cells, 

as represented by the percent of cells staining positively for annexin V by fluorescence-activated cell 

sorting (FACS) analysis. Brackets represent comparisons made after subtracting dimethyl sulfoxide 
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vehicle (DMSO) control values. One, two and three stars represent statistical significance by student’s 

two-tailed t-test (p < 0.05, p < 0.01 and p < 0.001, respectively). Error bars represent standard error from 

separately treated triplicate samples. Panels on right show representative gated data from FACS 

analysis, with anti-annexin V on the x-axis and propidium iodine (PI-A) on the y-axis. Western blot panels 

validating protein levels in knockdown/overexpression constructs are shown in on the top left. β-actin was 

used as protein loading control. a, Percent apoptotic cells in ATLL-97c FOXO3 knockdown constructs 

exposed to DMSO vehicle, etoposide 200 nM (Eto), or belinostat 200 nM (Bel). Two FOXO3 knockdown 

constructs were established using distinct FOXO3-specific single guide RNAs (sgRNA1 and sgRNA2). A 

construct established from a nonspecific scrambled single guide RNA (SCR) was used as a control. b, 

Percent apoptotic cells in ATLL-97c FOXO3 overexpression constructs exposed to belinostat (Bel) at 

concentrations of 200, 400 or 800 nM. m-CAT-1 expressing ATLL-97c cells were transduced with 

pseudoviral particles containing one of two overexpression constructs (#1 or #5). Cells transduced with 

empty vectors (EV) were used as a control.  c, Percent apoptotic cells in ATLL-84c doxycycline (Dox)-

inducible constructs exposed to DMSO vehicle, belinostat 200 nM (Bel 200) or belinostat 400 nM (Bel 

400). Dox (+) cells were treated with doxycycline 1ug/mL at least 72h before and at the start of drug 

treatment experiments. Dox (-) cells were not exposed to doxycycline d, Percent apoptotic cells after 

exposure to belinostat 400 nM (Bel 400) in ATLL-84c cells transduced with lentiviruses containing either 

p.Arg177Trp (R177W) or p.Asp199Asn (D199N) FOXO3 mutant constructs. Cells transfected with an 

empty lentivirus (EV) were used as controls. Vector nucleotide sequences were verified by sequencing.  

 

Figure 5 | Differential patterns in mutational frequency between Japanese and Western ATLL 

cohorts. a, b, Comparison of point mutation frequency between Japanese/Western and Afro-

Caribbean/South American populations. Bar color represents mutation type. Bar height represents the 

frequency with which a gene is mutated in the specified population. Stars indicate statistical significance: 

one star indicates p < 0.05, two stars indicate p < 0.01. Statistical comparison with Fisher’s exact test. a, 

Comparison in acute cases (N = 62 Western/39 Japanese, 48 Afro-Caribbean/14 South American). b, 

Comparison in lymphomatous cases (N = 29 Western/13 Japanese, 9 Afro-Caribbean/20 South 

American). c-d, Histograms of c, amplifications and d, deletions across the genome in Japanese (top) 
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and Western (bottom) cohorts. Y-axis represents the proportion of cohorts with amplification/deletion in a 

given region. Genes significantly different between cohorts as discussed in the text are highlighted with 

arrows. Genes newly implicated in ATLL and/or cancer are highlighted in magenta.   

 

Figure 6 | Genomic alterations associated with clinical subtype and mortality. a, b, Violin plots 

demonstrating the similarity of unfavorable chronic subtypes (N = 15) to acute (N = 63) and 

lymphomatous (N = 31) subtypes regarding a, the number of genes deleted or amplified per sample and 

b, the number of point mutations per sample. Bars represent mean (central bar) and standard error. One, 

two and three stars represent p < 0.05, 0.01, and 0.001 by student’s two-tailed T-test. c, Comparison of 

GATA3 protein levels by immunohistochemistry in aggressive (acute and lymphomatous) compared to 

unfavorable chronic cases, student’s two-tailed t-test. Dots represent individual values, central horizontal 

bar represents mean, and error bars represent standard error. d-e, Kaplan-Meier curves indicating the 

effect of d, TP53 and e, ANKRD11 mutation on overall survival. Red lines indicate overall mortality for 

patients with mutation in the specified gene. Blue lines indicate overall mortality for patients without 

mutation in that gene. Significance was determined using a Cox multivariate analysis of the overall cohort 

controlling for disease subtype and treatment modality.45 Padj = p-value after Bonferroni correction for 

multiple comparisons. WT = wildtype. f, Frequencies of chemotherapy responses in patients with 

CDKN2A deletion/damaging mutation (left) versus CDKN2A wildtype (right). Star indicates statistical 

significance, Fisher’s exact test. CR = Complete Response, PR = Partial Response. 

 

Figure 7 | Association of IRF4 mutation with ATLL relapse. a, Clonality of tumor populations as 

determined by T-cell receptor sequence identification from RNA-seq data. Patients shown here 

contributed samples from initial disease as well as subsequent relapse. Clonal populations were defined 

as cells with identical T-cell receptors. Each blue shape represents the dominant T-cell clone, as 

determined by α and β T-cell receptor subunit identity. The vertical axis represents the size of clonal 

populations as determined by the frequencies of the dominant α and β subunit. Relapses are indicated by 

vertical white lines. Multiple relapses are shown in sequential order, from left to right.  b, Comparison of 

point and CNV mutations in initial (I) versus relapsed (R) samples. Pairs of initial/relapsed samples from 
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the same patient are indicated in light and dark shades, respectively, of alternating blue and green. 

Mutation types include deletions, amplifications, damaging mutations and nonsynonymous (missense) 

mutations, as shown in the legend. Putative driver genes are listed on the left. c, Frequency of new IRF4 

mutation in first-time disease (N = 121) compared to relapsed samples (N = 12). Star represents 

statistical significance, Fisher’s exact test. c, Distribution of mutations across IRF4. Mutations shown in 

blue occurred in Western samples (N = 121), yellow in Japanese (N = 83). Especially frequent mutations 

are represented as pie markers indicating the proportion of variants contained in either the Western (blue) 

or Japanese (yellow) cohort. Marker stem heights represent the number of cases as depicted on the y-

axis.  

















SUPPLEMENTAL MATERIALS 
 
 

 
Supplemental Figure S1 | QC Metrics for whole exome and CNV sequencing data. a, Venn 

diagram of Western patients with samples analyzed by RNA-seq (blue) whole exome sequencing 

(green), copy number variation analysis (orange), or multiple methods. b, Ratio of 

nonsynonymous to synonymous point mutations called across all samples. c, Histogram of 

numbers of point mutations called per sample. d, Sample-wise averages of mean allele 

frequencies. e-f, Sample-wise e, mean coverage and f, mean base quality by sample type. Dots 

represent individual values and boxplot includes, mean, first and third quartiles. Values not 

adjacent or connected to the boxplot by a central line represent outliers. g, Percentage of putative 
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driver mutations with DNA- and RNA-seq coverage > 25 validated by RNA-seq data. h, 

Sequencing coverage and i, mutation allele frequency of variants of interest identified in Japanese 

(left) and Western (right) patients.  j, RNA-expression of genes within significant copy-number 

variation (CNV) regions of deletion (“del”, blue, left) versus amplification (“amp”, red, right). Dots 

represent mean values and error bars represent standard error.  k, Kernel density estimate (KDE) 

of CNV fold change values across all samples. Only CNVs different from wildtype (i.e. fold change 

not equal to 1) were included. CNV fold change is displayed across the x axis. Vertical lines 

represent KDE-represented modes.   

 

 

Supplemental Figure S2 | Schematic of quality control methodology used to identify 

putative driver genes from point mutation data and eliminate potential sources of bias, 

noise and ambiguity. Mutations and variants were called by Mutect and Annovar, respectively. 

They were filtered out based on the criteria in the bottom left, then filtered in by the criteria in the 

center. Variants of interest were validated by analysis of orthogonal RNA-seq data (far right). A 

detailed textual explanation can be found in the supplemental methods. 
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Supplemental Figure S3| Schematic of the hierarchical method used to call driver genes in 

peaks determined to be significant by GISTIC2.0. Regions of significant amplification/deletion 

by GISTIC analysis were first examined for putative driver genes satisfying the criterium in the 

top right. If that criterium were satisfied by a single gene, that gene was called as the putative 

driver gene and the search process was stopped. If no gene satisfied that criterium, we proceeded 

to the next criterium, and so forth. If no putative drivers were found by this stepwise search, the 

search expanded to encompass three neighboring genes on either side of the peak. CNV: copy 

number variation; SSNV: somatic single nucleotide variation (point mutation). A detailed textual 

explanation can be found in the Supplemental Methods.  
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Supplemental Figure S4 | Putative driver genes identified by point mutation and copy 

number mutation analysis. a-c Novel ATLL putative driver genes identified by point analysis. 

Lollipop plots on the left show the location of point mutations, with mutation types and cohorts 

indicated by the legend. Right panels show recurrently mutated residues in magenta within the 

context of their respective protein structures; ligands are shown in yellow or orange. a, Activated 

(phosphorylated) WNK1, with phosphate group shown in orange. b, RBBP4 is bound to ZNF827, 

shown in orange. c, RHOB is bound to GDP, shown in orange d-e Histograms indicating 
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segments of copy number loss showing overlapping deletion in d, WWOX and e, INPP4B. 

Surrounding genes are indicated at the bottom of the figure. 

 

 

Supplemental Figure S5 | Functional analyses of putative ATLL driver genes. a, Violin plots 

showing log fold change (LFC) of sgRNAs for putative oncogenes and putative tumor suppressor 

in genome-wide CRISPR amplification screens for T-cell receptor dependent proliferation and 

cytokine production. sgRNA changes for putative oncogenes are shown on the left; those for 
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putative tumor suppressors are shown on the right. P-value represents the significance of the 

difference between these distributions (student’s two-tailed t-test). b-d, Western blot analysis of 

protein levels in ATLL patient samples. Band density was normalized against β-actin, shown as 

loading control. b, DGKZ protein levels. c, FOXO3, CBLB, and PTPN6 protein levels. d, FOXO3 

and CBLB protein levels. e-f, Weighted gene correlation network analysis of RNA expression data 

for putative oncogenes/tumor suppressors as well as for the viral protein HBZ. Colors represent 

correlated modules of genes. e, Network diagram of RNA expression data, with edges 

representing maximal correlation between genes (nodes). Node size represents relative levels of 

gene expression, with larger nodes representing more highly expressed genes. Colors represent 

closely correlated modules of genes, as determined by network analysis of pairwise weighted 

correlation shown in f, a heatmap of pairwise weighted correlation. Dark red indicates low 

correlation; yellow-white represents high correlation. Gene members of correlated modules are 

indicated with labels above and to the left of the graph. 

  



 

Supplemental Figure S6  Protein levels of Foxo3a and target gene proteins in patient-

derived acute ATLL cell lines. b-actin was used as a loading control. a, Foxo3a levels in early 

CRISPR-Cas9 FOXO3 knockouts in ATLL97-c. Two FOXO3 knockout constructs with distinct 

single guide (sg) RNA sequences were established. Each expressed a distinct FOXO3-specific 

sgRNA (numbered 1 and 2). Protein levels for each construct were measured in duplicate. 

293TN-Cas9 expressing (far left) and unmodified wild-type (wt) ATLL97-c cells were used as a 

positive control for Cas9 expression and Foxo3a, respectively. b, Foxo3 and target gene 

proteins (BIM and p21) in scramble sg vs. FOXO3 sg #2 CRISPR knockout before and after 
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anti-neoplastic agents (etoposide and belinostat) at the specified drug concentrations. Control 

cells were treated with DMSO. The different variants of BIM are shown as: BIMEL = extra-long 

BIM, BIML = long BIM, BIMS = short BIM.  
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Supplemental Figure S7 | CFSE proliferation assay gating strategy. Human CD4+ T cells 

isolated from three different donors were labelled with CFSE 10 days after targeted gene 

knockdown. After CFSE staining, cells were cultured with or without stimulation. Stringent gating 

excluded debris and dying cells to capture only live and activated lymphocytes (Top row: Side 

Scatter, SSC vs Forward Scatter, FSC). Secondary gating for larger proliferating activated cells 

(Second row: FSC vs CFSE). Proliferation (% divided) of CD4+ T cells with ANKRD11 knockouts 

(right) were analyzed and compared to non-targeting control (second from left) (Bottom 

row). Gating was based on diluted CFSE signal in unstimulated controls (far left). 

TABLES 1-9 PROVIDES AS EXCEL FILES

Online Supplementary Table S1. Significant Variants determined by COSMIC70 database. 

This table includes variants that are seen at least once in the ATLL West cohort and in 

COSMIC70 at least 15 times. Variants with all reads occurring on one strand, all reads starting 

at the same base pair or with all mutant allele frequencies (MAFs) less than 0.05 were removed 

as artefacts. “ATLL + TCL" represents the frequency of the specified mutation in the ATLL 

dataset combined with published T-cell lymphoma” datasets. Samples with DNA 

sequencing and RNA sequencing available, and with coverage greater than 25 by both DNA- 

and RNA-sequencing in the location of interest, were considered eligible for RNA-seq mutation 

validation. Column H represents the number of samples examined in RNA-seq mutation 

validation as determined by the eligibility criteria above. Column I represents the number 

of samples with the DNA-seq determined damaging mutation validated by RNA-seq. The 

"ATLL Expression Quartile" represents how highly that gene is expressed by RNA-seq, with 4 

being the most highly expressed quartile and 1 being the least. AA = amino acid, chr = 

chromosome, pos = position, ref = reference amino acid, alt = mutant amino acid, TCL = T-cell 

lymphoma. ATLL Western Cohort N = 122; ATLL All N = 122 (West) + 83 (Japanese) = 205; 

ATLL + TCL N = 1145.  



Online Supplementary Table S2. Significant variants as determined by frequency of 

recurrence in ATLL samples. Variants with all reads occurring on one strand, all reads 

starting at the same base pair or with all MAFs less than 0.05 were removed as artefacts. 

Counts of recurrences by amino acid positions includes samples analyzed by targeted 

sequencing. "ATLL + TCL" represents the frequency of the specified mutation in the ATLL 

dataset combined with published T-cell lymphoma datasets. Samples with DNA sequencing 

and RNA sequencing available, and with coverage greater than 25 by both DNA- and RNA-

sequencing in the location of interest, were considered eligible for RNA-seq mutation validation. 

Column I represents the number of samples examined in RNA-seq mutation validation as 

determined by the eligibility criteria above. Column J represents the number of samples with the 

DNA-seq determined damaging mutation validated by RNA-seq. The "ATLL Expression 

Quartile" represents how highly that gene is expressed by RNA-seq, with 4 being the most 

highly expressed quartile and 1 being the least. AA = amino acid, chr = chromosome, pos = 

position, ref = reference amino acid, alt = mutant amino acid, TCL = T-cell lymphoma. ATLL 

Western Cohort N = 122; ATLL All N = 122 (West) + 83 (Japanese) = 205; ATLL + TCL N = 

1145.  

O n l i n e  S u p p l e m e n t a r y  T a b l e  S 3 .  Driver genes as determined by 

frequency of occurrence. Damaging mutations included in this analysis are splicing, startloss, 

stopgain, stoploss, frameshift insertion, frameshift deletion, frameshift substitution, 

nonframeshift deletion, nonframeshift insertion, nonframeshift substitution. Genes satisfying 

the criteria that all damaging mutations were at the same positiona and all mutant allele 

frequencies (MAF) < 0.05 were considered artifacts and removed. There were 1024 genes with 

damaging mutations before evaluating genes for artifact as described above. After filtering, there 

were 977 genes remaining. Driver genes were determined by first examining all genes with n > 3 

damaging mutations in the ATLL West cohort. Only mutations with MAF > 0.05 were considered 

in this count. Possible driver genes were then examined for significance by calculating the 

probability of observing n damaging mutations in that 



gene, adjusting for gene length and expression quartile. All damaging mutations were considered, 

regardless of MAF. Probability was calculated based on the cumulative binomial distribution. P-

values of 0 represent values less than 1 x 10-14. Genes likely to have the observed number of 

mutations by chance (p > 0.01) were excluded. “ATLL + TCL" represents the frequency of the 

specified mutation in the ATLL dataset combined with published T-cell lymphoma datasets. 

Samples with DNA sequencing and RNA sequencing available, and with coverage greater than 

25 by both DNA- and RNA-sequencing in the location of interest, were considered eligible for 

RNA-seq mutation validation. Column K represents the number of samples examined in RNA-seq 

mutation validation as determined by the eligibility criteria above. Column L represents the 

number of samples with the DNA-seq determined damaging mutation validated by RNA-seq. 

ATLL Western Cohort N = 167; ATLL All N = 167 (West) + 83 (Japanese) = 250; ATLL + TCL N 

= 1190.  

O n l i n e  S u p p l e m e n t a r y  T a b l e  S 4 .  Driver Genes based off of GISTIC 

amplifications. Areas of significant amplification were determined from Oncoscan data 

using the GISTIC2 algorithm. Regions of frequent deletion/amplification (e.g. T-cell receptor-

encoding regions) were excluded. Genes were then called within significant GISTIC peaks 

(q < 0.001) using their ENSEMBL database-specified genetic locations. A gene was 

considered deleted within a region if at least one coding exon was within a GISTIC deletion 

peak. From each peak, a driver gene was inferred by examining peaks by the following 

hierarchical criteria, from most important to least: 1) Sole gene within the peak expressed in 

ATLL T-cells. 2) Having a SNV + CNV burden significantly greater than that observed in a 

simulation of randomly distributed amplifications and mutations. Because not all 

nonsynonymous mutations will be activating mutations, only genes deemed significant by a 

separate recurrent variant analysis (see tables S1 and S2) were kept as driver genes in this 

filtration step. 3) Implicated in CTCL in previously published studies. 4) Tier-1 evidence for 

the gene as an oncogene in COSMIC. 5) A gene within 3 genes of the peak had tier-



1 evidence for the gene as an oncogene in COSMIC. 6) Documented in the literature to be 

involved in T-cell biology or 7) tumorigenesis. AFR = Afro-caribbean descent, AMR = Indigenous 

American descent, SAS = Southeast Asian descent, chr = chromosome, SNV = single nucleotide 

variant. 

Online Supplementary Table S5. Driver Genes based off of GISTIC deletions. Areas 

of significant deletion were determined from Oncoscan data using the GISTIC2 algorithm. 

Regions of frequenct deletion/amplification (e.g. T-cell receptor-encoding regions) were 

excluded. Genes were then called within significant GISTIC peaks (q < 0.001) using their 

ENSEMBL database-specified genetic locations. A gene was considered deleted within a region 

if at least one coding exon was within a GISTIC deletion peak. From each peak, a driver gene 

was inferred by examining peaks by the following hierarchical criteria, from most important to 

least. 1) Sole gene within the peak expressed in ATLL T-cells. 2) Having a SNV + CNV 

burden significantly greater than that observed in a simulation of random probability based 

upon the binomial distribution. Genes were required to have at least one damaging position 

and to have a likelihood ratio > 5 (5x more significant than next most significant gene). 3) 

Implicated in CTCL in previously published studies. 4) Tier-1 evidence for the gene as an 

oncogene in COSMIC. 5) A gene within 3 genes of the peak had tier-1 evidence for the gene as 

an oncogene in COSMIC. 6) Documented in the literature to be involved in T-cell biology or 

7) tumorigenesis. AFR = Afro-caribbean descent, AMR = Indigenous American descent, 

SAS = Southeast Asian descent, chr = chromosome, SNV = single nucleotide variant. 

O n l i n e  S u p p l e m e n t a r y  T a b l e  S 6 .  Putative driver genes. 

Putative roles were determined by corroboration of mutational patterns with oncological roles 

as described in the literature. Column E describes the previous implication of the indicated gene 

in ATLL, cancer, or neither ("novel"), based upon our review of the literature.  



Online Supplementary Table S7. Frequency of gene mutations by subtypes. Displayed 

frequencies represent the percentage of samples with either a copy number variation (CNV) or 

point mutation in the given gene. The significance of mutational differences between acute and 

lymphomatous subtypes is shown in column F, as calculated using Fisher's exact test. 

Consideration of mutational differences between acute and lymphomatous subtypes defined 

gene "mutation" as amplifications + all point mutations for putative oncogenes and deletions + 

damaging mutations for putative tumor suppressors. 

Online Supplementary Table S8. IRF4 Mutation validation by Sanger Sequencing.

O n l i n e  S u p p l e m e n t a r y  T a b l e  S 9 .  Sample Metadata. Data types include whole 

exome sequencing (WES), RNA-sequencing, Oncoscan or Japanese whole-exome 

sequencing. Sample types include frozen versus formalin-fixed and paraffin-embedded 

(FFPE). Starred data types represent samples that were eliminated during quality control. Age 

represents the age at first diagnosis. Survival Wks represents the weeks from first patient 

encounter to patient death (status: deceased) or loss to follow-up (status: lost). Interferon-alpha 

therapy response (IFN Response) coding: 1 = complete response, 2 = partial response, 3 = 

stable disease, 4 = progressive disease or no response, 5 = not evaluable. Chemotherapy 

response (Chemo response) coding: 1 = complete response, 2 = partial response, 3 = stable 

disease, 4 = progressive disease or no response, 5 = not evaluable. Ethnicity was determined 

by SNP analysis using Eth-Seq, as described in the text. AFR = Afro-Caribbean, AMR = 

Indigenous American, SAS = Southeast Asian, EUR = European. 



SUPPLEMENTARY METHODS 

Inclusion Criteria and Clinical Classification. 165 patients with a confirmed diagnosis of ATLL 

from centers in the United States (primarily Miami, Florida), South America (primarily Peru and 

Brazil), and Europe (France and Spain) were included in this study. The diagnosis of ATLL was 

made for all cases after meeting the following criteria: serologic evidence of HTLV-1 by enzyme-

linked immunosorbent assay confirmed by reflex western blot and identification of clonal 

CD4+CD7−CD25+/− T cells in peripheral blood or tissues as determined by histology, 

immunophenotyping, and gene rearrangement studies. HTLV-1 PCR validation was used in skin 

biopsies of limited quantities. Patients were classified according to the Shimoyama criteria into 

acute, lymphomatous, chronic, and smoldering ATLL1. Chronic ATLL with LDH elevation < 2 times 

(2N) the upper normal limit value was classified as unfavorable chronic2. Patients with lymphoma 

features (e.g. presenting with large or bulky lymphadenopathy) and absolute lymphocyte count 

<4 × 109/L were classified as lymphomatous type regardless presence or absence of blood-

circulating ATLL cells. In equivocal cases resembling cutaneous T-cell lymphoma, HTLV-1 DNA 

was detected by PCR in diagnostic biopsies. Before genomic analyses, the diagnoses in all cases 

were confirmed by at least 2 independent hematopathologists. A minimum purity of 20% 

neoplastic lymphocytes was necessary for inclusion in the study.  

All patient samples were collected under protocols approved by the local Internal Review 

Boards from participating institutions in accordance with the Declaration of Helsinki. ATLL 

specimens used for molecular studies were obtained from PBMCs of patients with leukemic 

presentation or from residual formalin-fixed, paraffin-embedded (FFPE) tumor tissue after 

informed consent was obtained. This study also included cryopreserved or FFPE tumor samples 

from deceased patients.  



Demographic Data Collection When available, patients’ age, sex, country of origin, biopsy site, 

total white blood cell count, absolute lymphocyte count, serum calcium level, LDH level, overall 

survival time, treatment administered, treatment response according to the International 

Consensus Meeting proposal,3 and comprehensive immunophenotyping on peripheral blood 

mononuclear cells (PBMCs) and tissue biopsies were collected. Due to the retrospective nature 

of this study, which included patients from resource-poor areas with limited clinical data, 

“complete” datasets included patient age, sex, geographic region, and response to chemotherapy 

and/or AZT-interferon therapy. Patient ethnicity was determined based upon single nucleotide 

polymorphisms (SNPs) using EthSeq.4 

 

DNA and RNA Isolation and Sequencing. Genomic DNA was isolated from cell pellets using 

the E.Z.N.A.® Tissue DNA Kit (Omega Bio-Tek, inc., Norcross, GA) following manufacturer 

instruction.  RNA was isolated from cells using the E.Z.N.A Total RNA Kit (Omega Bio-Tek, inc., 

Norcross, GA) following manufacturer protocol. Library preparation and sequencing was 

completed by Admera Health as previously described.5 Whole Exome Sequencing (WES), FFPE 

RNA-Seq, and fresh RNA-seq libraries were prepared using KAPA Hyper Prep Kit (Illumina), 

SMARTer Stranded Total RNA-Seq Kit, and SMART-Seqv4 Ultra Low Input RNA Kit (Takara Bio) 

followed by NexteraXT DNA Library Prep Kit (Illumina), respectively. WES library pools were 

loaded onto an Illumina Hiseq in 2 x 150 bp format. RNA-Seq samples were sequenced on an 

Illumina Hiseq with a read length configuration of 150 PE. 

 

Somatic Variant Calling. The tissue samples collected in this study came from rural regions with 

limited availability of health care resources. Where possible, we collected fresh/frozen samples 

for genomic analyses. However, formalin fixing and paraffin embedding (FFPE) was often the 

only feasible preservation method that could withstand the transportation necessary to get 

samples to a sequencing facility. Due to this variability in preservation, as well as variability in 



sequencing quality that we observed (see Supplemental Fig. S1), we employed the following 

filtration methods to identify only high-confidence variants of interest that were orthogonally 

validated in other datasets.  

 We first utilized a “rule-out” methodology to filter out low-quality or high-uncertainty 

mutation calls. Somatic variants were called using Mutect1 for unmatched samples and Mutect2 

for matched samples.6 Calls were filtered by base quality (>25), mapping quality (>29), strand 

orientation bias7 (<0.8), alternate allele read depth (>3) and alignment score. Variants falling 

within the Duke Blacklisted regions,8 regions of frequent segmental duplication or regions with 

low exome coverage were removed. SNPs frequently seen (n > 3) in publicly available panels of 

normal samples including Kaviar, ExAC, Rockefeller, dbSNP and 1000 genomes were also 

removed.9-13 Variants with mutation allele frequencies less than 5% were removed. Variants with 

all reads occurring on one strand or all reads beginning at the same base pair were considered 

artefacts and were removed. Variants were validated by orthogonal RNA-seq data where possible 

(Supplemental Fig. S1G).  

Exonic function and amino acid alterations were determined using Annovar.14 Variants 

with amino acid change classified as “none,” “missing,”  or “UTR3” by Annovar as well as 

mutations occurring outside of a gene coding region were removed. Damaging mutations were 

defined as splicing, start-loss, stop-gain, stop-loss, frameshift insertion/deletion/substitution and 

non-frameshift insertion/deletion/substitution mutations. Genes with recurrent damaging 

mutations were defined as those with greater than three damaging mutations in the Western ATLL 

cohort. Gene significance (p < 0.001) was determined by using a cumulative binomial distribution 

to calculate the probability of observing a given number of mutations in that gene, adjusting for 

gene length and expression quartile.  

We then employed a “rule-in” methodology to orthogonally validate variants against 

published datasets. Variants of interest were identified by two frequency-based criteria: first, 

variants seen at least 15 times in the COSMIC70 database15; second, variants seen in at least 



one matched T-cell lymphoma (TCL) sample and at least three samples in the combined ATLL + 

publicly available TCL dataset.15-17 Recurrent tumor suppressors (n > 3 damaging mutations with 

allele frequency > 0.05) were examined for significance (p < 0.01) using a  negative binomial 

distribution adjusting for gene length. An illustration of this pipeline can be seen Supplemental 

Fig. S2.  

 

CNV Putative Driver Gene Calling Initial peaks were called using the Thermo-Fisher Oncoscan 

CNV assay, a clinically-utilized and industry-validated commercial copy number variation (CNV) 

assay. Copy number calls were filtered to remove peaks within the Duke Blacklisted Regions, 

regions of frequent segmental duplication, or regions with low exome coverage8. CNVs >500 kbp 

and LOH >3 Mbp were manually reviewed by a molecular pathologist for quality. Purity was 

estimated by applying a kernel density estimate to evaluate the modes of CNV relative ratios 

(Supplemental Fig. S1K).  

These data were then combined with a published dataset of called copy number variation 

peaks18 kindly provided by the Ogawa lab to form a combined Japanese and Western dataset. 

Dataset-wide significance was determined using GISTIC2.0 with a residual q-value cutoff of 

0.0001.19 If multiple peaks of the same directionality were called in the same cytoband, only the 

more significant peaks were kept. Peaks falling within T-cell receptor gene regions were discarded 

because these were presumed to have occurred during thymic development. Putative driver 

genes within a peak were identified in a hierarchical fashion as depicted in Supplemental Figure 

S3. First, the significance of a gene’s mutational burden was determined through simulating the 

distribution of dataset mutations across the genome 10,000 times. Deleted genes with more 

damaging mutations than expected by chance and with five times greater significance than the 

next most significant gene were determined to be driver genes. If no driver gene was identified 

through this method, our algorithm then searched hierarchically for known ATLL driver 

mutations.18, 20, 21 If none were found, the peak was then searched for known tier-one 



oncogenes/tumor suppressors in the COSMIC70 Cancer Census database and in-house 

databases of cancer-associated mutations.15, 16, 22, 23.If none were found, the search range was 

expanded to the ten neighboring genes in either direction and another iteration underwent. If no 

driver gene was identified within the peak by this analysis, a literature search was conducted to 

manually identify any putative oncogenes/tumor suppressors.  

 

RNA-Seq Analysis. RNA-seq data collected from fresh CD4+ tumor cells and FFPE-preserved 

tissue samples were each analyzed separately as previously described.5, 16, 17 Sequencing data 

was aligned using STAR. Counts were tallied with HT-Seq and normalized using DESeq2. Genes 

of interest were examined for differential expression between mutant and wildtype samples. 

Genes of interest were also examined for modules of correlated expression using weighted gene 

correlation network analysis.24 Due to known differences between FFPE and fresh/frozen sample 

RNA sequencing quality,25 FFPE and fresh/frozen samples in our cohort were each analyzed 

independently.  

 

Isolation and culture of primary human CD4+ T-cells. Primary human T-cells were isolated 

from enriched leukapheresis products (Leukopaks, AllCells). PBMCs were isolated from 

Leukopaks by Ficoll-Hypaque gradient centrifugation. We used Dynabeads CD4 Positive Isolation 

Kit (Invitrogen #11331D) to isolate CD4+ T-cells from these PBMCs by magnetic positive 

selection. Isolated CD4+ T-cells were frozen in Fetal Bovine Serum (FBS) with 10% DMSO for 

later use. Upon thawing, cells were cultured in complete RPMI consisting of RPMI-1640 medium 

(Gibco #21875034), 10% FBS, 1% pen/strep, 1mM Sodium Pyruvate and 10mM HEPES. Thawed 

cells were stimulated with plate-bound anti-human CD3 (OKT3, Biolegend #317326) at 10µg/mL 

and soluble anti-human CD28 (CD28.2, Biolegend #302943) at 5µg/mL with IL-2 at 50U/mL at 1x 

106 cells/mL. 

 



CRISPR-based gene knockdown in human T-cells. Transfection of human CD4+ T-cells was 

performed as previously described.26 Briefly, guide RNAs were designed using the CRISPick 

online design tool by Broad Institute 27 and purchased from Integrated DNA technologies (IDT, 

Alt-R CRISPR Cas9 crRNA). Following manufacturer protocol, crRNAs were duplexed with 

tracrRNA (IDT #1072534) for 40min at 37°C in 5% CO2 incubator. They were then complexed 

with Cas9 protein (Macrolab, Berkeley, 40µM stock) at 1:1 molar ratio for 15min at 37°C. After 72 

hours of stimulation, cells were collected, pelleted and resuspended in Lonza electroporation 

buffer P3 (Lonza #V4XP-3032) at 0.5 x 106 cells/20µL. Cells were electroporated at 0.5 x 106 per 

well in 16-well cuvettes using pulse code EH115 (Lonza #AAF-1002X). The total number of cells 

for electroporation was scaled as required. Immediately after electroporation, 80µL of pre-warmed 

complete RPMI culture media were added to each well of the cuvettes. Cuvettes were placed in 

incubator at 37°C and 5% CO2 for 15 minutes. Cells were then transferred to 96-well plates in 

complete RPMI media containing 50U/mL IL-2 at 2.5 x 106 cells/mL and rested for 4 days, adding 

fresh media with IL-2 at 50U/mL on day 2. 

 

T-cell proliferation assay pipeline After CD4+ T-cell isolation (Day 0), cells were stimulated with 

plate-bound anti-human CD3/CD28 and IL-2 at 50U/mL as described above. Following 72 hours 

of stimulation (Day 3), cells were electroporated with crRNP complexes and cultured in complete 

RPMI media with 50U/mL IL-2 for 4 days with no stimulation. After 4 days of culture (Day 7) cells 

were split to make protein lysate pellets and genomic DNA pellets for CRISPR knockout 

verification via western blot and TIDE sequencing, respectively. Remaining cells were 

restimulated with ImmunoCult Human CD3/CD28/CD2 T-cell Activator (STEMCELL #10970) in 

complete RPMI media with IL-2 at 50U/mL for 6 days. ImmunoCult was used at 1/8 of 

manufacturers recommended dose of 25µL/mL of cell culture. On day 13, cells were stained with 

CFSE as described above and cultured for 4 days in complete RPMI media without IL-2 and with 

or without ImmunoCult stimulation. Stimulation with ImmunoCult after CFSE staining was used at 



1/16th of manufacturers recommended dose of 25µL/mL of cell culture. After 4 days, cell 

proliferation was assessed by Fluorescent-activated Cell Sorting (FACS). Gating strategy, 

including positive controls, is illustrated in Supplemental Fig. 7. 

 

CFSE Staining Carboxyfluorescein succinimidyl ester (CFSE) staining of arrayed cells that were 

edited with crRNPs was done in 96-well deep well 2.0mL microplates (VWR #75870-796). CFSE 

(Invitrogen #C34554) was prepared per manufacturer’s protocol to make a 5mM stock solution in 

DMSO. At time of use, this stock was diluted 1:1000 in PBS to make a 5µM working solution that 

was used to resuspend cells washed in PBS. Cells were transferred from 96-well culture plates 

into deep well 96-well plates using a manual multichannel pipette. They were washed with 1mL 

of PBS per well using a 10mL serological pipette. After spinning and decanting, cells were 

resuspended in 0.2mL of 5µM CFSE and incubated in 37°C tissue culture incubator with 5% CO2 

for 20 minutes. Then, 1mL of RPMI with 10% FBS was added to each well to quench and incubate 

for 5 minutes in tissue culture incubator. Finally, cells were pelleted and resuspended in pre-

warmed complete RPMI and incubated for an additional 10 minutes in tissue culture incubator 

prior to stimulation. 

 

Pseudo viral transductions. For Lenti viral transduction, 1ug of psPAX2, 1ug of pMD2.G, and 

1ug of pCDH over-expressing vectors (1ug of pHIT60, 1ug of pHIT123, and 1ug of pMSCV-

U6sgRNA(BbsI)-PGKpuro2A-Foxo3 for retro viral transduction) were complexed with 9ug of 

EcoTransfect reagent (OzBiosciences, San Diego, CA 92126) and transfected to 70% confluence 

293TN in 12 wells plate. Pseudo viral particles were harvested at 48 hours and 72 hours, 

combined and filtered through a 0.45um syringe filter. 1.0 mL of pseudo viral particles was used 

to infect 250,000 cells of ATLL-84c or ATTL-97c in 12 wells plate for 8 hours in 37C 5% CO2 

incubator. After infection, 1.0 mL of additional 1640 + 10% fetal bovine serum was added to wells 



and continue to incubate for 48 hours. Puromycin was added to the cells at a concentration of 

1ug/mL for selection of positive clones. 

 

Western Blot Analysis. Whole cells protein lysates (25-50μg) from available PBMCs or frozen 

solid tumor specimens were fractionated on 8% or 12% SDS-PAGE and transferred by 

electroblotting onto nitrocellulose membranes (Bio-Rad Laboratories, Hercules, CA). 

Immunoblottings were performed using the following primary antibodies: DGKZ (Novus 

Biologicals, LLC, Centennial, CO), Foxo3 (BioVision Inc., Milpitas, CA), β-actin (8H10D10), CBLB 

(D3C12), PTPN6 (C14H6) BIM (C34C5) and p21 (12D1) (Cell Signaling Technology, Danvers, 

MA).  Protein blots were visualized with either SuperSignal West Pico PLUS or SuperSignal West 

Femto Maximum Sensitivity Substrate (Life Technologies Corporation, Grand Island, NY). 

 

FOXO3 gene overexpression and CRISPR-based knockdown constructs in patient-derived 

ATLL cell lines. ATLL-84c and ATLL-97c are clonally-proven ATLL cell lines derived from tumor 

cells carrying the typical CD4+CD25+ ATLL phenotype (established at Ramos lab)71. Lenti 

pseudo viral particles were packaged with psPAX2 (Addgene plasmid #12260) and pMD2.G 

(Addgene plasmid #12259).  mCAT-1 ATLL lines for retroviral transductions were generated by 

transduction of Lenti pseudo-viral particles prepared with mCAT-1 ORF in a modified pCDH-CuO-

MCS-EF1α +Puro plasmid (System Biosciences).  FOXO3 CRISPR knockdown ATLL cell lines 

were established by the transduction of pseudo viral particles from all-in-one vector 

pLentiCRISPR v2 -Foxo3 sgRNA target 5’-GACAGAGTGAGCCGTTTGTC-3’ or 5’-

AGAGAGGCGCATCATCGTCC-3’ (GenScript) and control non-silencing sgRNA sequence 5’-

GTATTACTGATATTGGTGGG-3' (BRDN0001149198).  shRNA-inducible ATLL constructs were 

established with pseudo viral particles generated from Tet-pLKO-puro (Addgene plasmid# 21915) 

targeting 5’-GCTCTTGGTGGATCATCAA-3’.  Retroviral pseudo particles for over-expression of 

FOXO3 were generated with pMSCV-U6sgRNA(BbsI)-PGKpuro2ABFP  (Addgene plasmid # 



102796) where the blue fluorescent protein (BFP) ORF was replaced with FOXO3 ORF and 

packaged with plasmids pHIT60 and pHIT123 (kindly provided by Müschen Lab.) FOXO3 R177W 

and D199N mutated constructs were genera rated in ATLL-84c cells using lentiviral 

transduction.  The nucleotide composition of these vectors was verified by DNA PCR and 

sequencing.  
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