Response to DA-EPOCH-R is associated with activation of 'fitter' cytotoxic T cells in patients with newly diagnosed double and triple hit high-grade B-cell lymphoma

Authors

A. Vera de Jonge,^{1,2} Wassilis S. C. Bruins,^{1,2} Carolien Duetz,^{1,2} Charlotte L. B. M. Korst,^{1,2} Rosa Rentenaar,^{1,2} Meliha Cosovic,^{1,2} Merve Eken,^{1,2} Marie-José Kersten,^{1,2} Yorick Sandberg,³ Rozemarijn S. van Rijn,⁴ Rob Fijnheer,⁵ Pim Mutsaers,⁶ Vibeke K. J. Vergote,⁷ Djamila Issa,⁸ Aart Beeker,⁹ Yavuz M. Bilgin,¹⁰ Otto Visser,¹¹ Erik van Werkhoven,^{12,6} Margaretha G. M. Roemer,^{1,2} Martine E. D. Chamuleau^{1,2} and Tuna Mutis^{1,2}.

¹Department of Hematology, Amsterdam UMC Location Vrije
Universiteit, Amsterdam, The Netherlands; ²Cancer Center Amsterdam,
Cancer Biology and Immunology, Amsterdam, The Netherlands;
³Department of Internal Medicine, Maasstad Hospital, Rotterdam, The
Netherlands; ⁴Department of Internal Medicine, Medisch Centrum
Leeuwarden, Leeuwarden, The Netherlands; ⁵Department of Internal
Medicine, Meander Medisch Centrum, Amersfoort, The Netherlands;
⁵Department of Hematology, Erasmus MC Cancer Institute, Rotterdam,
The Netherlands; ¹Department of Hematology, University Hospitals
Leuven, Leuven, Belgium; ³Department of Internal Medicine, Jeroen
Bosch Hospital, 's-Hertogenbosch, The Netherlands; ³Department of
Internal Medicine, Spaarne Gasthuis, Hoofddorp, The Netherlands;
¹¹Department of Internal Medicine, Isala, Zwolle, The Netherlands and
¹²HOVON Foundation, Rotterdam, The Netherlands

Correspondence:

T. MUTIS - t.mutis@amsterdamumc.nl

https://doi.org/10.3324/haematol.2024.285170

SUPPLEMENTS

Response to DA-EPOCH-R is associated with activation of 'fitter' cytotoxic T-cells in patients with newly diagnosed double and triple hit high-grade B-cell lymphoma

Running title: Immune effector cells during treatment of HGBL

Authors:

A. Vera de Jonge^{1,2}, Wassilis S.C. Bruins^{1,2}, Carolien Duetz^{1,2}, Charlotte L.B.M. Korst^{1,2}, Rosa Rentenaar^{1,2}, Meliha Cosovic^{1,2}, Merve Eken^{1,2}, Marie-José Kersten^{1,2}, Yorick Sandberg³, Rozemarijn S. van Rijn⁴, Rob Fijnheer⁵, Pim Mutsaers⁶, Vibeke K.J. Vergote⁷, Djamila Issa⁸, Aart Beeker⁹, Yavuz M. Bilgin¹⁰, Otto Visser¹¹, Erik van Werkhoven^{12,6}, Margaretha G.M. Roemer^{1,2}, Martine E.D. Chamuleau^{1,2}, Tuna Mutis^{1,2},*

Affiliations

- 1. Department of Hematology, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands.
- 2. Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- 3. Department of Internal Medicine, Maasstad Hospital, Rotterdam, The Netherlands
- 4. Department of Internal Medicine, Medisch Centrum Leeuwarden, Leeuwarden, The Netherlands
- 5. Department of Internal Medicine, Meander Medisch Centrum, Amersfoort, The Netherlands
- 6. Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
- 7. Department of Hematology, University Hospitals Leuven, Leuven, Belgium
- 8. Department of Internal Medicine, Jeroen Bosch Hospital, 's-Hertogenbosch, The Netherlands
- 9. Department of Internal Medicine, Spaarne Gasthuis, Hoofddorp, The Netherlands
- 10. Department of Internal Medicine, Adrz, Goes, The Netherlands
- 11. Department of Internal medicine, Isala, Zwolle, The Netherlands
- 12. HOVON foundation, Rotterdam, The Netherlands
- * corresponding author: Tuna Mutis, Department of Hematology, Amsterdam UMC, VU medical center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; e-mail: t.mutis@amsterdamumc.nl

Supplementary files:

- Supplementary Table 1 & 2
- Legend Supplementary Figure 1
- Supplementary Figure 1

Supplementary Table S1

Baseline characteristics of newly diagnosed high grade B-cell lymphoma patients stratified for achieving complete metabolic remission (CMR) after treatment with DA-EPOCH-R (left columns) and all patients (right column). Statistical tests used for group comparisons include the Pearson $\chi 2$ test and the Kruskall–Wallis test for categorical and continuous variables, respectively. P-values < 0.05 are considered statistically significant.

	CMR	No CMR	P-value	All patients
	(N=40)	(N=30)		(N=70)
Age (years)				
Mean (SD)	59.3 (10.5)	61.5 (9.16)	0.35	60.2 (9.93)
Median [Min, Max]	60.0 [35.0, 79.0]	62.5 [36.0, 78.0]		62.0 [35.0, 79.0]
Sex				
Male	27 (67.5%)	19 (63.3%)	0.91	46 (65.7%)
Female	13 (32.5%)	11 (36.7%)		24 (34.3%)
WHO Performance score				
0	29 (72.5%)	15 (50.0%)	0.03	44 (62.9%)
1	11 (27.5%)	11 (36.7%)		22 (31.4%)
2	0 (0%)	4 (13.3%)		4 (5.7%)
3	0 (0%)	0 (0%)		0 (0%)
LDH				
Within reference range	17 (42.5%)	6 (20.0%)	0.002	23 (32.9%)
Elevated	23 (57.5%)	24 (80.0%)		47 (67.1%)
Extranodal localisations (no.)				
None	17 (42.5%)	12 (40.0%)	0.62	29 (41.4%)
1	9 (22.5%)	5 (16.7%)		14 (20.0%)
2 or more	14 (35.0%)	12 (40.0%)		26 (37.1%)
Unknown	0 (0%)	1 (3.3%)		1 (1.4%)
IPI-score				
Low	7 (17.5%)	3 (10.0%)	0.02	10 (14.3%)
Low-intermediate	21 (52.5%)	8 (26.7%)		29 (41.4%)
High-intermediate	8 (20.0%)	17 (56.7%)		25 (35.7%)
High	4 (10.0%)	2 (6.7%)		6 (8.6%)
DH/TH status				
BCL2 DH	31 (77.5%)	18 (60.0%)	0.18	49 (70.0%)
BCL6 DH	4 (10.0%)	3 (10.0%)		7 (10.0%)
TH	5 (12.5%)	9 (30.0%)		14 (20.0%)
COO classification (Hans)				
GCB	31 (77.5%)	28 (93.5%)		59 (84.3%)
Non-GCB	4 (10%)	2 (6.7%)		4 (5.7%)
Unknown (poor morphology)	5 (12.5%)	0		7 (10%)

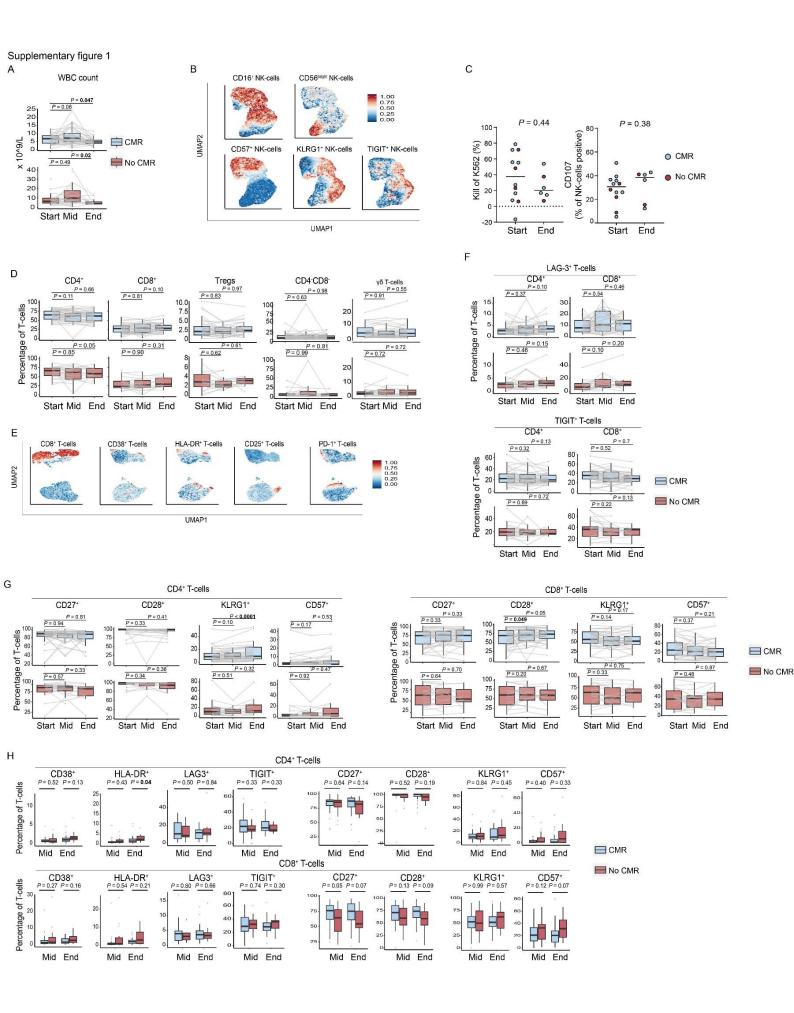
Supplementary Table S2.

Flow-cytometric phenotyping of cryopreserved PBMCs and the number of patient samples measured for each flow-cytometry panel per time point.

Human normal immunoglobulins (final concentration 0.1 mg/ml, Nanogram, Sanquin Plasma Products B.V.) were added before staining to reduce unwanted non-specific FC-receptor binding of fluorochrome-conjugated antibodies. Spectral overlap was automatically calculated and compensated using compensation beads and FACSDiva™ software. Flow cytometer performance and standardization were monitored daily with fluorescent-labeled CS&T beads (BD, 655051). Laser voltages were optimized within a <2% deviation using BD OneFlow™ Setup Beads (BD, 658620) and Alignflow™ Flow cytometry Alignment Beads (Thermo Fisher Scientific, A16502) on a daily setting.

Raw flow cytometry data (fcs 3.1 files) were manually analyzed using FCS Express Flow Cytometry Software (version 6) to identify, gate and export single T-cell and NK-cell populations. Pre-processing included data cleaning (PeacoQC18), hyperbolic arcsin transformation, approximated min-max scaling and batch correction (quantile normalization) in R and R studio (version 4.0.3). Computational data analysis was performed using UMAP and FlowSOM on 10.000 cells per fcs file.

DA-EPOCH-R	Day 1 first cycle	Day 1 third cycle	After fifth cycle
Flow cytometry panels	START	MID	END
I. T-cell phenotype	CMR	CMR	CMR
Differentiation, senescence,	N=40	N=35	N=37
exhaustion (PD-1, TIM3, TIGIT,	No CMR	No CMR	No CMR
CD27, CD28)	N=30	N=23	N=12
II. T-cell phenotype	CMR	CMR	CMR
Tregs, gd-T-cells	N=40	N=30	N=34
Exhaustion (PD-1, LAG3)	No CMR	No CMR	No CMR
Activation (CD38, HLA-DR)	N=26	N=18	N=12
III. NK-cell phenotype	CMR	CMR	CMR
NK-cell subsets, senescence,	N=35	N=23	N=31
activation (DNAM-1, HLA-DR)	No CMR	No CMR	No CMR
	N=23	N=15	N=11
IV. NK-cell phenotype	CMR	CMR	CMR
NK-cell subsets, receptors	N=31	N=18	N=26
(NKG2A, NKG2C, NKG2D and	No CMR	No CMR	No CMR
TIM-3)	N=18	N=13	N=9


Legend

Supplementary Figure 1. NK-cell and T-cell phenotypes associated with response to DA-EPOCH-R.

- (A) Total white blood cell (WBC) count as *10⁹/L collected at day 1 of the first (start) and third (mid) and after the fifth DA-EPOCH-R cycle (end) for patients who at the end of DA-EPOCH-R achieved complete metabolic remission (CMR, blue) or did not achieve CMR (red). (B) Dimensionality reduction by UMAP of the flow cytometry data of NK-cells. Color overlays for CD16, CD56, CD57, KLRG1 and TIGIT. (C) Percentages of kill of K562 and degranulation as measured by CD107a/b surface expression on NK-cells after 4 hours co-culture of peripheral blood mononuclear cells (PBMCs) with K562 cell line at day 1 of the first (start) and after the fifth DA-EPOCH-R cycle (end) for patients who at the end of DA-EPOCH-R achieved complete metabolic remission (CMR, blue) or did not achieve CMR (red). Cytotoxicity is calculated relative to the amount of K562 cells without PBMCs.
- (**D**) Percentages of CD4⁺ T-cells, CD8⁺ T-cells, regulatory T-cells (Tregs), CD4⁻CD8⁻ and innate-like $\gamma\delta$ -T-cells as percentages of total T-cells at day 1 of the first (start) and third (mid) and after the fifth DA-EPOCH-R cycle (end) for patients who at the end of DA-EPOCH-R achieved complete metabolic remission (CMR, blue) or did not achieve CMR (red).
- (E) Dimensionality reduction by UMAP of the flow cytometry data of T-cells. Color overlays for CD8, CD38, HLA-DR and PD-1.
- (F-G) LAG3⁺ (left panels) or TIGIT⁺ (right panels) (F) and CD4⁺ (left panels) and CD8⁺ (right panels) expressing markers associated with T-cell senescence (loss of CD27 and CD28, and gain of KLRG1 and CD57) (G) as percentages of total T-cells at day 1 of the first (start) and third (mid) and after the fifth DA-EPOCH-R cycle (end) for patients who at the end of DA-EPOCH-R achieved complete metabolic remission (CMR, blue) or did not achieve CMR (red). (H) Percentages of CD4⁺ (upper panels) CD8⁺ (lower panels) T-cells expressing markers associated with T-cell activation (CD38, HLA-DR and CD25), immune checkpoints (LAG3 and TIGIT), and markers associated with T-cell senescence (loss of CD27 and CD28, and gain of KLRG1 and CD57) at third (mid) and after the fifth DA-EPOCH-R cycle (end) for patients who at the end of DA-EPOCH-R achieved complete metabolic remission (CMR, blue) or did not achieve CMR (red).

For all box plots, the lower upper hinges correspond to the 25th and 75th percentiles. The middle hinge corresponds to the median. The whiskers extend from the largest to smallest value +/- 1.58 * interquartile range. Outliers are plotted individually.

Linear mixed effect models (A,D, F, G) and non-parametric Mann-Whitney U test between two groups (C, H) were used for statistical analysis in which P < 0.05 was considered significant. No multiple correction was applied.

