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Supplemental files 
 
Methods 

Sample collection and single cell preparation 

BMMCs were isolated by Ficoll (MERCK) density-gradient centrifugation and cryopreserved at -80°C for 

less than five days until processed. The number and viability of cells was measured using a TC20 

automated cell counter (Biorad). Dead cells (cell viability less than 80%) were removed by magnetic bead 

purification (Miltenyi Biotech) according to the manufacturer’s protocol before scRNA-seq.  

Single-cell RNA library preparation and sequencing  

Chromium single-cell sequencing technology was performed following the manufacturer’s protocol (10× 

Genomics). Library construction procedures were performed using the Chromium Single Cell 3’ Library, 

Gel Bead & Multiplex Kit (10× Genomics, V2), strictly following the manufacturer’s instructions. Then the 

cell suspensions were loaded onto the 10x Chromium Single Cell Controller to generate single-cell gel 

bead-in-emulsions (GEMs), and we performed barcoded reverse transcription of RNA within a single cell 

using a Verity Thermal Cycler (Life Technologies). Through reverse transcription in a single GEM, the 

barcodes were added to the RNAs released from lysed cells; then fragmentation, end repair, polyA tailing, 

and adaptor ligation were achieved according to the standard protocol. The cDNA purification and size 

selection were performed by SPRI select beads (Beckman Coulter), and the quality was evaluated using 

the Agilent Bioanalyzer. Finally, the libraries were sequenced on an MGISEQ-2000 sequencer as 150 bp 

paired-end reads by Beijing Genomics Institute (BGI, Shenzhen, China).  

scRNA-seq data processing 

The Cell Ranger Software Suite (version 3.0.2; 10x Genomics) was used to perform sample de-

multiplexing, alignment, barcode processing, and unique molecular identifier (UMI) counting. Briefly, 

sequencing reads were aligned against the GRCh38 human reference genome with STAR, and count 

matrices were built from the resulting BAM files.(1) The R package scCancer v2.1.0(2) was then used to 

conduct the quality control, which detected outliers automatically according to the distributions of the 

metrics. First, the number of total unique molecular identifiers (UMI; nUMI), number of expressed genes 

(nGene), and percentage of UMIs from mitochondrial genes (mito.percent), ribosomal genes (ribo.percent) 

and dissociation-associated genes (diss.percent) were used to filter low-quality cells and multiplets (see 

the auto-selected thresholds in Suppl. Fig. 1B). We then filtered the genes that were expressed in <3 cells. 

For the integration of the cells from different samples, we corrected batch effect using the R package 



harmony (version 0.1.1).(3) In parameter settings, the first 30 dimensions of canonical correlation analysis 

(CCA) and principal component analysis (PCA) were used. 

Dimensionality reduction, clustering of cells, and visualization 

The R package Seurat v.3 was used for data scaling, transformation, clustering, dimensionality reduction, 

differential expression analysis, and most visualizations.(4, 5) The variable genes were identified using the 

‘vst’ method in the Seurat ‘FindVariableFeatures’ function. PCA was performed using the top 2,000 variable 

genes. Graph-based clustering was performed on the PCA-reduced data for clustering analysis. The 

resolution was set to 0.5 to obtain a more refined result. Briefly, the first 50 PCs of the integrated gene-cell 

matrix were used to construct a shared nearest-neighbor graph (SNN; ‘FindNeighbors’), and this SNN was 

used to cluster the dataset (‘FindClusters’) using a graph-based modularity-optimization algorithm of the 

Louvain method for community detection. Then UMAP was performed on the top 30 principal components 

for visualizing the cells. 

Cell cluster annotation with specific maker genes expression 

The marker genes, identified by the ‘FindAllMarkers’ function—with the setting ‘only.pos’ as ‘True’, ‘min.pct’ 

as 0.25, ‘logfc.threshold’ as 0.25 and ‘test.use’ as ‘wilcox’—were used to annotate cell clusters. Cluster 

annotation was confirmed using the celltypist, an automated cell type annotation tool for scRNA-seq 

datasets based on logistic regression classifiers optimised by the stochastic gradient descent algorithm.(6) 

Characterizing the cell distribution in sample groups 

To characterize the group distribution of cells, odds ratios (OR) were calculated and used to indicate 

preferences as reported.(7) Specifically, for each combination of cells i and group j, a 2 by 2 contingency 

table was constructed, which contained the number of cells i in group j, the number of cells of cell i in other 

groups, the number of non-i cells in group j, the number of non-i cells in other groups. Then Fisher’s exact 

test was applied on this contingency table, thus OR and corresponding p-value could be obtained. We 

labeled groups with a p-value < 0.05 using an asterisk (*). A higher OR with an asterisk indicated that cells 

i was more preferred to distribute in group j, while a lower OR with an asterisk indicated that cells i was 

preferred to less distribute in group j. 

Plasma-cell lineage developmental trajectory 

The scRNA-seq data of CD34+, CD19+, and CD138+ cells from healthy donors including PRJCA003794(8) 

and PRJNA732205(9) were used to build the plasma-cell lineage and differentiation stage classifier. 

Pseudotime-ordered analysis of HSCs, pro-B cells, pre-B cells, immature B cells, naïve B cells, memory 



B cells, plasmablasts, and plasma cells was performed using Monocle2.(10)  

Plasma-cell differentiation stage classifier 

To discriminate the differentiation stage of MM cell clusters, we trained a plasma-cell differentiation stage 

classifier using random forest training. The training was based on eight annotated cells representing 

different differentiation stages (HSCs, pro-B cells, pre-B cells, immature B cells, naïve B cells, memory B 

cells, plasmablasts, and plasma cells). We utilized the 'FindAllMarkers' function from Seurat v.3 to select 

the top 100 marker genes for each stage, sorted according to the average fold change. Cell cycle-related 

genes, mitochondrial genes, ribosomal genes, and genes associated with cell dissolution were removed, 

resulting in 597 non-redundant feature genes in total. The normalized gene-cell matrix by Seurat v.3 was 

randomly split into a 70% training set and a 30% validation set using the caTools package. The training 

was performed using the 'randomForest' function from the randomForest v4.6 package, generating 500 

trees. For testing, we used the 'roc' function from the pROC package v1.18.0 to calculate the sensitivity 

and specificity of the predictions for each cell type in the validation set. Finally, we utilized ggroc v1.0 to 

plot the ROC curves. 

Processing of scBCR-seq data 

The outsourced scBCR-seq were processed using CellRanger v3.0.2 (‘vdj’ pipeline with default setting 

and using the V(D)J library GRCh38) and the output files with cell and clonotype information were 

generated. According to the clonotypes provided by the file ‘filtered_contig_annotations.csv’, we counted 

the cell number of each clonotype as its abundance. Cells were assigned to ‘abundance>10′, 

‘abundance≤10’ or ‘none’ according to the abundance of their clonotypes. 

Calculating the proportion of Kappa+ cells 

The human genome has one kappa constant (IGKC) gene but variable number of lambda constants – 

IGLC1, IGLC2, IGLC3 and IGLC7 are functional isotypes. Let t be a chosen transcript count threshold and 

K the number of cells expressing at least t IGKC transcripts. Further let L be the number of cells expressing 

at least t transcripts of any of three out of the four functional lambda isotypes: IGLC2, IGLC3 and IGLC7.(11) 

The IGLC1 transcript was not detected in any B cell, probably because complete overlap of its 3’end with 

the IGLL5 gene precludes IGLC1 mRNA quantification with 3’end RNA-Seq assays. The % kappa+ cells 

within a given population was calculated as: !"##"! = "
"!#. t = 1 was chosen. The estimated % of kappa+ 

cells was robust to different values of t ranging between 1 and 5. 



Topology of sequenced genes in MM cells 

We transposed the gene-by-cell matrix of MM cells and applied dimensionality reduction and clustering 

techniques to analyze 20,711 genes across 12,835 MM cells using Seurat v.3. To identify genes with 

differential expression in specific clusters or samples, we employed the 'FindMarkers' function with the 

'wilcox' parameter, conducting the Wilcoxon rank-sum test with a significance threshold of P<0.05. 

Differential genes with a fold change greater than 1 were considered specific to clusters or samples. We 

utilized UMAP for visualizing their distribution characteristics. 

Construction of transcriptional regulatory network and gene co-expression network 

We selected specific genes from cluster 4 to infer the transcriptional regulatory network and establish a 

co-expression network. Candidate transcription factors and transcription factor-target pairs were obtained 

from TRRUST v2(12), which includes 8,444 regulatory interactions (annotated as ‘activation’, ‘repression’, 

and ‘unknown’) for 800 transcription factors in humans. We retained only the edges where both the 

transcription factor and target were present in the specific genes of cluster 4. Moreover, we kept only the 

transcription factors with at least two edges annotated as ‘activation’ or ‘repression’ in the final network. 

To construct the co-expression network, we calculated the Pearson correlation between the specific genes 

of cluster 4 in cluster 4 MM cells. Genes with a P-value < 0.05 and an absolute correlation coefficient > 

0.4 were retained. Clustering of the co-expression network was performed using MCODE in Cytoscape 

v3.9.0, and the top 4 clusters with a degree cutoff of 5 were kept. The networks were visualized using 

Gephi v0.10.1 with the ‘Fruchterman Reingold’ layout. 

WES data processing and mutation calling from scRNA-seq data 

Mutations of reported driver genes(13) were identified from bulk Whole Exome Sequencing (WES) data 

from 947 newly diagnosed MM patients of MMRF-CoMMpass cohort processed by MuTect2 of GATK 

pipeline (vcf files of IA20 version, https://tcga-data.nci.nih.gov/). Next, the identified variants were further 

examined in the scRNA-seq data of the MM cells using cb_sniffer v1.0 

(https://github.com/sridnona/cb_sniffer). For this analysis, two additional files generated by CellRanger 

were required: the aligned BAM file of scRNA-seq data and the corresponding cell barcode file. The output 

file of cb sniffer with the suffix name ‘counts_CB.tsv’ recorded cell barcodes that had the specific mutation. 

Finally, the frequency of 63 driver genes mutation in single cell was calculated as mutation score. 

The significance of cluster 4 on overall survival of MM patients 

Deconvolution of subclusters in bulk tumor cells from GSE2658 RNA martrix was performed using support 



vector machine (SVM) algorithms by CIBERSORTx(14). Normalized average expression matrix of 10 

plasma cell clusters served as the input signature matrix and the relative cell fraction was further imputed 

with scRNA-seq mode. The optimal cut point for the fraction of cluster 4 in MM patients was determined 

using the maximally selected rank statistics from the maxstat R package. The log-rank test was employed 

to calculate P-values between MM patients with high or low cluster 4 fractions, and the Kaplan–Meier 

method was performed to plot survival curves for survival analyses. 

Single cell copy number variations (CNVs) calling 

To identify clonal large-scale chromosomal CNVs in malignant MM cells, we used the inferCNV R package 

to infer the genetic profiles of each cell based on the average expression of large genes sets (101 genes) 

in each chromosomal region of the tumor genome compared to normal cells(15) All malignant plasma cells 

MM were input as interrogation group and normal plasma cells from HDs were sampled as control. Other 

parameters were set as default. CNVs on autosomes were visualized using the R package RCircos(16). 

Projection and analysis of myeloid cells 

We leveraged STACAS package to integrate pan-cancer myeloid cells from 45 human samples of 

PRJNA647394 and myeloid-derived suppressor cells (MDSCs) from PRJNA578550 and further built a 

customized reference atlas for myeloid cells.(17-19) We projected our myeloid cell to this reference map 

with ProjecTILs v3.1, allowing accurate embedding of new scRNA-seq data into a reference.(20) 

Subsequently, we calculated MDSC signature, activated score and migratory score of DC cells, anti-/pro-

inflammatory score of monocytes, and M1/M2 polarization score of macrophages with reported gene set 

by AddModuleScore function in Seurat v.3.(18, 19, 21) 

RNA sequencing and data processing 

Bulk RNA-seq was used to characterize the in-house data of the MM patients for verification. 133 newly 

diagnosed MM patients were involved at the Institute of Hematology and Blood Diseases Hospital, Chinese 

Academy of Medical Sciences, and Peking Union Medical College. RNA extraction was performed using 

the miRNeasy Mini Kit (Qiagen). The RNA yield and cDNA libraries from CD138-selected plasma cells 

were sequenced on the NextSeq500 Sequencing System (Illumina) with read length of paired-end 150 bp. 

Raw reads were pre-processed using FastQC software. Clean reads were then used for subsequent 

analyses. RNA-seq reads were aligned to GRCh38 using STAR. Transcript expression levels were 

quantified after normalizing the count data with the edgeR package.(22)  

ATAC-seq analysis 



Assay for Transposase Accessible Chromatin with high-throughput sequencing (ATAC-seq) uses Tn5 

transposase to insert adaptors into the accessible region on the genome. The obtained library can directly 

identify the transcription factor binding region and nucleosome position, providing an effective approach 

for researching gene regulation and genomic imprinting. ATAC-seq unveiled significant increase in 

chromatin accessibility within the promoter region of the LILRB4 gene in cell lines exhibiting elevated 

expression levels of LILRB4.  

Cell Culture and transfection 

MM cell lines were kept in our laboratory and authenticated by short-tandem repeat (STR) profiling. 

The MM cell lines with stable LILRB4 overexpression (OE) or deletion (KO) were produced by 

lentivirus transfection containing LILRB4-OE plasmid (pCDH-EF1A-hLILRB4-T2A-Puro) or Cas9-

expressing plasmids containing guide RNA (LentiCRISPR v2) respectively. The guide RNA 

sequences used for LILRB4 were listed in Table S4. Lentivirus packaging, the constructs for gene 

overexpression and CRISPR-Cas9-based constructs were performed according to our previous 

study.(23, 24) For LILRB4 knock-out, LILRB4 or control CRISPR lentivirus were transduced into cells 

and sorted via FACS isolation. Single clones were selected and validated by flow detection. 

Colony-formation assay 

A total of 1 000 MM cells were plated in triplicate in 1.1 ml methylcellulose-based medium 

(MethoCult™ H4230, StemCell Technologies) per 12-well and incubated for 2 weeks. The culture 

plate was taken photo under high-content analysis system (Operetta CLS). Colonies consisting of 

more than 50 cells were scored. 

Co-culture assay 

For MDSC induction, MM cells (1 × 105) and PBMCs from healthy donors (1 × 106) were co-cultured 

in 10% RPMI 1640 for 6 days. MDSC detection (CD11b+CD33+HLA-DR-/low) was performed by flow 

cytometry analysis. The in vitro experiments were performed in triplicate and repeated three times.  

For examining the regulation of LILRB4 expression by microenvironment cells, MM cells were firstly 

labeled by CFSE. Then MM cells and PBMCs from healthy donors were co-cultured at the ratio of 

1:10. After 3-day coculture, LILRB4 expression in CFSE+ MM cells was examined by flow cytometry. 

At the same time, CFSE+ MM cells were sorted by flow cytometry for LILRB4 mRNA detection. 

MDSC generation 



For MDSC cytotoxicity assay, MDSCs were induced in vitro. CD14+ monocytes were isolated from 

HD PBMCs following the EasySep Human Monocyte Isolation Kit (Stem cell, 19359). After isolation, 

monocytes were cultured in RPMI 1640 complete medium with the addition of IL-6 (10ng/ml) & GM-

CSF (10ng/ml) & PGE2 (1μg/ml) for 7 days. Flow sorting of MDSCs were then performed according 

to the expression of CD14+CD33+CD11b+.  

Cytotoxicity assays 

Target cells were labelled with CellTrace FarRed dye and incubated with LILRB4 STAR-T cells or 

mock-T cells at the indicated effector: target (E:T) ratio in triplicates for 24h or 48h. At the end of the 

co-culture, cells were harvested and stained with propidium iodide (PI). PI+CTR+ cells were quantified 

by flow cytometer. Co-culture supernatants were measured for the concentration of IFN-γ, IL-2, TNF-

α following the enzyme-linked immunosorbent assay kits. 

To determine cytotoxicity activity of LILRB4 STAR-T cells against MM patient samples, BMMCs were 

first stained with antibodies against CD38, CD11b, CD14, LILRB4 to quantify the LILRB4 positive 

target cells in BMMCs. Then, BMMCs were co-cultured with STAR-T cells or mock-T cells for 4h at 

E:T ratio of 1:1 and 5:1. After incubation, the co-culture cells were stained with CD38, CD11b, CD14, 

LILRB4 and 7-AAD. Counting beads were added for normalization as well. 

Flow cytometry analysis 

Flow cytometry was performed on CantoⅡ flow cytometer (BD Biosciences) and the data were 

analyzed by Flowjo V10 software (Treestar). The antibodies are listed in Table S5. 

Statistical analysis 

Data analyses were performed with R language and GraphPad Prism 8.0 Software. Statistical 

significance was set at P < 0.05.  

  



Supplemental Tables 
 
Table. S1| The gene list of the highly expressed genes regulated by H3K27ac in cluster4 
Gene p_val avg_logFC avg_logExp.1 avg_logExp.2 p_val_adj geneChr 
LILRB4 0 2.17908523 2.40554514 0.22645992 0 chr19 

STMN1 0 1.40553826 2.75145486 1.34591659 0 chr1 

PTTG1 0 0.95213495 1.28386214 0.33172719 0 chr5 

PAGE5 0 0.8527573 0.89321904 0.04046175 0 chrX 

TK1 0 0.72126706 0.88658346 0.1653164 0 chr17 

MCM5 0 0.65412165 0.84310093 0.18897929 0 chr22 

CENPW 0 0.62891533 0.74713037 0.11821504 0 chr6 

PHF19 0 0.57845067 0.69203694 0.11358627 0 chr9 

PVALB 0 0.53796586 0.55888082 0.02091495 0 chr22 

GINS2 0 0.53282238 0.63076266 0.09794028 0 chr16 

SSX1 0 0.290379 0.30059916 0.01022016 0 chrX 

MAGEB2 0 0.28337759 0.29427583 0.01089824 0 chrX 

CENPH 2.74E-302 0.55582099 0.67808887 0.12226788 5.76E-298 chr5 

PAFAH1B3 3.44E-301 0.80709162 0.95451379 0.14742217 7.25E-297 chr19 

GAPDH 4.39E-301 2.02869199 4.72114847 2.69245649 9.25E-297 chr12 

CDT1 5.20E-299 0.51638582 0.61495447 0.09856865 1.10E-294 chr16 

CENPN 4.99E-296 0.56668702 0.69338616 0.12669914 1.05E-291 chr16 

CRIP1 9.97E-295 2.11911896 3.14333347 1.0242145 2.10E-290 chr14 

GULP1 1.84E-289 0.32850986 0.34561042 0.01710056 3.87E-285 chr2 

SHCBP1 1.90E-282 0.38314151 0.43386619 0.05072469 4.00E-278 chr16 

ENO1 2.74E-282 1.61850607 2.49969514 0.88118907 5.77E-278 chr1 

FAM3B 2.75E-282 0.31034582 0.31738059 0.00703477 5.79E-278 chr21 

ACY3 5.01E-279 0.66839987 0.76295517 0.0945553 1.05E-274 chr11 

RRM2 1.29E-277 0.87093479 1.08603547 0.21510068 2.71E-273 chr2 

MAD2L1 1.96E-269 0.62099465 0.82557036 0.2045757 4.13E-265 chr4 

TYMS 5.49E-268 0.79456845 1.16973305 0.37516459 1.15E-263 chr18 

CDC6 5.83E-265 0.39851254 0.46916167 0.07064913 1.23E-260 chr17 

C19orf48 2.80E-260 0.91900105 1.2763505 0.35734945 5.89E-256 chr19 

ASF1B 2.31E-259 0.41431229 0.50840515 0.09409286 4.86E-255 chr19 

GMNN 6.86E-257 0.56085582 0.7075087 0.14665288 1.44E-252 chr6 

CD9 1.90E-254 1.38218422 1.8881117 0.50592748 4.00E-250 chr12 

TUBA1B 1.72E-253 1.72586739 3.58602697 1.86015958 3.63E-249 chr12 

PCLAF 1.36E-250 1.11541067 1.72628242 0.61087175 2.85E-246 chr15 

MCM7 2.34E-250 0.72937413 1.08684466 0.35747054 4.93E-246 chr7 

C11orf96 7.10E-249 0.72561813 0.82765119 0.10203306 1.50E-244 chr11 

ADTRP 8.92E-249 0.53174978 0.61626589 0.08451611 1.88E-244 chr6 

NLRP7 3.51E-247 0.2750494 0.28101606 0.00596667 7.38E-243 chr19 

POLD2 2.31E-245 0.7992543 1.0874332 0.2881789 4.87E-241 chr7 

FBL 5.27E-241 1.11599251 1.62947462 0.5134821 1.11E-236 chr19 



Table. S2| H3K27ac regulation in LILRB4 expression from ChIP-seq data of GSE145891 
 

Dataset PeakS
core 

(MACS
2) 

-log10 
(Pvalue) 

PeakStart PeakEnd annotation distanc
eToTSS 

GENES
YMBOL 

GSM4338508 42 6.23028 55171781 55178336 Promoter (<=1kb) 0 LILRB4 

GSM4338510 17 4.41754 55172220 55172804 Promoter (1-2kb) -1320 LILRB4 

GSM4338514 31 5.34083 55172181 55173612 Promoter (<=1kb) -512 LILRB4 

GSM4338516 63 8.31412 55171391 55178385 Promoter (<=1kb) 0 LILRB4 

GSM4338518 30 5.61436 55173013 55174228 Promoter (<=1kb) 0 LILRB4 

GSM4338520 12 2.90607 55172345 55172891 Promoter (1-2kb) -1233 LILRB4 

GSM4338522 18 3.64749 55172593 55172801 Promoter (1-2kb) -1323 LILRB4 

 
Table. S3| The baseline clinical information of bone marrow samples used for LILRB4 STAR-T cell 
cytotoxicity analysis 
 
Sample Disease status Treatment Cytogenetic aberrancy 
Pt1 Post-treatment PI-based 1q21gain, del(13q) 

Pt2 Post-treatment PI-based 1q21gain, del(13q) 

Pt3 ND PCL n.a. t(11;14) 

Pt4 NDMM n.a del(13q) 

Pt5 RRMM PI-based 1q21gain, del(13q), t(14;unidentified) 

Pt6 RRMM PI-based 1q21gain, del(13q), t(14;unidentified) 
Pt7 RRMM PI-based, Daratumumab, 

BCMA-ADC 
1q21gain, del(13q), t(14;unidentified) 

Pt8 RRMM PI-based, BCMA CAR-T 1q21gain, t(14;unidentified) 
Pt9 RRMM PI-based, BCMA CAR-T 1q21gain, t(4;14) 

 
 
Table. S4 | The guiding RNA for LILRB4 Crispr-Cas9 knockout 

Guiding RNA # Guiding RNA sequence 

sgRNA1 5′-TGTTACTATCGCAGCCCTGT-3′ 

sgRNA2 5′-GTAGGTCCCCCCGTGCACTG-3′ 

sgRNA3 5′-CCTGTGACCTCAGTGCAC GG-3‘ 
 
 
 
 
 



Table. S5 | Antibodies for flowcytometry analysis  

Antibody Clone Company Order number 

anti-hCD19-BV421 UCHT1 BioLegend 300452 

anti-hCD56-FITC TULY56 eBioscience 4299203 

anti-hCD38-PE-Cy7 HIT2 BioLegend 303516 

anti-hCD138-PE MI15 BD Biosciences 552026 

anti-hCD45-Percp 2D1 BD Biosciences 347464 

anti-hLILRB4-APC ZM4.1 BioLegend 333016 

anti-hCD11b-PE-Cy7 M1/70 BioLegend 101216 

anti-hCD14-APC-Cy7 HCD14 BioLegend 325619 

anti-hCD15-FITC MMA BioLegend 394706 

anti-hCD33-PE WM53 BD Biosciences 555450 

anti-HLA-DR-Pacific-blue LN3 BioLegend 327016 

anti-mCD45-PE-Cy7 30-F11 BioLegend 103114 

anti-mCD11b-APC M1/70 eBioscience 17-0112-82 

anti-mGr1-PE RB6-8C5 BioLegend 108407 

Live/Dead Cell Stain Kit  ThermoFisher Scientific L34965 
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Fig. S1 | The baseline characteristics of MM patients and quality control of scRNA-
seq data 
(A) Diagram showing the baseline characteristics of multiple myeloma (MM) patients. Red 

indicates positive and blank indicates negative. 
(B) Bar plots showing filtering criteria for sequenced cells, including unique molecular 

identifier (UMI) count, gene count, mitochondrial gene proportion, ribosomal gene 
proportion, and percent of dissociation-related genes. 

(C) Uniform manifold approximation and projection (UMAP) plots showing the expression 
of marker genes in the indicated cell types. The labeled bars represent the specific cell 
types. 

(D) Heatmap illustrating the correlation between each cell cluster. The black frame 
indicates cell clusters of the same cell annotation. 
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Fig. S2 | Plasma-cell analysis of scRNA-seq data 
(A) Pie charts showing the proportion of kappa+ and lambda+ plasma cells in each patient. 
(B) Heatmap showing the expression of plasma-cell marker gene in each plasma-cell 

cluster. 
(C) T-distributed stochastic neighbor embedding (tSNE) plots (top panel) and density 

(bottom panel) plots illustrating the topology of sequenced genes from plasma cells. 
Each point indicates one gene. All genes are shown on the left. The up-regulated genes 
in patients with early death (EM24) (red) and patients without early death (nEM24) 
(blue) are shown in the middle. The up-regulated genes in cluster 4 (purple) and other 
multiple myeloma (MM) cells (gray) are shown on the right. 
Uniform manifold approximation and projection (UMAP) plots illustrating cell origin (left), 
cell annotation (middle), and selected cells for downstream analysis (right) of 
integrated CD34+, CD19+, and CD138+ cells from integrated outsourced data. HD: 
healthy individual, HSC: hematopoietic stem cells, MPP: multipotent blood progenitors. 

(D) UMAP plots showing the cell annotation (left) and BCR expression pattern (right) of 
CD34+, CD19+, and CD138+ cells from integrated outsourced data. 

(E) UMAP plots showing the expression of marker genes of plasma-cell lineage in 
integrated CD34+, CD19+, and CD138+ cells. 

(F) Line plot and receiver operating characteristic plots showing the performance of 
plasma-cell lineage classifier by random forest model. AUC: area under the curve. 
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Fig. S3 | Plasma-cell differentiation trajectory analysis 
(A) Pseudotime-ordered trajectory of plasma-cell lineage using integrated CD34+, CD19+, 

and CD138+ cells. HSC: hematopoietic stem cells, MPP: multipotent blood progenitors. 
(B) The distribution of plasma-cell lineage during the trajectory using integrated CD34+, 

CD19+, and CD138+ cells. Cells are labeled by colors. 
(C) Pseudotime-ordered trajectory of plasma-cell lineage involved cluster 4 and other 

multiple myeloma (MM) cells. Plasma-cell lineage (top) and pseudotime order (bottom) 
are labeled by colors. 

(D) The distribution of MM-cell clusters during the plasma-cell lineage differentiation 
trajectory. Cells are labeled by colors. 

(E) Enrichment plots showing the enriched stemness-related signaling pathways in sub-
C4.  
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Fig. S4 | Genomic features of sub-cluster 4 
(A) Circular genomic map illustrating the copy number variations (CNV) in each multiple 

myeloma (MM) patient. Each lane indicates one patient and the outmost lane indicates 
chromosome structure. Red represents amplification and blue represents deletion. 

(B) Box plot showing the average CNV score between patients with early death (EM24) 
and patients without early death (nEM24). 

(C) Bar plots showing the mutation score of each tumor cluster in each patient. 
(D) Box plot showing the mutation score between EM24 patients and nEM24 patients. 
(E) (Left) Regulatory network of major transcription factors (TF) and target genes up-

regulated in cluster 4 compared with other MM cells. The point size indicates the edge 
numbers of TF. (Right) Gene co-expression network displaying the top gene modules 
specific to cluster 4. The point size indicates the gene fold change in cluster 4 versus 
other MM cells. The lines connect significantly correlated genes. 

(F) Violin plots showing the cell score of UAMS70 and SKY92 in MM cell clusters. 
(G) Kaplan-Meier curve showing the overall survival of 754 MM patients with a high or low 

proportion of sub-C4 in the MMRF-CoMMpass dataset. Log-rank test was applied in 
the comparison between groups. 

(H) Line chart showing the least absolute shrinkage and selection operator (lasso) 
coefficient profiles of the 170 risk factors against log(Lambda).  

(I) Forest plot showing the hazard ratio of 7 genes by multivariate cox regression in 
MMRF-CoMMpass cohort. 
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Fig. S5 | LILRB4 is a biomarker of aggressive MM 
(A) Receiver operating characteristic (ROC) curve showing the specificity of LILRB4 

expression in sub-C4. AUC: area under the curve. 
(B) The score of drug-resistance and proliferation geneset between LILRB4-low and 

LILRB4-high patients in MMRF-CoMMpass cohort. 
(C) Flow cytometry detection of LILRB4 in multiple multiple myeloma (MM) cell lines. 
(D) LILRB4 mRNA expression of LILRB4+ and LILRB4- cells. Unpaired t test, two-tailed, 

****P<0.0001 
(E) (Left) Flow cytometry detection of LILRB4 in H929-EV and H929-LILRB4 cells. (Right) 

Colony formation assay of H929-LILRB4 cells relative to H929-EV cells. Unpaired t test, 
two-tailed, **P<0.01. 

(F) The H929-EV and H929-LILRB4 cells were injected subcutaneously into the left and 
right flank of the same mouse. Bar plots showing the statistical result of tumor weight 
between H929-EV and H929-LILRB4 group with unpaired t test, two-tailed, *P < 0.05, 
**P<0.01. 
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Fig. S6 | Myeloid cell annotation and signature gene expression 
(A) Points plot showing integrated myeloid cell map for reference, including 47,694 cells 

from 45 samples of 9 cancers. 
(B) T-distributed stochastic neighbor embedding (tSNE) plot showing the distribution of 

annotated myeloid cells. Cell annotations are labeled by colors. 
(C) TSNE plots showing the marker gene expression for the major lineages of myeloid 

cells. 
(D) Violin plot showing the myeloid-derived suppressive cell (MDSC) signature scores in 

myeloid cell types. 
(E) Bubble heatmap showing expression levels of selected signature genes in myeloid 

cells. Dot size indicates fraction of expressing cells, colored based on normalized 
expression levels. 

(F) Bar plots showing the proportion of MDSCs or CD3+ T cells in peripheral blood 
mononuclear cells (PBMCs) after co-culturing with multiple myeloma (MM) cells with 
different LILRB4 level respectively. The statistical results were tested with unpaired t 
test, two-tailed, *P < 0.05, **P<0.01. 
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Fig. S7 | LILRB4 STAR-T cell pre-clinical study in MM  

(A) Schematic construct of LILRB4 synthetic T cell receptor and antigen receptor (STAR)-

T cells. 

(B) LILRB4 STAR-T cell cytotoxicity assay towards LILRB4- KMS11 multiple myeloma (MM) 
cells.  

(C) Line chart illustrating the subcutaneous tumor weight in MM xenograft mice after 
treating with mock-T cells or LILRB4 STAR-T cells. 

(D) Hematoxylin-eosin staining of multiple organs from MM xenograft mice after treating 
with LILRB4 STAR-T cells. 

(E) (Left) Correlation analysis of BCMA and LILRB4 mRNA expression in GSE2658 
dataset. (Right) Flow cytometry detection of BCMA in LILRB4-overexpressed MM cells. 

(F) Exemplary plot for light chain restriction analysis of CD38+LILRB4+CD138low cell cluster 
and CD38+CD138+ cell cluster from the same patient by flow cytometry detection. 

 


