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Abstract 

Multiple myeloma (MM) remains an incurable hematological malignancy. Despite tremendous advances 

in the treatment, about 10% of patients still have very poor outcomes with median overall survival less 

than 24 months. Our study aimed to underscore the critical mechanisms pertaining to the rapid disease 

progression and provide novel therapeutic selection for these ultra-high-risk patients. We utilized 

single-cell transcriptomic sequencing to dissect the characteristic bone marrow niche of patients with 

survival of less than two years (EM24). Notably, an enrichment of LILRB4high pre-matured plasma-cell 

cluster was observed in the patients in EM24 compared to patients with durable remission. This cluster 

exhibited aggressive proliferation and drug-resistance phenotype. High-level LILRB4 promoted MM 

clonogenicity and progression. Clinically, high expression of LILRB4 was correlated with poor prognosis in 

both newly diagnosed MM patients and relapsed/refractory MM patients. The ATAC-seq analysis 

identified that high chromosomal accessibility caused the elevation of LILRB4 on MM cells. 

CRISPR-Cas9 deletion of LILRB4 alleviated the growth of MM cells, inhibited the immunosuppressive 

function of MDSCs, and further rescued T cell dysfunction in MM microenvironment. The more infiltration 

of myeloid-derived suppressive cells (MDSCs) was observed in EM24 patients as well. Therefore, we 

innovatively generated a TCR-based chimeric antigen receptor (CAR) T cell, LILRB4-STAR-T. 

Cytotoxicity experiment demonstrated that LILRB4-STAR-T cells efficaciously eliminated tumor cells and 

impeded MDSCs function. In conclusion, our study elucidates that LILRB4 is an ideal biomarker and 

promising immunotherapy target for high-risk MM. LILRB4-STAR-T cell immunotherapy is promising 

against tumor cells and immunosuppressive tumor microenvironment in MM.  
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Introduction 

Despite the advance of novel therapeutic agents greatly improved the outcome of MM patients in the past 

decades, MM is still an incurable disease. Although several studies have shown that the median overall 

survival (OS) has reached over ten years in newly diagnosed MM (NDMM) patients treated with 

bortezomib with lenalidomide and dexamethasone (VRD), about 20% to 30% of the patients survived less 

than 3 years.(1-3) These patients were defined as high-risk MM. Some of them with early mortality in 24 

months (EM24) were regarded as ultrahigh-risk MM.(4-6) How to identify and treat high-risk patients is the 

major challenge in clinical practice. The main approaches to overcome the bottleneck of identifying and 

treating these MM patients include: first, clarifying the specific biological characteristics for ultrahigh-risk 

patients with the OS less than 2 years, revealing MM refractory and drug-resistant mechanisms, 

identifying the specific biomarkers as well as novel therapeutic targets for these ultrahigh-risk patients; 

second, developing new effective drugs by conducting more in-depth biological research, implementing 

individualized treatment strategy for these patients including prioritizing CAR-T cell therapy and bispecific 

antibody immunotherapy, etc. 

Genome instability and immunosuppressive tumor microenvironment (iTME) are highlighted in MM 

disease development and progression.(7-9) Along the disease procedure, sequential genetic hits can be 

induced by disease progression and treatment pressure, and further increase the intra-tumoral 

heterogeneity of MM cells.(10) Notably, microenvironmental changes can provide a premalignant niche 

that precedes the acquisition of any genetic aberration.(11-14) TME is characterized by a selective 

reduction in cytotoxic memory T cells and an increase in several immune-suppressive cell populations, 

involving regulatory T cells (Treg) and myeloid-derived suppressor cells (MDSCs) in MM.(15) The 

crosstalk between tumor cells and the microenvironment further supports tumor growth and influences 

tumor evolution.(16, 17) Therefore, targeting both MM cells and the tumor-promoting microenvironment 

would be the ideal strategy to cure myeloma. 

In this study, we investigated the heterogeneity of BMMCs at single-cell resolution from 12 NDMM 

patients with diverse clinical features. A LILRB4high precursor plasma-cell cluster was enriched in EM24 

patients and highly correlated with aggressiveness, drug resistance, and poor outcome of MM patients. 

LILRB4 was significantly correlated with poor outcomes of both NDMM and relapsed/refractory MM 

(RRMM) patients. In vitro and in vivo studies demonstrated that LILRB4 played a critical role in MM 



pathogenesis. Additionally, LILRB4high MM cells induced the generation of myeloid-derived suppressive 

cells (MDSCs). Importantly, we innovatively generated a TCR-based CAR-T cell, named STAR-T, to 

target LILRB4+ MM cells and LILRB4+ MDSCs. LILRB4-STAR-T cells exhibited ideal cytotoxicity against 

MM via targeting MM cells and MDSCs in iTME. Altogether, our study demonstrated that LILRB4 is an 

ultrahigh-risk gene and promising immunotherapy target via dual targeting myeloma cells and MDSCs in 

tumor microenvironment in MM.  

 

Methods  

The completed methods were included in the supplementary file.  

Patient characteristics and scRNA-seq strategy  

Bone marrow mononuclear cells (BMMCs) were obtained from 7 healthy donors (HDs) and 12 NDMM 

patients. The clinical and biological characteristics of 12 MM patients are listed in Fig. S1A. This study 

was conducted according to the guidelines of the Declaration of Helsinki and approved by the Institutional 

Ethics Review Boards of the Institute of Hematology and Blood Diseases Hospital, Chinese Academy of 

Medical Sciences (China) (protocol code KT2020010-EC-2). Written informed consent was obtained from 

all subjects involved in the study before sample collection.  

Single-cell RNA sequencing and data analysis 

The full process and methods for sample collection and single-cell preparation, single-cell RNA library 

preparation and sequencing, and scRNA-seq data processing were included in supplementary methods. 

Dimensionality reduction, clustering of cells, and visualization were performed according to our previous 

study.(14, 18) Cell cluster annotated with specific maker genes expression. 

H3K27ac and H3K27me3 ChIP-seq data processing 

ChIP-seq reads of H3K27ac and H3K27me3 from PRJNA608681(19) and PRJNA231147(20) were 

aligned to the hg19 genome using BWA (v 0.7.12). Uniquely mapped peaks and their signal intensity were 

obtained using MACS version 2.1.0 with default parameters. Input BAM files were used as controls, and 

peaks with a q-value threshold of 0.05 were considered significant. ChIPseeker(21) was utilized to identify 

the nearest genes around the peaks based on the transcriptional start site (TSS). Genes were considered 



enriched for H3K27ac or H3K27me3 if a peak was detected up to was up to 3 kb up and downstream of 

the TSS. 

Manufacturing of STAR-T cells  

LILRB4 STAR was generated based on homemade LILRB4-specific nanobodies. The STAR-T cell 

structure was presented in Fig. S7A. Lenti-X-293T cells for lentivirus packaging were purchased from 

Takara Biomedical Technology Company. Lentivirus vectors (pHAGE) were used in the study. T cells were 

isolated using an EasySep negative selection kit (Stemcell Technologies) from peripheral blood 

mononuclear cells of healthy donors. T cells were first stimulated with precoated anti-CD3, anti-CD28, 

and human fibronectin. After being activated for 24h, T cells were transduced with concentrated virus. The 

transduction efficiency was determined 4 days later. T cells were cultured at a concentration of 1-3 × 106 

cells/ml, with the culture medium half-replaced every other day during T cell expansion.(22)  

In vivo study 

In vivo study was performed according to our previous study. Briefly, 1 × 107 H929 wild-type cells were 

injected subcutaneously. Mice were treated with 1 × 107 LILRB4-STAR-T cells or mock-T cells when the 

average tumor size reached 100mm3. Tumor sizes were measured every other day and calculated with 

formula: 0.52 × length × width2 (mm3). In vivo studies were performed in accordance with protocols 

approved by the Institutional Animal Care and Use Committee (IACUC) of the Institute of Hematology, 

Chinese Academy of Medical Sciences (Tianjin, China). 

Statistical analysis 

Data analyses were performed with R language and GraphPad Prism 8.0 Software. Statistical 

significance was set at P < 0.05.  

 

Results  

Single-cell transcriptomic profiling of BM ecosystem in MM patients with different clinical features 

We incorporated 12 MM patients with different clinical features into this study. A single-cell transcriptomic 

overview of BMMCs fraction from 12 NDMM patients was compared with 7 HDs (Fig. 1A). Detailed 

clinical and pathological information of MM patients was summarized in Fig. S1A. Among these 12 



patients, 4 patients with rapid disease progression and short survival of less than 2 years were classified 

as clinically ultrahigh-risk and defined as EM24 group. The other 8 patients were defined as non-EM24 

(nEM24) group. PCA dimensionality reduction analysis demonstrated the significant difference in cell 

clustering among HDs, EM24, and nEM24 groups (Fig. 1B). All patients were risk stratified by ISS and 

R-ISS and received a combination therapy of VRD (bortezomib combined with lenalidomide and 

dexamethasone). All of the 4 patients in EM24 group were ISS III stage and harbored 1q+, a high-risk 

cytogenetic abnormality (CA).(23) Two of four EM24 patients were R-ISS III stage and presented with any 

two CAs of 1q+, del (17p) and t(4;14), that defined as double-hit myeloma.(24) However, in nEM24 group, 

five of eight patients were in ISS III stage and 3 patients were R-ISS III stage with double-hit myeloma, 

which simultaneously had 1q+ and t(4;14). Based on the clinical diversity of these patients, it led us to 

note the extensive factors affecting myeloma aggressiveness and clinical outcomes besides CAs. 

In scRNAseq study, 42,936 cells were enrolled for analysis, and an average of 7,939 UMIs and 1,243 

genes were generated per single cell (Fig. S1B). After batch-effect correction, a total of 16 diverse major 

BM cell types (Clusters 0-15) were identified (Fig. 1C), including hematopoietic stem cells (HSCs, cluster 

10/CD34), early erythroid cells (cluster 5, 6/GATA1), late erythroid cells (cluster 1, 8, 12/HBA1), myeloid 

cells (cluster 4, 9, 15/CD14, LYZ), NK cells (cluster 2/NKG7), T cells (cluster 3/CD3D), B-cell progenitors 

(cluster 11/MME), B cells (cluster 7/CD19, MS4A1), and plasma/MM cells (cluster 0, 4, 13/SDC1, 

TNFRSF17) (Fig. S1C). The correlation of gene expression among the 16 cell clusters is shown in Fig. 

S1D. 

The proportion of myeloma/plasma cells obviously elevated in MM patients compared with HDs. Notably, 

myeloma/plasma cells showed a stronger distribution preference in EM24 patients compared to nEM24 

patients from the odds ratio (OR) analysis. Interestingly, B cells showed less distribution in EM24 patients 

than in nEM24 patients (P< 0.05), indicating the potential aberrant B-cell development and differentiation 

in EM24 patients. In addition, erythroid cells appeared to decrease in MM patients compared with HDs, 

consistent with our previous study revealing that malignant PCs could impede the erythropoiesis and 

result in anemia in MM.(25) Of note, a lower proportion of myeloid cells in MM patients was found. 

However, myeloid cells appeared to be more enriched in EM24 patients than in nEM24 patients (Fig. 

1D-1E). Taken together, EM24 patients had a higher enrichment of MM/plasma cells and myeloid cells, 

whereas had a lower infiltration of T/NK cells and erythroid cells. 



 

Enriched sub-C4 plasma cells in EM24 MM patients 

We next sought to figure out the intrinsic discrepancies of MM cells between the patients in EM24 and 

nEM24 groups. We integrated the MM/plasma cell compartment from all samples into a joint dataset. A 

total of 10 heterogeneous subclusters (sub-C0-9) were identified (Fig. 2A). According to the light chain 

restriction analysis, all the clusters were light chain restricted except for sub-C7 and also highly expressed 

the plasma cell marker genes, including CD38, SDC1, and TNFRSF17 (Fig. 2B & S2A-S2B). HD 

samples only harbored sub-C7 which displayed a balanced light chain ratio. Thus, we inferred that 

sub-C7 was the normal plasma cell cluster, and the others were the malignant plasma cells. Notably, a 

significant increase of sub-C4 was presented in EM24 patients compared with nEM24 patients (Fig. 2C). 

The OR analysis also confirmed that sub-C4 displayed a specifically strong distribution preference in 

EM24 patients (Fig. 2D). Importantly, we found that sub-C4 showed relatively higher level of CD19, CD27 

and CD24 genes, the marker genes of initiating tumor cells in MM compared with other plasma cell 

subclusters, indicating a phenotypically pre-matured state of sub-C4 (Fig. 2B & S2B).(26) This finding 

suggested that EM24 patients had an enrichment of pre-matured plasma cells (sub-C4), which might be 

associated with the aggressive progression of EM24 patients.  

Aiming to further probe the characteristics of tumor cells pertaining to the shortened survival of EM24 

patients, we performed differentially expressed gene (DEG) analysis of MM cells between EM24 and 

nEM24 patients. There was a total of 20,711 genes from 12,835 cells. The upregulated genes in EM24 

MM patients were mainly featured by sub-C4 (Fig. S2C). We conducted an analysis of the H3K27ac 

ChIP-seq data from CD138+ MM cells derived from newly-diagnosed MM patients using the GSE145891 

dataset. We identified genes with significant H3K27ac enrichment. Subsequently, DEG analysis was 

performed between the sub-C4 cluster and other MM-cell clusters. A total of 1,726 genes were observed 

to be up-regulated in the sub-C4 cluster. Among these up-regulated genes, 1,620 (93.86%) displayed 

significant H3K27ac enrichment. The top genes regulated by H3K27ac are listed in Table S1. Interestingly, 

the upregulated genes of sub-C4 were mainly regulated by H3K27ac, while the downregulated genes of 

sub-C4 were regulated by H3K27me3 (Fig. 2E).  

We further inferred the differentiation stage of sub-C4 from B-cell to plasma-cell differentiation paradigm. 

We downloaded the publicly available scRNA-seq data of normal B-cell differentiation and BCR 



information that were utilized to construct a classifier for defining B-cell differentiation stages, but not 

compatible for plasma cells.(27-29) Next, we integrated scRNA-seq data and scBCR-seq data of HSCs, 

B-cell lineage and plasma cells from HDs, and defined cell clusters along HSC to plasma-cell 

differentiation sequentially (Fig. S2D to S2F). A random-forest training approach was applied to construct 

a classifier that showed excellent ability to define the cell clusters of different stages from HSCs to plasma 

cells (all AUC value > 0.95) (Fig.S2G). We further generated the normal differentiation trajectory from 

HSCs to plasma cells following pseudo-time analysis, enabling us to map our in-house scRNAseq data of 

MM cells and identify the differentiation stages (Fig. S3A&S3B). Notably, our results showed that sub-C4 

was enriched between the plasmablast stage and the terminal MM cell-cluster stage (Fig. S3C, S3D & 

2F). Additionally, GSEA analysis of the up-regulated genes in sub-C4 showed that the signaling pathways 

associated with stem cell differentiation and stemness (Wnt, Notch, and Hedgehog) were significantly 

enriched in sub-C4 (Fig. S3E). These findings strongly supported that a pre-matured differentiation stage 

of sub-C4 MM cells was enriched in EM24 group of MM patients. 

 

Genomic alteration and high-risk gene identification in sub-C4 plasma cell 

In terms of the high proportion of pre-matured sub-C4 in BM of EM24 patients, we were interested in 

determining the genomic features of sub-C4 plasma cells in the pathogenesis of MM. We first utilized the 

publicly available proliferating and drug-resistant associated gene sets to assess the different MM 

subclusters.(30-33) Apparently, we found that sub-C4 plasma-cell subcluster got the highest proliferation 

and drug-resistance scores among the ten heterogenous MM-cell subclusters (Fig. 3A). Copy number 

variation (CNV) analysis showed that sub-C4 plasma cells exhibited the most complex CAs, including 

del(1p), del(2q), amp(5q), del(10q), amp(12p), del(13), del(14), del(17p), and amp(19) (Fig. 3B). EM24 

patients also had higher CNV score than nEM24 ones (Fig. S4A & S4B). Additionally, we found that 

sub-C4 plasma cells had the highest mutation score among all the MM subclusters. KRAS, NRAS, and 

FAM46C/TENT5C were the top mutated genes in sub-C4 plasma cells. Missense mutation was the most 

common mutation type (Fig. 3C). Consistently, further analysis showed that EM24 patients had higher 

mutation scores than nEM24 patients (Fig.S4C & S4D). The most enriched signaling pathways of sub-C4 

included regulation of protein ubiquitination, immune effector processes, B cell differentiation, and cell 

cycle process, etc (Fig. 3D). We further constructed a network analysis of transcription factors (TFs) and 



downstream target genes using DEGs of sub-C4 plasma cell. The result showed that MYC and E2F1 

were the highly activated TFs in sub-C4. MYC and E2F1 were the critical TFs in regulating the lots of 

downstream genes and played a critical role in promoting tumor growth. Gene co-expression analysis 

further revealed the four gene modules, ubiquitin, and proteosome, immune-regulation, B-cell 

differentiation, and cell cycle, including hub genes relating with sub-C4, such as LILRB4, CD74, XBP1, 

MKI67, AURKB, USP1 (Fig. S4E). Also, previous studies reported a 70 high-risk gene set (UAMS-70) and 

a 92 high-risk gene set in MM (SKY-92).(30, 34) Interestingly, these two gene sets had the most abundant 

expression in sub-C4, indicating that the sub-C4 plasma cells had the most aggressive progression ability 

in the heterogenous subclusters of MM cells (Fig. S4F).  

To confirm this hypothesis, the constitution of 10 subclusters of MM/plasma cells derived from the 

scRNA-seq analysis was imputed in each patient of GSE2658 dataset (n=414) and MMRF-CoMMpass 

dataset (n=754). Survival analysis and Kaplan-Meier curve showed that patients with a high proportion of 

sub-C4 plasma cells had inferior outcomes (P<0.0001, Fig. 3E & Fig. S4G). This data supported that the 

proportion of sub-C4 plasma cells is a valuable prediction biomarker of the inferior outcome in NDMM 

patients. Furthermore, these findings also suggested that the genomic alteration in sub-C4 contributed to 

the aggressive progression and the poor outcome of MM patients. L1 regularization analysis was next 

applied to investigate specific genomic alterations within sub-C4, which were identified from the TFs-gene 

network and gene co-expression network.(35) We found that 7 genes were incorporated into the optimal 

features for discriminating the prognosis of MM patients (Fig. S4H). The genes were the top 7 genes with 

high expression levels in sub-C4 plasma cells, including LILRB4, TUBA1B, ITGB7, CRIP1, CCND2, 

HIST1H4C, and CD74, which highly correlated with the poor outcome of MM patients. Hazard ratio (HR) 

was calculated using both univariate and multivariate Cox proportional hazard model in 

MMRF-CoMMpass cohort. The HR ratio of five genes (LILRB4, TUBA1B, ITGB7, CRIP1, and CCND2) 

was higher than 1.0. (Fig. 3F & S4I). These data implied the prognostic value of the abundance of sub-C4 

plasma cells in MM patients. 

 

LILRB4 is a biomarker of aggressive MM  

Among the 7 genes identified above, we noted that LILRB4 was the most specifically highly expressed 

gene within sub-C4 (Fig. 4A). To emphasize the association between LILRB4 and the aggressive sub-C4 



MM cluster, we classified plasma cells into sub-C4 and non-sub-C4 according to their expression of 

LILRB4, and generated ROC curve. The area under curve (AUC) value of sub-C4 by LILRB4 was 0.85. At 

the optimal cutoff point, the sensitivity for LILRB4 expression in distinguishing cluster reached 0.73, and 

the specificity reached 0.96 (Fig. S5A). Moreover, we found that LILRB4 exhibited high expression in 

proliferation (PR) and MAF-high-level (MF) groups of MM patients (Fig. 4B), which represents the 

high-risk group in UAMS 7 groups identified by Zhan.(36) When referring to the correlation between 

LILRB4 expression and disease progression, we found that LILRB4 expression significantly increased 

with the progression from the precursor stage to symptomatic MM in the GEO dataset (GSE2658, 

GSE5900, Fig. 4C). Notably, patients with high LILRB4 expression had significantly worse prognosis in 

both NDMM (GSE2658) and RRMM cohort (GSE57317) (Fig. 4D). Therefore, these clinical data further 

supported that LILRB4 played a critical role in the aggressive behaviors of MM cells, resulting in the 

inferior outcome of patients.  

Next, we confirmed the expression of LILRB4 at protein level in MM/plasma cells from MM patients by 

flow cytometry. We observed that the level of ILT3, the protein for LILRB4, was significantly increased in 

precursor stage of plasma cells (pre-PC, CD38+CD138+CD19+CD56+) compared with mature malignant 

plasma cells (MPC, CD38+CD138+CD19-CD56+), which were both higher than normal PCs (NPC, 

CD38+CD138+CD19+CD56-) (Fig. 4E). Minimal residual disease (MRD) is a small number of cancer cells 

left in the body after treatment. These cells have the potential to come back and cause relapse in our 

patients. Of note, we found that the level of LILRB4 was increased in MRD MM cells compared with 

NDMM cells (Fig. 4F). Consistently, LILRB4 level was further increased in RRMM patients at both 

transcriptional and protein level (Fig. 4F). In MMRF-CoMMpass dataset, LILRB4-high patients scored 

higher in drug-resistance and proliferation than LILRB4-low patients, suggesting the possible involvement 

of LILRB4 in aggressive behaviors of MM cells (Fig. S5B). To further investigate the biological features of 

LILRB4, we first sorted LILRB4 positive and negative cells in MM cell lines, respectively (Fig. S5C & 5D). 

Our data showed that the endogenous LILRB4 promoted the colony formation of MM cells (Fig. 4G).  

We further utilized CRISPR-Cas9 technology to genetically delete LILRB4 (KO) from MM cell lines, H929 

and ARP1, to detect the effects of LILRB4 in myelomagenesis. Deletion of LILRB4 significantly 

suppressed the tumor growth and colony formation of MM cells (Fig. 5A & 5B). Additionally, LILRB4 KO 

suppressed MM cell migration, promoted cell apoptosis, and increased the susceptibility to proteasome 



inhibitors in MM cells (Fig. 5C, 5D&5E). Furthermore, the in vivo study demonstrated that tumor growth in 

LILRB4-KO group significantly decreased compared with the control ones (Fig. 5F). Consistently, 

overexpression of LILRB4 in H929 cells notably promoted colony formation and tumor growth in vivo (Fig. 

S5E & S5F). Collectively, the highly specific gene of the aggressive sub-C4 in MM cells, LILRB4, was a 

promising biomarker of aggressive MM cells which promoted MM clonogenicity and disease progression. 

Next, we intended to investigate the underlying molecular mechanisms of high LILRB4 expression in MM 

cells. Based on the data shown in Fig.3B, amp(19) was one of the CAs in MM cells of sub-C4 and was 

the chromosome where LILRB4 was located. So we performed ATAC-seq analysis first. The results 

demonstrated that MM cell lines with high-level of LILRB4 retained higher chromosomal accessibility in 

LILRB4 promoter region compared with LILRB4 low-expressed MM cells (Fig. 6A). According to the data 

shown in Fig.2E, the further analysis displayed significant H3K27ac enrichment in LILRB4 promoter 

region in 7/10 patients (Table. S2). To further explore the potential transcription factors (TFs) that might 

regulate LILRB4 expression, we used the hTFtarget human TFs ChIP-seq database 

(http://bioinfo.life.hust.edu.cn/hTFtarget/) and found that the transcription factor STAT1 could significantly 

bind to the LILRB4 promoter region. The location of STAT1 ChIP-seq reads was enriched in the LILRB4 

promoter region (Fig. 6B). Next, we treated MM cells with STAT1-specific inhibitor, Fludarabine. Inhibition 

of STAT1 significantly downregulated LILRB4 expression in MM cells (Fig. 6C). Of note, we co-cultured 

MM cells with microenvironment immune cells. We found that microenvironment cells could promote 

LILRB4 expression in MM cells (Fig. 6D).  

 

LILRB4 plays a critical role in iTME in MM 

As the previous study reported, LILRB4 is an immune checkpoint on myeloid cells.(37) Except the 

function in promoting aggressive progression of MM cells as the above data showed, we were curious 

whether high-level LILRB4 played a critical role in iTME in MM. Therefore, we downloaded the 

scRNA-seq data of pan-cancer myeloid cells from 45 human samples on a public available dataset and 

constructed a reference map using STACAS package. Myeloid cell clusters were defined as four major 

lineages (mast cells, DCs, monocytes, or macrophages) based on canonical gene markers. cDCs were 

further identified as three distinct subsets, including two classical cDC subsets (CLEC9A+ cDC1s and 

CD1C+ cDC2s) and a mature cDC subset (LAMP3+ cDC). Monocytes were clustered into classical 



CD14hiCD16- monocytes (Mono-CD14), intermediate CD14hiCD16+ monocytes (Mono-CD14CD16), and 

non-classical CD14+CD16hi monocytes (Mono-CD16). Interestingly, we defined MDSC by high expression 

of CD33, ITGAM, and CCR2. Likewise, macrophage subsets were clustered into four subsets by specific 

high expression of C1QC, INHBA, LYVE1, and NLRP3, respectively (Fig. S6A to S6D). Then, the 

projection of the myeloid cells in TME of our scRNA-seq data was performed onto the reference map (Fig. 

7A, 7B & S6E). 

The significantly elevated proportions of MDSC, Macro-C1QC, pDC-LILRA4, and mono-CD16 were 

observed in EM24 patients according to the fold change of proportion (Fig. 7C). Of note, MDSCs were 

validated to present preferential expression of genes involved in immune suppression (Fig. 7D). 

Consistently, Macro-C1QC tended to be in tumor-promoting M2 polarization state, while Macro-NLRP3 

exhibited higher canonical M1 signatures. Within the DC clusters, pDC-LILRA4, which has been revealed 

to play a promoting role in MM progression, got the lowest activating and migratory score among four DC 

clusters. In monocyte compartment, CD16+ monocytes tended to be anti-inflammatory, while CD14+ 

monocytes and intermediate CD14hiCD16+ monocytes tended to be pro-inflammatory (Fig. 7D). The 

results suggested that different types of myeloid cells in EM24 MM patients contributed to severe iTME. 

Given the specific LILRB4+ sub-C4 of tumor cells enriched in EM24 patients and the cancer cell-to-TME 

communication, we characterized the phenotype of MDSCs generated by co-culture with healthy human 

peripheral blood mononuclear cells (PBMCs) with LILRB4-OE (overexpression) or EV (empty vector) MM 

cells in vitro. The co-culture of LILRB4-OE MM cells induced more generation of M-MDSCs (CD15-CD14+) 

compared with EV control cells. Vice versa, deletion of LILRB4 in MM cells mitigated the generation of 

MDSCs from PBMCs (Fig. 7E). However, we did not find the induction of G-MDSCs (CD15+CD14-) in the 

coculture assay (data not shown). Of note, in the co-culture system, the more MDSCs induced by 

overexpression of LILRB4 in MM cells promoted the greater decrease of CD3+ T cell infiltration, and 

knock-out of LILRB4 in MM cells also increased T cell infiltration (Fig. 7E & S6F). Consistently, we noted 

a decreased infiltration of MDSCs in a myeloma mouse model that harbored LILRB4-KO tumor cells 

compared with NT ones (Fig.7F). Collectively, the infiltration of MDSCs was efficiently induced by the 

enriched LILRB4+ MM cells in EM24 patients. This finding further supported that LILRB4 promoted the 

generation of MM-educated M-MDSC, which contributed to the iTME and MM progression.  

 



LILRB4 is a promising immunotherapy target via dual targeting tumor cells and MDSCs in TME of 

MM 

Besides MM cells, flow cytometry analysis confirmed that monocytic MDSCs (M-MDSCs) expressed 

high-level of LILRB4 (ILT3) compared with granulocytic MDSCs (G-MDSCs) in MM patient samples (Fig. 

8A). Given that LILRB4 (ILT3) is a surface marker on myeloma cells as well as MDSCs, we speculated 

that LILRB4 (ILT3) can be an attractive immunotherapy target in MM therapy, especially in patients with 

RRMM. Strikingly, we constructed a synthetic T cell receptor (TCR) and antigen receptor (STAR)-T cell 

targeting LILRB4 (ILT3) positive cells, a double-chain chimeric receptor, which incorporates 

antigen-recognition domain of antibody and constant regions of TCR that engage endogenous CD3 

signaling machinery (Fig. S7A).(22, 38) We investigated the cytotoxicity of LILRB4 STAR-T cell 

immunotherapy utilized MM cell lines, xenograft MM mouse model and primary patient samples, 

respectively. LILRB4 STAR-T cells or mock-T cells were co-cultured with MM cell lines, H929 and U266, 

at various effector: target (E: T) ratios. Compared with mock-T cells, LILRB4 STAR-T cells showed strong 

cytotoxicity against MM cell lines, and secreted high levels of cytokines including IFN-γ, IL-2, and TNF-α 

(Fig. 8B). LILRB4 STAR-T cells had no obvious cytotoxicity towards LILRB4 negative cells, indicating the 

limited off-target effect (Fig. S7B). The in vivo study was further performed in MM xenograft model with 

subcutaneous injection of H929 cells. Consistently, compared with mock-T cells treatment, LILRB4 

STAR-T cells immunotherapy exhibited rapid and strong anti-MM activity (Fig. 8C). The survival of 

MM-bearing mouse was significantly extended compared with control group (undefined vs. 30 days) (Fig. 

8C). Importantly, we did not find the obvious off-tumor toxicity, as weight and histochemical staining data 

showed (Fig. S7C & S7D).  

To investigate the cytotoxicity of LILRB4 STAR-T against MDSCs, we purified the CD14+ monocytes from 

healthy PBMCs that were used to generate M-MDSCs by adding the cocktail cytokines (Fig.8D).(39) 

M-MDSCs were then cocultured with mock-T cells or LILRB4 STAR-T cells, respectively. The specific 

lysis and IFN-γ cytokine secretion were significantly increased in the group of LILRB4 STAR-T treatment 

(Fig. 8D). As BCMA has been a successful immunotherapy target in MM, we investigated the association 

between BCMA and LILRB4 expression. We found that LILRB4 level was independent of BCMA based on 

the GSE2658 dataset (r=0.04, P = 0.28). Also, the expression of BCMA protein had no significant 

alteration in LILRB4-overexpressed MM cell lines (Fig. S7E). Further, the primary BMMCs from MM 



patient samples, including patients receiving or not receiving BCMA-targeted immunotherapy, were 

isolated and treated with LILRB4 STAR-T cells at diverse E: T ratios (Table. S3). Based on our data 

shown above (Fig.2F and 4E), we confirmed that CD38+LILRB4+ cells included CD38+LILRB4+CD138high 

and CD38+LILRB4+CD138low cell clusters in almost every MM patient. Since CD38+CD138high is 

suggested to be the conventional surface marker for MM cells, we further utilized light chain restriction 

analysis and validated that CD38+CD138lowLILRB4+ cell cluster contained the clonogenic MM tumor cells 

(Fig.S7F). Strikingly, the treatment of LILRB4 STAR-T cells exhibited obvious cytotoxicity against both 

CD38+LILRB4+ MM cells and CD11b+LILRB4+ M-MDSCs from patients having received BCMA CAR-T 

therapy (Fig. 8E). Altogether, our study strongly supported that targeting LILRB4 is a promising 

immunotherapy strategy by dual targeting MM cells and immunosuppressive MDSCs in TME of MM. 

 

Discussion  

Although long-term disease control can be achieved in a very large number of patients, the acquisition of 

tumor resistance leads to disease relapse, especially in patients with triple-class refractory MM (defined 

as resistance to immunomodulatory agents, proteasome inhibitors, and monoclonal antibodies). There is 

an unmet need for effective treatment options in these patients. CAR-T cell therapy is a novel approach 

that has demonstrated promising efficacy in the treatment of RRMM. 

The interaction and co-evolution of tumor cells and microenvironment are one of the principal causes of 

MM refractoriness.(14) Thus, eliminating tumor cells and ameliorating microenvironment simultaneously 

to achieve MRD-negative is the ideal treatment strategy for MM. Our data here demonstrated an 

enrichment of LILRB4high precursor plasma-cell cluster in ultrahigh-risk patients with OS less than 2 years. 

This immature population was closely correlated with aggressive progression and drug resistance of MM. 

Recently, a high level of LILRB4 was detected in both MM cells and myeloid cells.(40-43) However, the 

clinical significance and the pathophysiological function of LILRB4 on MM has not been fully understood. 

LILRB4, an immune checkpoint on myeloid cells, has been validated to be an effective treatment target in 

monocytic acute myeloid leukemia (AML) and mediates AML cell migration and T cell suppression.(40) 

Recently, Qu et al. reported that LILRB4 could promote MM cell migration and was upregulated in 

extramedullary MM cells.(44) Here, our study demonstrated that LILRB4 played multifaceted roles in 

promoting MM. High levels of LILRB4 promoted the clonogenicity of MM cells. Deletion of LILRB4 



efficiently alleviated tumor growth, mitigated cell migration, promoted cell apoptosis, and increased the 

susceptibility to proteasome inhibitors in MM cells. Importantly, our study identified that chromosomal 

accessibility and H3K27ac enrichment promoted LILRB4 gene transcription. Most interestingly, we 

indicated that tumor microenvironment could interact with MM cells and upregulate the expression of 

LILRB4 in tumor cells. The regulation mechanism might involve direct or indirect cell contact. As our 

previous studies reported, the interaction between microenvironment cells could be accomplished by the 

secreted cytokines, microvesicles, or cellular metabolites.(16, 45, 46) The more precise mechanism of 

LILRB4 expression regulated by TME will be further explored. Generally, our results supported that the 

mechanisms underlying the regulation of LILRB4 expression are very complex and involve various factors 

and processes. 

MDSCs are an important composition of iTME and play supportive roles in cancer.(47, 48) Interestingly, 

co-culture of LILRB4high MM cells orchestrated the polarization of MDSCs to exhibit pro-tumor phenotypes. 

This further supported that the abundant MDSCs in EM24 MM patients induced a more severe 

immunosuppressive microenvironment. Therefore, our result supported that, LILRB4, the most 

significantly high-expressed gene in pre-matured MM population, is an attractive immunotherapy 

candidate target for curing MM through targeting both tumor cells and immunosuppressive 

microenvironment, especially for those ultrahigh-risk NDMM and RRMM patients.  

Among many targets for MM immunotherapy, B cell maturation antigen (BCMA) and the orphan G 

protein-coupled receptor, class C group 5 member D (GPRC5D) are the most successful and matured 

targets. CAR-T cell therapy and bispecific T cell engagers (BiTE) targeting BCMA or GPRC5D have 

significantly improved the treatment response and survival for RRMM) patients.(49, 50) However, the 

long-term follow-up of current studies has indicated limited short-term efficacy of CAR-T cell therapy for 

RRMM.(51) The mechanisms underlying resistance to T-cell-based immunotherapy are complicated. 

BCMA and GPRC5D mainly express on matured plasma cells and MM cells.(52, 53) Current 

immunotherapy mostly targets mature plasma cells and is incapable of eliminating the pre-matured 

plasma cells or pre-B cells without expression of the target antigens, which may lead to the disease 

relapse and progression.(54-56) In addition, the iTME including MDSCs, can also affect the efficacy of 

T-cell-based immunotherapy. Our data supported high expression of LILRB4 in plasmablasts, mature MM 

cells, and MDSCs, suggesting the feasibility of LILRB4-targeted immunotherapy in MM. Collectively, we 



supposed that targeting LILRB4 could eradicate potential tumor-initiating cells and impede MDSCs as 

well as enhance the anti-tumor effect of T-cell therapy. Based on this concept, our group innovatively 

designed and constructed LILRB4-targeted STAR-T cells, which incorporate antigen-recognition domain 

of antibodies and constant regions of TCR that engage endogenous CD3 signaling machinery. STAR-T 

cells can mediate strong and sensitive TCR-like signaling upon antigen stimulation.(22) In addition, 

STAR-T cells hold potential to reduce the risk of antigen loss-induced tumor relapse due to the high 

antigen sensitivity. Our result demonstrated that LILRB4 STAR-T cells show excellent cytotoxicity against 

tumor cells and MDSCs, respectively, and extend the survival of myeloma-bearing mice. We did not find 

the off-tumor cytotoxicity in vivo as well. Recently a bispecific T cell engager targeting LILRB4 has also 

shown potent killing effects toward MM cells.(43) Hence, LILRB4 is an attractive immunotherapy target 

with promising prospects for development and application. Based on this study, we have set up an 

investigator-initiated trial (IIT) to explore the safety and efficacy of LILRB4 STAR-T cells in RRMM 

(Clinical Trial: NCT05913804). More evidence for the feasibility and underlying mechanisms for 

LILRB4-STAR-T immunotherapy in MM is under investigation.   

In conclusion, our study delineated that LILRB4 is an ideal biomarker for identification of high-risk MM, 

and represents a promising target for MM immunotherapeutics by dual targeting tumor cells and 

myeloid-derived suppressive cells in MM. Strikingly, our findings further suggested that combining the 

treatment of LILRB4-STAR-T would be an attractive strategy for RRMM with BCMA targeting therapy. 
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Figure legends 

Fig. 1 | Single-cell transcriptomics profiling of bone marrow ecosystem in MM patients 

(A) Schematic representation of the experimental strategy based on in-house and outsourced data. Bone 

marrow mononuclear cells (BMMCs) from 7 healthy donors (HD), 4 multiple myeloma (MM) patients 

with early death (EM24), and 8 without early death (nEM24) were measured by 10× Genomics-based 

scRNA-Seq. Multi-omics data and biological assays were applied to validate our findings. 

(B) Two-dimensional plots showing the distribution of each sample. The point color indicates sample 

group. Triangles represent the median of principal component analysis (PCA). 

(C) Uniform manifold approximation and projection (UMAP) plots showing cell clusters (left panel) and cell 

annotation (right panel) by color. 

(D) UMAP projections of cells from each sample. Sample names and sample groups are labeled in the 

figure. 

(E) Bubble plots showing the proportion of each cell type in each sample (top). Samples were divided into 

EM24 MM patients (red), nEM24 MM patients (blue), and HD (gray). Heatmap plot illustrating the odd 

ratios (OR) of each cell in each sample group based on Fisher’s exact test (bottom). A high OR with an 

asterisk represents the cell is more preferred to distribute in the group, while a low OR with an asterisk 

represents the cell is less preferred to distribute in the group. 

 

Fig. 2 | Characteristics of plasma cells in EM24 MM patients  

(A) Uniform manifold approximation and projection (UMAP) plot showing 10 plasma cell clusters from all 

samples. 

(B) UMAP plots showing the expression of marker genes in plasma cells. 

(C) UMAP plots showing the plasma cells originated from healthy donors (HDs), patients with early death. 

(EM24), and patients without early death (nEM24). 



(D) Heatmap plot illustrating the odds ratio (OR) of each cluster in each sample group based on Fisher’s 

exact test (top). Bar plot showing the proportion of each cluster in each multiple myeloma (MM) 

sample and HD (bottom). 

(E) T-distributed stochastic neighbor embedding (tSNE) point and density plots showing the distribution of 

epigenetic-controlled genes (top). Fitted density plot illustrating the H3K27ac-regulated and 

H3K27me3-regulated gene signal from ChIP-seq data (bottom). 

(F) Density line plot showing the cell distribution of plasma-cell lineage along with the pseudotime. HSC: 

hematopoietic stem cells, MPP: multipotent blood progenitors. 

 

Fig. 3 | Genomic alteration and high-risk gene identification in sub-C4 plasma cell 

(A) Violin plots showing the cell score of proliferation and drug resistance in multiple myeloma (MM) cell 

clusters. 

(B) Circular genomic map illustrating the copy number variations in MM cell clusters. Each lane indicates 

one cell cluster and the outmost lane indicates chromosome structure. Red represents amplification 

and blue represents deletion.  

(C) Waterfall plot displaying 63 mutational driver genes in 947 MM patients of MMRF-CoMMpass cohort 

(top). Fitted density plot showing mutational scores of driver genes in plasma cells (left-bottom). Violin 

plots showing the mutational score in MM cell clusters (right-bottom). 

(D) Barplot showing enriched pathways in gene modules specific to sub-C4. The analysis was performed 

by Metascape. 

(E) Kaplan-Meier curve showing the overall survival of 414 MM patients with a high or low proportion of 

sub-C4 in the GSE2658. Log-rank test was applied in the comparison between groups. 

(F) Forest plot showing the hazard ratio of 7 genes by univariate Cox regression in MMRF-CoMMpass 

cohort. 

 

Fig. 4 | The expression pattern of the top one gene LILRB4 in MM cells 



(A) Fitted density plots illustrating the expression of 7 specific genes selected by the lasso regression. 

algorithm in plasma cells. 

(B) Bar plot showing the expression of LILRB4 in UAMS-7 groups (PR-proliferation, LB-low bone disease, 

MS-MMSET, HY-hyperdiploid, MF-MAF/MAFB, CD1/ CD2-CCND1/CCND3). 

(C) Bar plot illustrating the LILRB4 expression in healthy individual (HD), monoclonal gammopathy of 

undetermined significance (MGUS), smoldering multiple myeloma (SMM), and multiple myeloma (MM) 

patients.  

(D) Kaplan-Meier curve showing the overall survival of newly diagnosed (NDMM) patients (left panel, 

GSE2658) and relapsed/refractory MM (RRMM) patients (right panel, GSE57317) with high or low 

expression of LILRB4. Log-rank test was applied in the comparison between groups. 

(E) Density dot plots and line charts (upper panel) of flow cytometry analysis displaying the expression of 

LILRB4 protein in the population of plasma cells (PC), malignant plasma cells (MPC), pre-PCs, and 

normal plasma cells (NPC) from bone marrow aspirates of NDMM and RRMM patients. Bar plots 

showing the statistical result between different plasma-cell populations. Unpaired t-test, ***P<0.001. 

(F) (Left) Bar plot showing the flow cytometry detection of LILRB4 in MM cells in NDMM (n=49), 

post-treatment MM patients (n=31), and RRMM patients (n=12). (Right) Dot plot showing the mRNA 

expression of LILRB4 in NDMM and RRMM patients. Unpaired t-test, *P<0.05, ****P<0.0001. 

(G) Density dot plots of flow cytometry analysis displaying LILRB4+ and LILRB4- MM cells. Optical 

microscope image showing the colony formation assay of LILRB4+ and LILRB4- cells (5X 

magnification). Unpaired t-test, *P<0.05, **P<0.01. 

 

Fig. 5 | LILRB4 played faceted roles in MM progression 

(A) (Left) Flow cytometry detection of LILRB4 in (non-target) NT and LILRB4 knock-out (KO) MM cells. 

(Right) Growth of LILRB4-KO cells relative to NT multiple myeloma (MM) cells. 

(B) Colony formation assay of LILRB4-KO cells relative to NT MM cells (5X magnification). 

(C) Transwell invasion assay of LILRB4-KO cells relative to NT MM cells. 



(D) Cellular apoptosis detection of NT cells and LILRB4-KO MM cells. 

(E) Bar plot showing cytotoxicity towards NT cells and LILRB4-KO MM cells by carfilzomib at 48h. 

(F) The H929-NT and H929-KO cells were injected subcutaneously into the left and right flank of the 

same mouse. Line plot showing the measurement of tumor volume every other day between H929-NT 

and H929-KO groups. Bar plots showing the statistical result of tumor weight between H929-NT and 

H929-KO group. Unpaired t test, *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. 

 

Fig. 6 | The regulated mechanisms underlying LILRB4 expression in MM cells 

(A) ATAC-seq unveiling significant increase in chromatin accessibility within the promoter region of 

LILRB4 gene in multiple myeloma (MM) cell lines exhibiting elevated expression levels of LILRB4. 

(B) STAT1 ChIP-seq reads enriched in the LILRB4 promoter region. 

(C) LILRB4 mRNA expression in MM cells treated by STAT1 inhibitor, fludarabine, for 48h. 

(D) Schematic diagram showing experimental process that MM cells cocultured with healthy peripheral 

blood mononuclear cells (PBMCs) for 72h. Bar plots showing LILRB4 mRNA expression and LILRB4 

mean fluorescence intensity (MFI) in MM cells respectively after co-culture. Histogram showing flow 

cytometry examination of LILRB4 in MM cells after co-culture. 

 

Fig. 7 | High infiltrated immunosuppressive myeloid cells in EM24 MM patients 

(A) T-distributed stochastic neighbor embedding (tSNE) plots showing the distribution of annotated 

myeloid cells. Cell annotations are labeled by colors.  

(B) TSNE plots showing the marker gene expression of each cell cluster. 

(C) Point plot displaying changes in myeloid cell composition between patients with early death (EM24) 

and patients without early death (nEM24). For each cell type, two axes indicate the log fold change in 

mean cell fraction between the two groups, with -log10 two-side Wilcoxon rank sum P-value. 



(D) Scatterplots showing DC migratory and activated scores (left-top), pro- and anti-inflammatory scores 

(right-top), M1 and M2 polarization scores (left-bottom), and immune activation and suppression 

scores (right-bottom) for colored myeloid cell types. Triangles represent the median of cell score. 

(E) Schematic diagram showing experimental process. Multiple myeloma (MM) cells were co-cultured 

with peripheral blood mononuclear cells (PBMCs) from healthy donors (HDs), followed by the 

detection of myeloid-derived suppressive cells (MDSCs) differentiation and T-cell proportion. Bar plots 

showing the proportion of MDSCs and CD3+ T cells in PBMCs after co-culturing with H929 MM cells 

with different LILRB4 levels, respectively with unpaired Student’s t-test, two-tailed, *P<0.05, 

****P<0.0001.  

(F) (Left panel) Schematic diagram of experimental process. The non-target (NT) and LILRB4 knock-out 

(KO) H929 cells were injected subcutaneously into the mice, followed by detection of infiltrated 

MDSCs in tumor samples. Density dot plots displaying MDSCs population in two groups (left-bottom). 

Bar plots (right panel) showing the MDSCs proportion in myeloid cells between NT and LILRB4-KO 

group with unpaired Student’s t-test, two-tailed, *P<0.05.  

 

Fig. 8 | LILRB4 is a promising target for immunotherapy of MM 

(A) Density dot plots of flow cytometry analysis displaying the expression of LILRB4 protein in the 

population of monocytic myeloid-derived suppressive cells (M-MDSC) and granulocytic 

myeloid-derived suppressive cells (G-MDSC) from multiple myeloma (MM) patients. Strategies for 

gating are shown in the figure. Bar plot showing the expression of LILRB4 protein in M-MDSC and 

G-MDSC (bottom-right). 

(B) Density line charts (top panel) of flow cytometry analysis displaying the expression of LILRB4 protein 

in NCI-H929 and U266 multiple myeloma (MM) cells. Points plot showing cell lysis percentage of 

NCI-H929 and U266 MM cells co-cultured with mock-T cells (yellow) or LILRB4-targeted synthetic T 

cell receptor and antigen receptor (STAR)-T cells (purple) under different effector: target (E: T) ratio 

and different incubating time (middle panel). Bar plots showing the concentration of IFN-γ, IL-2, and 

TNF-α secreted by T cells after co-culture (bottom panel). 



(C) (Left) Schematic of the monitoring of the anti-tumor function of LILRB4 STAR-T cells in a xenograft 

tumor model. (Middle) Line charts illustrating the subcutaneous tumor volume in MM xenograft mice 

after treating mock-T cells or LILRB4-targeted STAR-T cells. The mean tumor volumes with standard 

error bars were calculated on specific days. (Right) Kaplan-Meier curve showing the survival of MM 

xenograft mice. 

(D) Density line charts of flow cytometry analysis displaying the expression of LILRB4 protein in 

monocyte-derived MDSCs. Bar plots showing the cell lysis percentage of monocyte-derived MDSCs 

co-cultured with mock-T cells or LILRB4-targeted STAR-T cells (left panel). Bar plots showing the 

concentration of IFN-γ, IL-2, and TNF-α after co-culture (right panel). 

(E) Exemplary dot plots obtained in the flow cytometry-based LILRB4 STAR-T cell cytotoxicity assay. 

Bone marrow mononuclear cells (BMMCs) from MM patients (n=9) were cocultured with LILRB4 

STAR-T or mock-transduced T cells at different E: T ratios. After 4 hours of incubation, specific lysis of 

CD38+LILRB4+ cells and CD11b+LILRB4+ immunosuppressive myeloid cells by LILRB4 STAR-T or 

mock-transduced T cells were quantified and calculated by flow cytometry using counting beads.  

 

 

 



















Supplemental files 
 
Methods 

Sample collection and single cell preparation 

BMMCs were isolated by Ficoll (MERCK) density-gradient centrifugation and cryopreserved at -80°C for 

less than five days until processed. The number and viability of cells was measured using a TC20 

automated cell counter (Biorad). Dead cells (cell viability less than 80%) were removed by magnetic bead 

purification (Miltenyi Biotech) according to the manufacturer’s protocol before scRNA-seq.  

Single-cell RNA library preparation and sequencing  

Chromium single-cell sequencing technology was performed following the manufacturer’s protocol (10× 

Genomics). Library construction procedures were performed using the Chromium Single Cell 3’ Library, 

Gel Bead & Multiplex Kit (10× Genomics, V2), strictly following the manufacturer’s instructions. Then the 

cell suspensions were loaded onto the 10x Chromium Single Cell Controller to generate single-cell gel 

bead-in-emulsions (GEMs), and we performed barcoded reverse transcription of RNA within a single cell 

using a Verity Thermal Cycler (Life Technologies). Through reverse transcription in a single GEM, the 

barcodes were added to the RNAs released from lysed cells; then fragmentation, end repair, polyA tailing, 

and adaptor ligation were achieved according to the standard protocol. The cDNA purification and size 

selection were performed by SPRI select beads (Beckman Coulter), and the quality was evaluated using 

the Agilent Bioanalyzer. Finally, the libraries were sequenced on an MGISEQ-2000 sequencer as 150 bp 

paired-end reads by Beijing Genomics Institute (BGI, Shenzhen, China).  

scRNA-seq data processing 

The Cell Ranger Software Suite (version 3.0.2; 10x Genomics) was used to perform sample de-

multiplexing, alignment, barcode processing, and unique molecular identifier (UMI) counting. Briefly, 

sequencing reads were aligned against the GRCh38 human reference genome with STAR, and count 

matrices were built from the resulting BAM files.(1) The R package scCancer v2.1.0(2) was then used to 

conduct the quality control, which detected outliers automatically according to the distributions of the 

metrics. First, the number of total unique molecular identifiers (UMI; nUMI), number of expressed genes 

(nGene), and percentage of UMIs from mitochondrial genes (mito.percent), ribosomal genes (ribo.percent) 

and dissociation-associated genes (diss.percent) were used to filter low-quality cells and multiplets (see 

the auto-selected thresholds in Suppl. Fig. 1B). We then filtered the genes that were expressed in <3 cells. 

For the integration of the cells from different samples, we corrected batch effect using the R package 



harmony (version 0.1.1).(3) In parameter settings, the first 30 dimensions of canonical correlation analysis 

(CCA) and principal component analysis (PCA) were used. 

Dimensionality reduction, clustering of cells, and visualization 

The R package Seurat v.3 was used for data scaling, transformation, clustering, dimensionality reduction, 

differential expression analysis, and most visualizations.(4, 5) The variable genes were identified using the 

‘vst’ method in the Seurat ‘FindVariableFeatures’ function. PCA was performed using the top 2,000 variable 

genes. Graph-based clustering was performed on the PCA-reduced data for clustering analysis. The 

resolution was set to 0.5 to obtain a more refined result. Briefly, the first 50 PCs of the integrated gene-cell 

matrix were used to construct a shared nearest-neighbor graph (SNN; ‘FindNeighbors’), and this SNN was 

used to cluster the dataset (‘FindClusters’) using a graph-based modularity-optimization algorithm of the 

Louvain method for community detection. Then UMAP was performed on the top 30 principal components 

for visualizing the cells. 

Cell cluster annotation with specific maker genes expression 

The marker genes, identified by the ‘FindAllMarkers’ function—with the setting ‘only.pos’ as ‘True’, ‘min.pct’ 

as 0.25, ‘logfc.threshold’ as 0.25 and ‘test.use’ as ‘wilcox’—were used to annotate cell clusters. Cluster 

annotation was confirmed using the celltypist, an automated cell type annotation tool for scRNA-seq 

datasets based on logistic regression classifiers optimised by the stochastic gradient descent algorithm.(6) 

Characterizing the cell distribution in sample groups 

To characterize the group distribution of cells, odds ratios (OR) were calculated and used to indicate 

preferences as reported.(7) Specifically, for each combination of cells i and group j, a 2 by 2 contingency 

table was constructed, which contained the number of cells i in group j, the number of cells of cell i in other 

groups, the number of non-i cells in group j, the number of non-i cells in other groups. Then Fisher’s exact 

test was applied on this contingency table, thus OR and corresponding p-value could be obtained. We 

labeled groups with a p-value < 0.05 using an asterisk (*). A higher OR with an asterisk indicated that cells 

i was more preferred to distribute in group j, while a lower OR with an asterisk indicated that cells i was 

preferred to less distribute in group j. 

Plasma-cell lineage developmental trajectory 

The scRNA-seq data of CD34+, CD19+, and CD138+ cells from healthy donors including PRJCA003794(8) 

and PRJNA732205(9) were used to build the plasma-cell lineage and differentiation stage classifier. 

Pseudotime-ordered analysis of HSCs, pro-B cells, pre-B cells, immature B cells, naïve B cells, memory 



B cells, plasmablasts, and plasma cells was performed using Monocle2.(10)  

Plasma-cell differentiation stage classifier 

To discriminate the differentiation stage of MM cell clusters, we trained a plasma-cell differentiation stage 

classifier using random forest training. The training was based on eight annotated cells representing 

different differentiation stages (HSCs, pro-B cells, pre-B cells, immature B cells, naïve B cells, memory B 

cells, plasmablasts, and plasma cells). We utilized the 'FindAllMarkers' function from Seurat v.3 to select 

the top 100 marker genes for each stage, sorted according to the average fold change. Cell cycle-related 

genes, mitochondrial genes, ribosomal genes, and genes associated with cell dissolution were removed, 

resulting in 597 non-redundant feature genes in total. The normalized gene-cell matrix by Seurat v.3 was 

randomly split into a 70% training set and a 30% validation set using the caTools package. The training 

was performed using the 'randomForest' function from the randomForest v4.6 package, generating 500 

trees. For testing, we used the 'roc' function from the pROC package v1.18.0 to calculate the sensitivity 

and specificity of the predictions for each cell type in the validation set. Finally, we utilized ggroc v1.0 to 

plot the ROC curves. 

Processing of scBCR-seq data 

The outsourced scBCR-seq were processed using CellRanger v3.0.2 (‘vdj’ pipeline with default setting 

and using the V(D)J library GRCh38) and the output files with cell and clonotype information were 

generated. According to the clonotypes provided by the file ‘filtered_contig_annotations.csv’, we counted 

the cell number of each clonotype as its abundance. Cells were assigned to ‘abundance>10′, 

‘abundance≤10’ or ‘none’ according to the abundance of their clonotypes. 

Calculating the proportion of Kappa+ cells 

The human genome has one kappa constant (IGKC) gene but variable number of lambda constants – 

IGLC1, IGLC2, IGLC3 and IGLC7 are functional isotypes. Let t be a chosen transcript count threshold and 

K the number of cells expressing at least t IGKC transcripts. Further let L be the number of cells expressing 

at least t transcripts of any of three out of the four functional lambda isotypes: IGLC2, IGLC3 and IGLC7.(11) 

The IGLC1 transcript was not detected in any B cell, probably because complete overlap of its 3’end with 

the IGLL5 gene precludes IGLC1 mRNA quantification with 3’end RNA-Seq assays. The % kappa+ cells 

within a given population was calculated as: !"##"! = "
"!#. t = 1 was chosen. The estimated % of kappa+ 

cells was robust to different values of t ranging between 1 and 5. 



Topology of sequenced genes in MM cells 

We transposed the gene-by-cell matrix of MM cells and applied dimensionality reduction and clustering 

techniques to analyze 20,711 genes across 12,835 MM cells using Seurat v.3. To identify genes with 

differential expression in specific clusters or samples, we employed the 'FindMarkers' function with the 

'wilcox' parameter, conducting the Wilcoxon rank-sum test with a significance threshold of P<0.05. 

Differential genes with a fold change greater than 1 were considered specific to clusters or samples. We 

utilized UMAP for visualizing their distribution characteristics. 

Construction of transcriptional regulatory network and gene co-expression network 

We selected specific genes from cluster 4 to infer the transcriptional regulatory network and establish a 

co-expression network. Candidate transcription factors and transcription factor-target pairs were obtained 

from TRRUST v2(12), which includes 8,444 regulatory interactions (annotated as ‘activation’, ‘repression’, 

and ‘unknown’) for 800 transcription factors in humans. We retained only the edges where both the 

transcription factor and target were present in the specific genes of cluster 4. Moreover, we kept only the 

transcription factors with at least two edges annotated as ‘activation’ or ‘repression’ in the final network. 

To construct the co-expression network, we calculated the Pearson correlation between the specific genes 

of cluster 4 in cluster 4 MM cells. Genes with a P-value < 0.05 and an absolute correlation coefficient > 

0.4 were retained. Clustering of the co-expression network was performed using MCODE in Cytoscape 

v3.9.0, and the top 4 clusters with a degree cutoff of 5 were kept. The networks were visualized using 

Gephi v0.10.1 with the ‘Fruchterman Reingold’ layout. 

WES data processing and mutation calling from scRNA-seq data 

Mutations of reported driver genes(13) were identified from bulk Whole Exome Sequencing (WES) data 

from 947 newly diagnosed MM patients of MMRF-CoMMpass cohort processed by MuTect2 of GATK 

pipeline (vcf files of IA20 version, https://tcga-data.nci.nih.gov/). Next, the identified variants were further 

examined in the scRNA-seq data of the MM cells using cb_sniffer v1.0 

(https://github.com/sridnona/cb_sniffer). For this analysis, two additional files generated by CellRanger 

were required: the aligned BAM file of scRNA-seq data and the corresponding cell barcode file. The output 

file of cb sniffer with the suffix name ‘counts_CB.tsv’ recorded cell barcodes that had the specific mutation. 

Finally, the frequency of 63 driver genes mutation in single cell was calculated as mutation score. 

The significance of cluster 4 on overall survival of MM patients 

Deconvolution of subclusters in bulk tumor cells from GSE2658 RNA martrix was performed using support 



vector machine (SVM) algorithms by CIBERSORTx(14). Normalized average expression matrix of 10 

plasma cell clusters served as the input signature matrix and the relative cell fraction was further imputed 

with scRNA-seq mode. The optimal cut point for the fraction of cluster 4 in MM patients was determined 

using the maximally selected rank statistics from the maxstat R package. The log-rank test was employed 

to calculate P-values between MM patients with high or low cluster 4 fractions, and the Kaplan–Meier 

method was performed to plot survival curves for survival analyses. 

Single cell copy number variations (CNVs) calling 

To identify clonal large-scale chromosomal CNVs in malignant MM cells, we used the inferCNV R package 

to infer the genetic profiles of each cell based on the average expression of large genes sets (101 genes) 

in each chromosomal region of the tumor genome compared to normal cells(15) All malignant plasma cells 

MM were input as interrogation group and normal plasma cells from HDs were sampled as control. Other 

parameters were set as default. CNVs on autosomes were visualized using the R package RCircos(16). 

Projection and analysis of myeloid cells 

We leveraged STACAS package to integrate pan-cancer myeloid cells from 45 human samples of 

PRJNA647394 and myeloid-derived suppressor cells (MDSCs) from PRJNA578550 and further built a 

customized reference atlas for myeloid cells.(17-19) We projected our myeloid cell to this reference map 

with ProjecTILs v3.1, allowing accurate embedding of new scRNA-seq data into a reference.(20) 

Subsequently, we calculated MDSC signature, activated score and migratory score of DC cells, anti-/pro-

inflammatory score of monocytes, and M1/M2 polarization score of macrophages with reported gene set 

by AddModuleScore function in Seurat v.3.(18, 19, 21) 

RNA sequencing and data processing 

Bulk RNA-seq was used to characterize the in-house data of the MM patients for verification. 133 newly 

diagnosed MM patients were involved at the Institute of Hematology and Blood Diseases Hospital, Chinese 

Academy of Medical Sciences, and Peking Union Medical College. RNA extraction was performed using 

the miRNeasy Mini Kit (Qiagen). The RNA yield and cDNA libraries from CD138-selected plasma cells 

were sequenced on the NextSeq500 Sequencing System (Illumina) with read length of paired-end 150 bp. 

Raw reads were pre-processed using FastQC software. Clean reads were then used for subsequent 

analyses. RNA-seq reads were aligned to GRCh38 using STAR. Transcript expression levels were 

quantified after normalizing the count data with the edgeR package.(22)  

ATAC-seq analysis 



Assay for Transposase Accessible Chromatin with high-throughput sequencing (ATAC-seq) uses Tn5 

transposase to insert adaptors into the accessible region on the genome. The obtained library can directly 

identify the transcription factor binding region and nucleosome position, providing an effective approach 

for researching gene regulation and genomic imprinting. ATAC-seq unveiled significant increase in 

chromatin accessibility within the promoter region of the LILRB4 gene in cell lines exhibiting elevated 

expression levels of LILRB4.  

Cell Culture and transfection 

MM cell lines were kept in our laboratory and authenticated by short-tandem repeat (STR) profiling. 

The MM cell lines with stable LILRB4 overexpression (OE) or deletion (KO) were produced by 

lentivirus transfection containing LILRB4-OE plasmid (pCDH-EF1A-hLILRB4-T2A-Puro) or Cas9-

expressing plasmids containing guide RNA (LentiCRISPR v2) respectively. The guide RNA 

sequences used for LILRB4 were listed in Table S4. Lentivirus packaging, the constructs for gene 

overexpression and CRISPR-Cas9-based constructs were performed according to our previous 

study.(23, 24) For LILRB4 knock-out, LILRB4 or control CRISPR lentivirus were transduced into cells 

and sorted via FACS isolation. Single clones were selected and validated by flow detection. 

Colony-formation assay 

A total of 1 000 MM cells were plated in triplicate in 1.1 ml methylcellulose-based medium 

(MethoCult™ H4230, StemCell Technologies) per 12-well and incubated for 2 weeks. The culture 

plate was taken photo under high-content analysis system (Operetta CLS). Colonies consisting of 

more than 50 cells were scored. 

Co-culture assay 

For MDSC induction, MM cells (1 × 105) and PBMCs from healthy donors (1 × 106) were co-cultured 

in 10% RPMI 1640 for 6 days. MDSC detection (CD11b+CD33+HLA-DR-/low) was performed by flow 

cytometry analysis. The in vitro experiments were performed in triplicate and repeated three times.  

For examining the regulation of LILRB4 expression by microenvironment cells, MM cells were firstly 

labeled by CFSE. Then MM cells and PBMCs from healthy donors were co-cultured at the ratio of 

1:10. After 3-day coculture, LILRB4 expression in CFSE+ MM cells was examined by flow cytometry. 

At the same time, CFSE+ MM cells were sorted by flow cytometry for LILRB4 mRNA detection. 

MDSC generation 



For MDSC cytotoxicity assay, MDSCs were induced in vitro. CD14+ monocytes were isolated from 

HD PBMCs following the EasySep Human Monocyte Isolation Kit (Stem cell, 19359). After isolation, 

monocytes were cultured in RPMI 1640 complete medium with the addition of IL-6 (10ng/ml) & GM-

CSF (10ng/ml) & PGE2 (1μg/ml) for 7 days. Flow sorting of MDSCs were then performed according 

to the expression of CD14+CD33+CD11b+.  

Cytotoxicity assays 

Target cells were labelled with CellTrace FarRed dye and incubated with LILRB4 STAR-T cells or 

mock-T cells at the indicated effector: target (E:T) ratio in triplicates for 24h or 48h. At the end of the 

co-culture, cells were harvested and stained with propidium iodide (PI). PI+CTR+ cells were quantified 

by flow cytometer. Co-culture supernatants were measured for the concentration of IFN-γ, IL-2, TNF-

α following the enzyme-linked immunosorbent assay kits. 

To determine cytotoxicity activity of LILRB4 STAR-T cells against MM patient samples, BMMCs were 

first stained with antibodies against CD38, CD11b, CD14, LILRB4 to quantify the LILRB4 positive 

target cells in BMMCs. Then, BMMCs were co-cultured with STAR-T cells or mock-T cells for 4h at 

E:T ratio of 1:1 and 5:1. After incubation, the co-culture cells were stained with CD38, CD11b, CD14, 

LILRB4 and 7-AAD. Counting beads were added for normalization as well. 

Flow cytometry analysis 

Flow cytometry was performed on CantoⅡ flow cytometer (BD Biosciences) and the data were 

analyzed by Flowjo V10 software (Treestar). The antibodies are listed in Table S5. 

Statistical analysis 

Data analyses were performed with R language and GraphPad Prism 8.0 Software. Statistical 

significance was set at P < 0.05.  

  



Supplemental Tables 
 
Table. S1| The gene list of the highly expressed genes regulated by H3K27ac in cluster4 
Gene p_val avg_logFC avg_logExp.1 avg_logExp.2 p_val_adj geneChr 
LILRB4 0 2.17908523 2.40554514 0.22645992 0 chr19 

STMN1 0 1.40553826 2.75145486 1.34591659 0 chr1 

PTTG1 0 0.95213495 1.28386214 0.33172719 0 chr5 

PAGE5 0 0.8527573 0.89321904 0.04046175 0 chrX 

TK1 0 0.72126706 0.88658346 0.1653164 0 chr17 

MCM5 0 0.65412165 0.84310093 0.18897929 0 chr22 

CENPW 0 0.62891533 0.74713037 0.11821504 0 chr6 

PHF19 0 0.57845067 0.69203694 0.11358627 0 chr9 

PVALB 0 0.53796586 0.55888082 0.02091495 0 chr22 

GINS2 0 0.53282238 0.63076266 0.09794028 0 chr16 

SSX1 0 0.290379 0.30059916 0.01022016 0 chrX 

MAGEB2 0 0.28337759 0.29427583 0.01089824 0 chrX 

CENPH 2.74E-302 0.55582099 0.67808887 0.12226788 5.76E-298 chr5 

PAFAH1B3 3.44E-301 0.80709162 0.95451379 0.14742217 7.25E-297 chr19 

GAPDH 4.39E-301 2.02869199 4.72114847 2.69245649 9.25E-297 chr12 

CDT1 5.20E-299 0.51638582 0.61495447 0.09856865 1.10E-294 chr16 

CENPN 4.99E-296 0.56668702 0.69338616 0.12669914 1.05E-291 chr16 

CRIP1 9.97E-295 2.11911896 3.14333347 1.0242145 2.10E-290 chr14 

GULP1 1.84E-289 0.32850986 0.34561042 0.01710056 3.87E-285 chr2 

SHCBP1 1.90E-282 0.38314151 0.43386619 0.05072469 4.00E-278 chr16 

ENO1 2.74E-282 1.61850607 2.49969514 0.88118907 5.77E-278 chr1 

FAM3B 2.75E-282 0.31034582 0.31738059 0.00703477 5.79E-278 chr21 

ACY3 5.01E-279 0.66839987 0.76295517 0.0945553 1.05E-274 chr11 

RRM2 1.29E-277 0.87093479 1.08603547 0.21510068 2.71E-273 chr2 

MAD2L1 1.96E-269 0.62099465 0.82557036 0.2045757 4.13E-265 chr4 

TYMS 5.49E-268 0.79456845 1.16973305 0.37516459 1.15E-263 chr18 

CDC6 5.83E-265 0.39851254 0.46916167 0.07064913 1.23E-260 chr17 

C19orf48 2.80E-260 0.91900105 1.2763505 0.35734945 5.89E-256 chr19 

ASF1B 2.31E-259 0.41431229 0.50840515 0.09409286 4.86E-255 chr19 

GMNN 6.86E-257 0.56085582 0.7075087 0.14665288 1.44E-252 chr6 

CD9 1.90E-254 1.38218422 1.8881117 0.50592748 4.00E-250 chr12 

TUBA1B 1.72E-253 1.72586739 3.58602697 1.86015958 3.63E-249 chr12 

PCLAF 1.36E-250 1.11541067 1.72628242 0.61087175 2.85E-246 chr15 

MCM7 2.34E-250 0.72937413 1.08684466 0.35747054 4.93E-246 chr7 

C11orf96 7.10E-249 0.72561813 0.82765119 0.10203306 1.50E-244 chr11 

ADTRP 8.92E-249 0.53174978 0.61626589 0.08451611 1.88E-244 chr6 

NLRP7 3.51E-247 0.2750494 0.28101606 0.00596667 7.38E-243 chr19 

POLD2 2.31E-245 0.7992543 1.0874332 0.2881789 4.87E-241 chr7 

FBL 5.27E-241 1.11599251 1.62947462 0.5134821 1.11E-236 chr19 



Table. S2| H3K27ac regulation in LILRB4 expression from ChIP-seq data of GSE145891 
 

Dataset PeakS
core 

(MACS
2) 

-log10 
(Pvalue) 

PeakStart PeakEnd annotation distanc
eToTSS 

GENES
YMBOL 

GSM4338508 42 6.23028 55171781 55178336 Promoter (<=1kb) 0 LILRB4 

GSM4338510 17 4.41754 55172220 55172804 Promoter (1-2kb) -1320 LILRB4 

GSM4338514 31 5.34083 55172181 55173612 Promoter (<=1kb) -512 LILRB4 

GSM4338516 63 8.31412 55171391 55178385 Promoter (<=1kb) 0 LILRB4 

GSM4338518 30 5.61436 55173013 55174228 Promoter (<=1kb) 0 LILRB4 

GSM4338520 12 2.90607 55172345 55172891 Promoter (1-2kb) -1233 LILRB4 

GSM4338522 18 3.64749 55172593 55172801 Promoter (1-2kb) -1323 LILRB4 

 
Table. S3| The baseline clinical information of bone marrow samples used for LILRB4 STAR-T cell 
cytotoxicity analysis 
 
Sample Disease status Treatment Cytogenetic aberrancy 
Pt1 Post-treatment PI-based 1q21gain, del(13q) 

Pt2 Post-treatment PI-based 1q21gain, del(13q) 

Pt3 ND PCL n.a. t(11;14) 

Pt4 NDMM n.a del(13q) 

Pt5 RRMM PI-based 1q21gain, del(13q), t(14;unidentified) 

Pt6 RRMM PI-based 1q21gain, del(13q), t(14;unidentified) 
Pt7 RRMM PI-based, Daratumumab, 

BCMA-ADC 
1q21gain, del(13q), t(14;unidentified) 

Pt8 RRMM PI-based, BCMA CAR-T 1q21gain, t(14;unidentified) 
Pt9 RRMM PI-based, BCMA CAR-T 1q21gain, t(4;14) 

 
 
Table. S4 | The guiding RNA for LILRB4 Crispr-Cas9 knockout 

Guiding RNA # Guiding RNA sequence 

sgRNA1 5′-TGTTACTATCGCAGCCCTGT-3′ 

sgRNA2 5′-GTAGGTCCCCCCGTGCACTG-3′ 

sgRNA3 5′-CCTGTGACCTCAGTGCAC GG-3‘ 
 
 
 
 
 



Table. S5 | Antibodies for flowcytometry analysis  

Antibody Clone Company Order number 

anti-hCD19-BV421 UCHT1 BioLegend 300452 

anti-hCD56-FITC TULY56 eBioscience 4299203 

anti-hCD38-PE-Cy7 HIT2 BioLegend 303516 

anti-hCD138-PE MI15 BD Biosciences 552026 

anti-hCD45-Percp 2D1 BD Biosciences 347464 

anti-hLILRB4-APC ZM4.1 BioLegend 333016 

anti-hCD11b-PE-Cy7 M1/70 BioLegend 101216 

anti-hCD14-APC-Cy7 HCD14 BioLegend 325619 

anti-hCD15-FITC MMA BioLegend 394706 

anti-hCD33-PE WM53 BD Biosciences 555450 

anti-HLA-DR-Pacific-blue LN3 BioLegend 327016 

anti-mCD45-PE-Cy7 30-F11 BioLegend 103114 

anti-mCD11b-APC M1/70 eBioscience 17-0112-82 

anti-mGr1-PE RB6-8C5 BioLegend 108407 

Live/Dead Cell Stain Kit  ThermoFisher Scientific L34965 
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Fig. S1 | The baseline characteristics of MM patients and quality control of scRNA-
seq data 
(A) Diagram showing the baseline characteristics of multiple myeloma (MM) patients. Red 

indicates positive and blank indicates negative. 
(B) Bar plots showing filtering criteria for sequenced cells, including unique molecular 

identifier (UMI) count, gene count, mitochondrial gene proportion, ribosomal gene 
proportion, and percent of dissociation-related genes. 

(C) Uniform manifold approximation and projection (UMAP) plots showing the expression 
of marker genes in the indicated cell types. The labeled bars represent the specific cell 
types. 

(D) Heatmap illustrating the correlation between each cell cluster. The black frame 
indicates cell clusters of the same cell annotation. 
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Fig. S2 | Plasma-cell analysis of scRNA-seq data 
(A) Pie charts showing the proportion of kappa+ and lambda+ plasma cells in each patient. 
(B) Heatmap showing the expression of plasma-cell marker gene in each plasma-cell 

cluster. 
(C) T-distributed stochastic neighbor embedding (tSNE) plots (top panel) and density 

(bottom panel) plots illustrating the topology of sequenced genes from plasma cells. 
Each point indicates one gene. All genes are shown on the left. The up-regulated genes 
in patients with early death (EM24) (red) and patients without early death (nEM24) 
(blue) are shown in the middle. The up-regulated genes in cluster 4 (purple) and other 
multiple myeloma (MM) cells (gray) are shown on the right. 
Uniform manifold approximation and projection (UMAP) plots illustrating cell origin (left), 
cell annotation (middle), and selected cells for downstream analysis (right) of 
integrated CD34+, CD19+, and CD138+ cells from integrated outsourced data. HD: 
healthy individual, HSC: hematopoietic stem cells, MPP: multipotent blood progenitors. 

(D) UMAP plots showing the cell annotation (left) and BCR expression pattern (right) of 
CD34+, CD19+, and CD138+ cells from integrated outsourced data. 

(E) UMAP plots showing the expression of marker genes of plasma-cell lineage in 
integrated CD34+, CD19+, and CD138+ cells. 

(F) Line plot and receiver operating characteristic plots showing the performance of 
plasma-cell lineage classifier by random forest model. AUC: area under the curve. 

 



A

Suppl. Fig. 3

B

C

D

E



Fig. S3 | Plasma-cell differentiation trajectory analysis 
(A) Pseudotime-ordered trajectory of plasma-cell lineage using integrated CD34+, CD19+, 

and CD138+ cells. HSC: hematopoietic stem cells, MPP: multipotent blood progenitors. 
(B) The distribution of plasma-cell lineage during the trajectory using integrated CD34+, 

CD19+, and CD138+ cells. Cells are labeled by colors. 
(C) Pseudotime-ordered trajectory of plasma-cell lineage involved cluster 4 and other 

multiple myeloma (MM) cells. Plasma-cell lineage (top) and pseudotime order (bottom) 
are labeled by colors. 

(D) The distribution of MM-cell clusters during the plasma-cell lineage differentiation 
trajectory. Cells are labeled by colors. 

(E) Enrichment plots showing the enriched stemness-related signaling pathways in sub-
C4.  
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Fig. S4 | Genomic features of sub-cluster 4 
(A) Circular genomic map illustrating the copy number variations (CNV) in each multiple 

myeloma (MM) patient. Each lane indicates one patient and the outmost lane indicates 
chromosome structure. Red represents amplification and blue represents deletion. 

(B) Box plot showing the average CNV score between patients with early death (EM24) 
and patients without early death (nEM24). 

(C) Bar plots showing the mutation score of each tumor cluster in each patient. 
(D) Box plot showing the mutation score between EM24 patients and nEM24 patients. 
(E) (Left) Regulatory network of major transcription factors (TF) and target genes up-

regulated in cluster 4 compared with other MM cells. The point size indicates the edge 
numbers of TF. (Right) Gene co-expression network displaying the top gene modules 
specific to cluster 4. The point size indicates the gene fold change in cluster 4 versus 
other MM cells. The lines connect significantly correlated genes. 

(F) Violin plots showing the cell score of UAMS70 and SKY92 in MM cell clusters. 
(G) Kaplan-Meier curve showing the overall survival of 754 MM patients with a high or low 

proportion of sub-C4 in the MMRF-CoMMpass dataset. Log-rank test was applied in 
the comparison between groups. 

(H) Line chart showing the least absolute shrinkage and selection operator (lasso) 
coefficient profiles of the 170 risk factors against log(Lambda).  

(I) Forest plot showing the hazard ratio of 7 genes by multivariate cox regression in 
MMRF-CoMMpass cohort. 
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Fig. S5 | LILRB4 is a biomarker of aggressive MM 
(A) Receiver operating characteristic (ROC) curve showing the specificity of LILRB4 

expression in sub-C4. AUC: area under the curve. 
(B) The score of drug-resistance and proliferation geneset between LILRB4-low and 

LILRB4-high patients in MMRF-CoMMpass cohort. 
(C) Flow cytometry detection of LILRB4 in multiple multiple myeloma (MM) cell lines. 
(D) LILRB4 mRNA expression of LILRB4+ and LILRB4- cells. Unpaired t test, two-tailed, 

****P<0.0001 
(E) (Left) Flow cytometry detection of LILRB4 in H929-EV and H929-LILRB4 cells. (Right) 

Colony formation assay of H929-LILRB4 cells relative to H929-EV cells. Unpaired t test, 
two-tailed, **P<0.01. 

(F) The H929-EV and H929-LILRB4 cells were injected subcutaneously into the left and 
right flank of the same mouse. Bar plots showing the statistical result of tumor weight 
between H929-EV and H929-LILRB4 group with unpaired t test, two-tailed, *P < 0.05, 
**P<0.01. 
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Fig. S6 | Myeloid cell annotation and signature gene expression 
(A) Points plot showing integrated myeloid cell map for reference, including 47,694 cells 

from 45 samples of 9 cancers. 
(B) T-distributed stochastic neighbor embedding (tSNE) plot showing the distribution of 

annotated myeloid cells. Cell annotations are labeled by colors. 
(C) TSNE plots showing the marker gene expression for the major lineages of myeloid 

cells. 
(D) Violin plot showing the myeloid-derived suppressive cell (MDSC) signature scores in 

myeloid cell types. 
(E) Bubble heatmap showing expression levels of selected signature genes in myeloid 

cells. Dot size indicates fraction of expressing cells, colored based on normalized 
expression levels. 

(F) Bar plots showing the proportion of MDSCs or CD3+ T cells in peripheral blood 
mononuclear cells (PBMCs) after co-culturing with multiple myeloma (MM) cells with 
different LILRB4 level respectively. The statistical results were tested with unpaired t 
test, two-tailed, *P < 0.05, **P<0.01. 
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Fig. S7 | LILRB4 STAR-T cell pre-clinical study in MM  

(A) Schematic construct of LILRB4 synthetic T cell receptor and antigen receptor (STAR)-

T cells. 

(B) LILRB4 STAR-T cell cytotoxicity assay towards LILRB4- KMS11 multiple myeloma (MM) 
cells.  

(C) Line chart illustrating the subcutaneous tumor weight in MM xenograft mice after 
treating with mock-T cells or LILRB4 STAR-T cells. 

(D) Hematoxylin-eosin staining of multiple organs from MM xenograft mice after treating 
with LILRB4 STAR-T cells. 

(E) (Left) Correlation analysis of BCMA and LILRB4 mRNA expression in GSE2658 
dataset. (Right) Flow cytometry detection of BCMA in LILRB4-overexpressed MM cells. 

(F) Exemplary plot for light chain restriction analysis of CD38+LILRB4+CD138low cell cluster 
and CD38+CD138+ cell cluster from the same patient by flow cytometry detection. 

 




