Validation and molecular integration of the RR6 model to predict survival after 6 months of therapy with ruxolitinib

Giacomo Coltro,^{1,2} Giulio Capecchi,^{1,2} Margherita Maffioli,³ Francesco Mannelli,^{1,2} Barbara Mora,^{4,5} Alessandro Atanasio,^{1,2} Alessandra Iurlo,⁴ Chiara Maccari,^{1,2} Mirko Farina,⁶ Elena Nacca,^{1,2} Marianna Caramella,⁷ Leonardo Signori,^{1,2} Miriam Borella,^{1,2} Lorenza Bertù,⁸ Maria Esposito,^{1,2} Paola Guglielmelli,^{1,2} Francesco Passamonti^{4,5} and Alessandro Maria Vannucchi^{1,2}

¹Department of Experimental and Clinical Medicine, University of Florence, Florence; ²CRIMM, Center for Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliero-Universitaria Careggi, Florence; ³Hematology Unit, ASST Sette Laghi, Ospedale di Circolo, Varese; ⁴Hematology Division, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan; ⁵Department of Oncology and Hemato-Oncology, University of Milan, Milan; ⁶Hematology Unit, ASST Spedali Civili di Brescia, Brescia; ⁷Department of Hematology, ASST Grande Ospedale Metropolitano Niguarda, Milan and ⁸Department of Medicine and Surgery, University of Insubria, Varese, Italy

Correspondence: A.M. VANNUCHI - a.vannucchi@unifi.it

https://doi.org/10.3324/haematol.2024.285098

	Univariat	te	Multivariate	
	HR (95% CI)	P value	HR (95% CI)	P value
RR6 model				
Low risk	Reference	e	Reference	
Intermediate risk	1.7 (0.7-4.3=	.2	1.4 (0.5-3.5)	.5
High risk	4.9 (2.0-12.2)	.0005	4.4 (1.7-11.1)	.0020
MPN drivers				
JAK2 mutated; n (%)	0.8 (0.4-1.4)	.4		
JAK2 ^{V617F} AB; median (range); evaluable=81	-	.1		
CALR mutated; n (%)	1.3 (0.6-2.6)	.5		
MPL mutated; n (%)	0.3 (0-2.4)	.3		
Myeloid neoplasm-associated genes				
ASXL1 mutated; n (%); evaluable=103	1.7 (1-2.9)	.0447		
CBL mutated; n (%); evaluable=100	2.9 (0.7-12.1)	.1		
CSF3R mutated; n (%); evaluable=86	-	-		
CUX1 mutated; n (%); evaluable=79	-	-		
DNMT3A mutated; n (%); evaluable=99	0.9 (0.1-6.2)	.9		
EZH2 mutated; n (%); evaluable=103	1.5 (0.6-3.4)	.4		
IDH1/2 mutated; n (%); evaluable=103	2.2 (0.5-9.3)	.3		
KIT mutated; n (%); evaluable=98	-	-		
KRAS mutated; n (%); evaluable=97	1.5 (0.6-3.7)	.4		
NF-E2 mutated; n (%); evaluable=90	0.8 (0.3-2)	.6		
NRAS mutated; n (%); evaluable=97	1.8 (0.9-3.9)	.1		
PTPN1 mutated; n (%); evaluable=86	0.9 (0.2-3.6)	.8		
RUNX1 mutated; n (%); evaluable=98	2 (0.8-5.1)	.1		
SETBP1 mutated; n (%); evaluable=86	5 (0.7-38)	.1		
SF3B1 mutated; n (%); evaluable=99	0.4 (0.1-1.6)	0.2		
SH2B3/LNK mutated; n (%); evaluable=99	2 (0.9-4.3)	.1		
SRSF2 mutated; n (%); evaluable=103	2.9 (1.2-7.4)	.0237		
TET2 mutated; n (%); evaluable=100	1.1 (0.6-2)	.7		
TP53 mutated; n (%); evaluable=98	-	-		
U2AF1 mutated; n (%); evaluable=99	1.7 (0.2-12.5)	.6		
ZRSR2 mutated; n (%); evaluable=86	1.8 (1.8-3.8)	.8		
HMR mutations [†] ; n (%); evaluable=103	2.2 (1.3-3.7)	.0048	2.5 (1.4-4.6)	.0023
≥2 HMR mutations; n (%); evaluable=103	1.7 (0.8-3.7)	.2		
>1 RASp mutation [‡] ; n (%); evaluable=99	3.4 (1.4-8.2)	.0064	6.1 (2.2-17)	.0005
Cytogenetics				
Conventional two-tiered cytogenetic; evaluable=92				
Favorable karyotype; n (%)	Referenc	e	Reference	
Unfavorable karyotype; n (%)	2.1 (1.1-4.2)	.0263	3.2 (1.5-6.7)	.0019
Revised three-tiered cytogenetic; evaluable=92				
Favorable karyotype; n (%)	Referenc	e		
Unfavorable karyotype; n (%)	1.5 (0.8-2.8)	.2		
Very high risk karyotype; n (%)	2.5 (0.7-8.2)	.1		

Supplemental Table 1. Results of univariate and multivariate Cox proportional hazards model of OS for RR6 model and genetic variables

Notes: [†]HMR mutations include pathogenic variants in any of the following genes: ASXL1, EZH2, IDH1, IDH2, SRSF2 or U2AF1; ≥2 HMR mutations indicates the presence of 2 or more mutations (2 or more mutations in the same gene are counted as 1). ‡RAS pathway mutations include pathogenic variants in any of the following genes: NRAS, KRAS, and CBL.

Abbreviations: AB: allele burden; HMR: high molecular risk mutation; MPN: myeloproliferative neoplasm; RASp: RAS pathway; RR6: Response to Ruxolitinib After 6 Months.

Supplemental Figure 1

С

Supplemental Figure 1. Patient distribution and overall survival according to the RR6 and DIPSS models. **A**. Cross table illustrating risk distribution of patients across the RR6 model and DIPSS^{bl}. **B**. Kaplan-Meier estimates of overall survival in ruxolitinib-treated patients according to DIPSS^{bl}. **C**. Cross table illustrating risk distribution of patients across the RR6 model and DIPSS^{w24}. *Abbreviations*: CI: confidence interval; DIPSS^{bl}: Dynamic International Prognostic Scoring System at baseline; DIPSS^{w24}: Dynamic International Prognostic Scoring System at week 24; NR: not reached; OS: overall survival; RR6: Response to Ruxolitinib After 6 Month.

Supplemental Figure 2

Comparison of the prognostic performance of RR6 model and its integration with high molecular risk signatures in transplant-age patients (<70 years)											
		Events at 12 months		Events at 24 months		Events at 36 months		Events at 48 months			
	C-index	Brier score	AUC								
RR6	67.3	0.021	77.1	0.052	79.2	0.084	70.8	0.106	78.7		
HMR ^{mt†}	60.6	0.022	59.2	0.056	64.8	0.090	64.2	0115	66.6		
RASp ^{mt‡}	50.4	0.022	45.7	0.058	48.3	0.097	51.3	0.127	51.6		
RR6+HMR ^{mt}	70.8	0.021	80.0	0.052	85.2	0.082*	75.1	0.102*	82.2*		
RR6+RASp ^{mt}	67.0	0.021	78.1	0.052	78.8	0.084	69.6	0.106	77.7		
RR6+HMR ^{mt} +RASp ^{mt}	71.0*	0.021	80.6*	0.052	85.6*	0.082*	75.2*	0.102*	81.9		

Supplemental Figure 2. Comparison of the prognostic performance of RR6 model and its integration with high molecular risk signatures in a cohort of 116 transplant-age patients (\leq 70 years). *Notes:* Asterisk and bold indicate the best values. †HMR mutations include pathogenic variants in any of the following genes: *ASXL1, EZH2, IDH1, IDH2, SRSF2* or *U2AF1*. ‡RAS pathway mutations include pathogenic variants in any of the following genes: *NRAS, KRAS* or *CBL. Abbreviations:* AUC: area under the curve; HMR^{mt}: high molecular risk mutation; RASp^{mt}: RAS pathway mutation; RR6: Response to Ruxolitinib After 6 Month.