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Abstract  

The gut microbiota play a critical role in maintaining a healthy human body and their dysregulation is 

associated with various diseases. In this study, we investigated the influence of the gut microbiome 

diversity on chronic lymphocytic leukemia (CLL) development. Stool sample analysis of 59 CLL patients 

revealed individual and heterogeneous microbiome compositions, but allowed for grouping of patients 

according to their microbiome diversity. Interestingly, CLL patients with a lower microbiome diversity and 

an enrichment of bacteria linked to poor health suffered from a more advanced or aggressive form of CLL. 

In the Eµ-TCL1 mouse model of CLL, we observed a faster course of disease when mice were housed in high 

hygiene conditions. Shotgun DNA sequencing of fecal samples showed that this was associated with a lower 

microbiome diversity which was dominated by Mucispirillum and Parabacteroides genera in comparison to 

mice kept under lower hygiene conditions. In conclusion, we applied taxonomic microbiome analyses to 

demonstrate a link between the gut microbiome diversity and the clinical course of CLL in humans, as well 

as the development of CLL in mice. Our novel data serve as a basis for further investigations to decipher the 

pathological and mechanistic role of intestinal microbiota in CLL development. 
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Introduction 

The gut microbiome, an ecosystem formed by commensal, symbiotic, and pathogenic microorganisms 

colonizing the gastrointestinal tract, is recognized as an important, life-long partner of the host (1, 2). The 

significance of the gut microbiome in both health and disease is a rapidly growing field of research. 

Recently, the role and direction of the crosstalk between the gut microbiome and immune cells, and its 

impact on treatment and disease development, has come into focus. 

Homeostasis in the host microbiome is constantly influenced by factors such as diet, medication and stress 

levels (3), and the reciprocal interactions between gut microbiome and the immune system are being 

constantly challenged. Dysbiosis, an imbalance of the gut microbiota often associated with loss of beneficial 

microbes and blooms of pathogens, may lead to a disruption of the physical integrity of the intestinal 

barrier and/or function of the immune system. Dysbiosis can disrupt the development and distribution of 

immune cells, which may affect the immune response to pathogens and the ability to mount an 

appropriate immune defense (4).  

Gut dysbiosis has also been associated with cancer susceptibility (5, 6). Within the area of hematological 

malignancies, the gut microbiome was suggested to play an important role in cancer microenvironment 

alterations and disease progression (7) as well as in treatment outcomes such as CAR-T cell and targeted 

therapy efficacies (8, 9).  

Very little is known about the diversity of the gut microbiome and its interaction with the immune system 

in patients with chronic lymphocytic leukemia (CLL). In a previous study, we have demonstrated that the 

microbiome in CLL patients is less diverse when compared to healthy individuals, with half of the patients 

demonstrating severe dysbiosis caused by dominance of Bacteroides (10). We also showed that patients 

with CLL presented a lower abundance of bacterial species belonging to Lachnospiraceae and 

Ruminococcaceae families, including some of the main producers of short chain fatty acids (SCFA).  

Given the antigen-driven nature and inherent immune dysfunction of CLL (11-13), we hypothesized based 

on our previous pilot study that the gut microbiome could contribute to CLL development. This might 
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happen by affecting the immune system through various mechanisms (14), including the production of 

cytokines triggered by certain bacterial species (15, 16). The gut microbiome might also be itself impacted 

by the immune dysfunction observed in CLL patients, and/or reflect the increased prescription of 

antimicrobials for this patient group (17). Here, we investigated a potential association between the fecal 

microbiome composition and CLL development in humans and mice. For this, we used a cohort of patients 

with CLL, as well as the immunocompetent Eµ-TCL1 transplantation mouse model kept under low or high 

hygiene conditions. 

 Methods 

Patient cohort, data, sample collection, sequencing, and profiling 

Fecal samples were collected from 61 patients enrolled in the CLL biobank and the PERSIMUNE biobank 

during regular out-patient visits at Rigshospitalet, Copenhagen, Denmark. The participants in our study are 

new patients, excluding the N=12 from our previous study (10), with each patient contributing one sample. 

One stool sample had to be excluded from further analysis due to low quality. Patient data and antibiotic 

records were retrieved from the Danish National CLL registry and from manual review of medical health 

records (18). The project was approved by the national ethics committee (approval no. 1804410) and 

written informed consent was obtained from all patients prior to sampling. As previously described (19), 

fecal samples were collected using OMNIgene.GUT (DNA Genotek) stabilization tubes according to the 

manufacturer’s instructions. Briefly, samples were immediately fixated and subsequently frozen within 72 

h. All samples were stored at −80°C until shipment for sequencing. Samples underwent shotgun

metagenomic sequencing on the Illumina Hi-Seq platform. Reads preprocessing and taxonomical profiling 

were done using an in-house pipeline (Supplemental Methods).  

Animal models 

6-8 week old female C57BL/6 J mice born and maintained in two different animal facilities of the German

Cancer Research Center (DKFZ) were transferred to an experimental animal facility and subjected to 

adoptive transfer (AT) with leukemia cells from the TCL1 mouse model (TCL1 AT), kindly provided by Dr. 

Carlo Croce (The Ohio State University), as previously described (20-22). Leukemic development was 
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monitored through weekly blood withdrawals starting at week 2 post-TCL1 AT. All animal experiments were 

carried out according to governmental and institutional guidelines and authorized by the local authorities 

(permit numbers: DKFZ337, G-16/15). 

Murine samples collection and sequencing 

Fecal samples were collected at week 0, one day before TCL1 AT, and at week 3 post-transplantation. Fecal 

samples were snap-frozen immediately after collection. The QIAmp DNA Stool Mini Kit (Qiagen) was used 

to extract DNA from fecal samples according to manufacturer instructions. Shotgun sequencing on the 

Illumina Hi-Seq platform was conducted at the European Molecular Biology Laboratory (EMBL, Heidelberg). 

Reads preprocessing and taxonomical profiling were done using an in-house pipeline (Supplemental 

Methods). Peripheral blood (PB) was drawn from the submandibular vein for weekly flow cytometric 

analysis (Supplemental Methods).  

Metabolic Potential Profiles 

As previously described (23), gut metabolic modules (GMMs) were used to profile the functional potential 

of the bacterial community present in stool samples. In short, GMM profiling was performed by length 

normalizing the IGC count profiles and summing the values for each KEGG (24) gene ontology term, which 

were taken from IGC_catalog-v1.0.0.emapper.annotations-v2.tsv. The values were then 16sRNA normalized 

and turned into GMM profiles using omixer-RPM (25).  

Bioinformatics and Statistical analysis 

Descriptive analyses were performed for both the human and mouse CLL cohorts with relative bacterial 

abundance as input data. Unless stated otherwise, Wilcoxon rank-sum testing was used to identify 

significant differences between subgroups and the Benjamini-Hochberg (BH) method was used for multiple-

testing correction; a BH adjusted p-value of <0.05 was considered significant. PERMANOVA was used to test 

variations in the microbial composition among groups of patient samples (such as gender or antibiotic 

usage) or different groups of murine samples (such as cage effect). Alpha diversity measures (richness, 

Shannon index) were calculated at species level using the vegan R package (26).  
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The inter-individual dissimilarities in human gut microbiota composition (β-diversity) were assessed by 

calculating a dissimilarity matrix. Hierarchical clustering was applied on the distance matrix, dissimilarities 

were explored using Principal Coordinate Analysis (PCoA, gl.pcoa) (27), and the first 3 components of PCoA 

were visualized using 3D plot. Differential abundance of bacterial species in the fecal microbiome between 

CLL patient clusters was assessed using R implementation of  SIAMCAT (28). Further details on 

bioinformatics analyses are provided in Supplemental Methods. 

A generalized linear model (GLM) was used to visualize the relationship between two independent binary 

variables - TCL1 AT and hygiene of the animal facilities, and one dependent variable - bacterial relative 

abundance.  

Results 

Microbial composition and diversity are heterogeneous in patients with CLL 

Fifty-nine patients diagnosed with CLL and one patient diagnosed with T-cell prolymphocytic leukemia (T-

PLL, Pt ID=16) delivered stool samples between June 2017 and July 2020. Forty-four stool samples were 

collected prior to any treatment; 16 stool samples were collected from patients who received treatment 

before microbiome sampling. Characteristics of patients are provided in Table 1. 

We evaluated the heterogeneity of microbiome composition in our patient cohort by β-diversity estimates, 

clustering, and statistical testing (PERMANOVA). We observed the microbial composition to be 

heterogeneous within the CLL patient cohort. Unsupervised hierarchical clustering revealed 3 distinct 

clusters based on the microbial composition of all patient samples (Figure 1A). The separation is visualized 

in a 3D plot using the results of a PCoA (Figure 1B). The dissimilarity between microbial communities 

estimated by β-diversity was evaluated and significant differences were observed between the 3 clusters 

(RW= 0.09, PW=W0.001). The differences remained significant after adjusting for gender, age at sampling, and 

BMI (RW= 0.086, PW=W0.001). No significant differences in the microbiome structure were observed in terms 

of age at microbiome sampling alone (R = 0.017, P=0.444), nor after adjustment for gender and BMI (R = 

0.017, P=0.409). To evaluate differences in the microbial communities between the clusters, diversity was 
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assessed. The Shannon diversity for cluster 1 (C1) was lower than for clusters 2 and 3 (C2 and C3) (C1 vs C2: 

median, 1.80 vs. 3.50, P = 2.4e−05; C1 vs C3: median, 1.80 vs. 2.80, P = 8.1e-05; Figure 1C).  

Besides the observed differences in diversity between clusters, a high variability of the microbiome 

composition was observed within and between clusters. At the genus level, Bacteroides was the most 

abundant genus across the 60 samples. Additionally, there was a trend of Bacteroides acquiring bacterial 

dominance (>30 % relative abundance) in 7 out of 12 samples in C1, and Prevotella dominating the 

composition of 9 samples in C2 and C3 while being completely depleted in all samples in C1. A detailed 

visualization of the microbiome composition of all 60 patients at the genus level can be explored through 

an interactive web application at: https://terezafait.shinyapps.io/microbiome_composition/. Instructions 

and examples of how to navigate in the app can be found in Supplemental Methods. An overview of the 

bacterial classification into six major taxonomic levels is provided as Supplemental Table 1.  

CLL is associated with low microbiome diversity  

Given that dysbiosis, often interpreted as loss of diversity, has been documented to play a role in the 

development and progression of hematological diseases (29), we explored the individual course of the 

disease for all patients and focused on comparing patients from C1 and C2, representing those with lowest 

and highest gut microbiome diversity. In contrast to C2 patients, patients in C1 exhibited a more advanced 

and progressive CLL. This was evidenced by an extended duration from CLL diagnosis to microbiome 

sampling (C1: median 5.3 years, IQR: 0.3-9.2 y, C2: median 0.3y, IQR: 0.3-9.2 y; p-value: 0.47), a higher 

proportion of patients who needed treatment for CLL before and/or after microbiome sampling (C1: 92%; 

C2: 50%; p-value based on Kaplan-Meier analysis from diagnosis to first line treatment: 0.21), and a higher 

occurrence of patients who underwent hematopoietic stem cell transplantation (HSCT) or developed 

Richter’s transformation (RT) (1x RT, 1x HSCT, 1x RT+HSCT) as illustrated in Figures 2 and 3. Patients in C3 

(intermediate microbiome diversity) demonstrated a greater similarity to C2 than to C1 in terms of time 

from CLL diagnosis to microbiome sampling (median: 0.4y, IQR: 0.2-5.9y) and proportion of patients in need 

of CLL treatment (47%). We further monitored the most recent antimicrobial prescriptions for all patients, 

finding that 58% of C1 patients 25% of C2 patients, and 29% of C3 patients received antimicrobial 
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treatment within 6 months prior to microbiome sampling (Figure 3, Supplemental Table 2). In regard to 

IGHV mutational status, all CLL patients, irrespective of diversity cluster, exhibited a comparable 

percentage of mutated CLL (C1: 33%, C2: 37.5%, C3: 32%). 

Differential abundance of bacterial taxa illustrates heterogeneity among CLL patients  

Having observed a correlation between the clinical course of CLL and the gut microbiome composition, we 

further aimed to identify groups of bacterial taxa differing significantly between the patient clusters. . In 

total, the abundance of 30 bacterial genera was significantly different between C1 and C2 (log2 fold change 

>1) as determined by SIAMCAT (Supplemental Table 3). Of these, Hungatella, Anaerotruncus, Dialister, 

Erysipelatoclostridium/Clostridiales, Lachnoclostridium and Flavonifractor were more abundant among C1 

(low diversity) patients, while Parabacteroides, Barnesiella, Odoribacter and Bilophila, amongst others, 

were noticeably enriched among C2 (high diversity) patients (Figure 4). Interestingly, patient no. 2 from the 

C2 cluster was clinically similar to patients in C1 (diagnosis 3 years prior to microbiome sampling and 

antimicrobial treatment prior to sampling), and also showed a similar microbiome composition as C1 

patients. Along the same line, patient no. 4 from C1, clinically similar to patients in C2 with regard to time 

from diagnosis to microbiome sampling (<1 month), showed an enrichment of bacteria with higher 

abundance in C2 patients. Bacterial genera differentially abundant between C1 and C3 partly overlapped 

with those identified as differentially abundant between C1 and C2 (Supplemental Figure 4), whereas no 

taxa were identified to be significantly different between C2 and C3 (Supplemental Table 3). 

At the species level, 110 bacterial species were identified to be differentially abundant between C1 and C2 

patient samples (Supplemental Table 3). All detected bacterial species were enriched in C2 and depleted in 

C1 (Supplemental Figure 5), which is likely due to strong differences in abundance of individual species and 

not groups of species as demonstrated at the genus level above. Intriguingly, bacteria such as Prevotella 

copri, Dorea longicatena, or Bifidobacterium adolescentis that belong to a healthy microbiome signature 

(30) were enriched among C2 (high diversity) patients.  
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Clustering of patients does not reflect shared metabolic functions 

It has been shown that different bacterial species can have similar metabolic function (31). Hence, an 

assessment of functional bacterial groups might be more informative than the bacterial composition itself. 

Thus, we used the bacterial genes identified in a stool sample that were annotated to metabolic functions 

by omixer-RPM (25) as estimates of a potential function of the bacterial community, i.e. gut metabolic 

modules (GMMs). The most abundant GMM in samples from CLL patients was lactose degradation (Table 

2). Despite the differences in diversity and composition of the microbiome, no clear pattern in GMM 

between C1 (low diversity) and C2 (high diversity) could be detected. The potentially clinically relevant 

GMMs related to production of overall beneficial SCFAs (32), and a variety of indole-derivatives promoting 

fortification of the gut epithelial barrier (33) were detected in many samples, but not different between 

patient clusters (Table 2). A detailed visualization of GMMs grouped according to Vieira-Silva, et al. (34) 

(Supplemental Table 4) in all 60 patient samples can be explored through an interactive web application 

accessible via this link: https://terezafait.shinyapps.io/gmm_modules/. 

 

Hygiene level influences CLL progression in mice 

Adoptive transfer of Eµ-TCL1 leukemia (TCL1 AT) in C57BL/6 mice housed in two animal facilities at the 

German Cancer Research Center with a different hygiene status revealed differences in the development of 

CLL. In order to elucidate whether the gut microbiome is causally contributing to this observation, we 

performed TCL1 AT with C57BL/6 mice that were born and kept in either, a closed breeding facility with 

altered Schaedler flora (high hygiene, HH) (35) or an experimental barrier with individually-ventilated cages 

(low hygiene, LH). One day before TCL1 AT, mice were brought into a common experimental facility with LH 

conditions and kept there for the rest of the experiment (Figure 5A). Mice originating from the HH facility 

developed CLL more rapidly compared to LH mice, reaching higher percentages and absolute numbers of 

CLL cells in the blood over time (week 2: LH = 398.5 cells/µL vs HH = 1,390 cells/µL, p-value = 0.0037; and 

week 4: LH = 17,489 cells/µL vs HH = 31,918 cells/µL, p-value = 0.0274; Figure 5B, C). To assess potential 

differences in the immune system at a similar stage of leukemia development, HH mice were euthanized at 
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4 weeks post-TCL1 AT, and mice from the LH group were euthanized 5 days later (Figure 5A). At these time 

points, similar tumor burden in the spleen was achieved in both groups (Supplemental Figure 1A). 

Immunophenotyping of splenic immune cell populations, specifically of the T-cell compartment, revealed 

no differences between the two groups (Supplemental Figure 1,2).  

Hygiene level and microbiome diversity in mice are inversely proportional 

We hypothesized that mice kept in the HH environment would develop a less diverse microbiome than 

mice kept in the LH facility (36). To confirm this in the setup described above, we analyzed the gut 

microbiome by shotgun DNA sequencing of fecal samples. One day before TCL1 AT (TP1), corresponding to 

the untouched microbiome status of the mice maintained in the two different facilities, lower diversity was 

seen for the HH mice as shown by richness and diversity index (Figure 6A). Three weeks after TCL1 AT (TP2) 

and co-housing of mice in the same LH facility, which was necessary to allow for experimental interventions 

to the mice, the microbiome diversity of the two groups became more similar, with a massive increase in 

diversity for the HH group, and only a minor change towards higher diversity in the LH group (Figure 6A). 

Focusing on TP1 as the baseline condition for CLL onset in the mice, we explored differences of the gut 

microbiome between the two groups (Figure 6B). Major differences were observed between the 

composition of HH and LH microbiomes, with Mucispirillum and Muribaculaceae dominating (i.e., 

constituting more than 30 % of sequencing reads) the microbiomes of HH and LH, respectively. We further 

explored relative abundances of specific bacterial species in relation to two predictor variables, high 

hygiene condition and TCL1 AT, by running a generalized linear model (GLM). Each bacterial species is 

represented as a dot weighted according to the predictor variable values (Figure 6C). Beta (β) values, 

coefficients obtained from GLM analysis represent the potential influence of high hygiene condition and 

TCL1 AT on the relative abundance of each bacterial species. For instance, we observed Clostridium to have 

a β-value of 1.9 on the x-axis (representing high hygiene condition as correlated with high abundance) and 

a β-value close to zero on the y-axis (representing no clear correlation with TCL1 AT). 

In summary, the results of our study clearly link, for the first time, clinical course of CLL in patients and 

development of CLL mouse models with the diversity of the gut microbiome, where higher microbiome 
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diversity is associated with slower disease progression. Our in-depth characterization of bacterial species in 

groups of patients with a difference in outcome provides relevant data to study the role and pathological 

function of these microorganisms, with implications for stratification and therapy of CLL patients. 

Discussion 

There is increasing evidence for an important role of gut microbiota in human physiology, arguing for a 

critical role of the microbiome to maintain a healthy state (37). A recent update of Hanahan’s hallmarks of 

cancer has included the microbiota as an important player in carcinogenesis (38). This is based on results 

from several studies showing that the microbiome contributes to the development of several cancer 

entities, such as colorectal, gastric, or biliary cancer, and studying the underlying mechanisms will help to 

develop novel therapies (39-41). 

In this study, lower diversity of the gut microbiome was linked to more aggressive and/or more progressive 

disease development in patients with CLL and TCL1 AT mice. The study of human stool samples showed 

that upon unsupervised clustering of patients with CLL based on gut bacterial distribution, a group of 

patients with lower microbiome diversity showed more severe clinical course. The severe disease course 

was characterized by longer time from diagnosis to microbiome sampling signaling more advanced disease, 

higher frequency of CLL treatment and disease progressions implying more aggressive disease, as well as 

increased antimicrobial usage either implying pre-existing immune system impairment or being a cause of 

the identified microbiota disruption. By applying TCL1 AT in immunocompetent C57BL/6 mice with basal 

differences in microbiome diversity, co-housed during the development of CLL, we provide evidence for a 

causal link between a lower gut microbiome diversity at onset of disease and a faster development of CLL. 

Our novel data identify the microbiome as a driver of disease progression and therefore, as a potential 

target to impact the course of CLL development. 

 In line with our findings suggesting more advanced or more aggressive CLL correlating with a less diverse, 

dysbiotic microbiome, a study of B-cell lymphomas demonstrated an association between gut microbiome 

composition and disease severity, where patients with indolent lymphomas presented higher microbiome 
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diversity and enrichment of certain bacterial genera when compared to diffuse large B-cell lymphoma 

patients (42). Similarly, the majority of patients with low diversity were either treated for CLL prior to or 1 

month after microbiome sampling, illustrating the link between a dysbiotic microbiome and more advanced 

CLL. Several studies, mainly focusing on chemotherapy regimens, reported changes in the gut microbiota 

after treatment, some of which persist for years, which could also be part of the mechanism for dysbiosis in 

patients having received CLL treatment prior to collection of the microbiome sample (43-45). However, 

further studies and randomized clinical trials are needed to elucidate the influence of combination and 

targeted therapies on CLL microbiomes.  

As signs of dysbiosis among CLL patients we documented the loss of diversity (Shannon diversity < 2.0) as 

well as blooms of bacteria associated with poor health. Several clinically important bacterial taxa enriched 

in low diversity patients (C1) included Flavonifractor, Anaerotruncus and Dialister genera, whose members 

were among the top 40 microbial species associated with disease by Gacesa et al. (30). Flavonifractor 

plautii was recently shown to be associated with young-onset colorectal cancer (46), and together with 

Anaerotruncus colihominis was strongly associated with disease and smoking (30); Dialister invisus was a 

common bacterium in individuals with poor diet habits (30, 47). Patients with higher diversity (C2) showed 

significant abundance of bacterial species such as Prevotella copri, Dorea longicatena or Bifidobacterium 

adolescentis, which are known to produce SCFAs through fermentation of dietary fibers (32, 48), also 

overlapping with the pattern of healthy-like microbiome described by Gacesa et al (30). Thus, we 

speculated that the presented bacterial composition in patients with higher microbiome diversity might 

lead to beneficial outcomes during their course of CLL.  

While results regarding the function of gut bacteria are sometimes contradictory and isolated effects of 

specific bacteria are difficult to prove due to complex interactions (49), we hypothesized that exploring 

taxonomic distributions reflected in the gut metabolic potential profiles, representing metabolic function of 

individual gut microbiomes (25), might be more informative. A study using gut metabolic potential profiles 

in patients receiving HSCT revealed that the conditioning regimen is associated with the degree of changes 

in metabolic potential of their gut microbiomes (23). We focused on production of SCFAs such as 
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propionate, and butyrate, the crucial gut microbiome metabolites with known ability to exhibit 

immunomodulatory effects, and on starch degradation metabolism, which shows largely consistent health-

promoting effects. However, the abundances of metabolic pathways directly involved in the production of 

SCFA and other compounds did not show substantial differences between patient subgroups. It may be that 

the gut metabolic potential profiles will still reveal differences between patients with CLL as compared to 

patients with other diseases and healthy volunteers. We are currently undertaking such studies to extend 

on our previous exploration of a CLL gut microbiome signature (10). 

Studying the impact of the gut microbiome on cancer development in mouse models remains a challenging 

but essential task. Most studies of tumor mouse models are performed in facilities with various and often 

unknown hygiene levels and microbiome status. In our study, we used mice that were born and maintained 

in either a high or low hygiene facility which assured that the two groups were distinct in terms of their gut 

microbiome. The clear difference in microbiome diversity that we observed in these mice impacted CLL 

development. This approach comes, however, with the limitation of not using littermates in our study and 

the risk of a slightly different genetic background in the two groups. To overcome this limitation, future 

experiments should include animals from germ-free facilities that fully block the exposure of mice to any 

microorganisms (50). Exposure of these mice to defined gut bacteria of interest will help to clarify their 

impact on tumor development. A crucial and unequivocal takeaway from the findings in this study is that 

when conducting tumor development studies, it is imperative to use animals that are co-housed and 

possess identical microbial compositions.  

Among the bacteria that were detected in the LH but not HH group, Muribaculaceae has been described as 

an immune-protective bacterial family in a CT26 melanoma mouse model (51). Helicobacter, also highly 

present in LH mice, is widely known for its correlation with the occurrence of gastric cancer. Its metabolites 

are known to drive macrophages into an anti-inflammatory state (52, 53). In our study, the presence of 

these bacteria in the LH mice could however have beneficial effects, perhaps by shaping myeloid cells into a 

phenotype that is less supportive of CLL growth. Lastly, Bacteroidales, also upregulated in this group and 

considered to be beneficial for gut health, but also correlated with worse disease outcome in lung cancer 
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patients (54, 55), could be priming the gut-associated immune system in the LH mice and contributing to its 

immune-protective action against leukemia development. 

In HH mice, we detected an enrichment of Mucispirillum, which has been described as cancer-promoting 

due to its induction of lipopolysaccharide production, which enhances inflammation (56). Parabacteroides, 

also highly enriched among HH mice, is a bacterial genus generally considered as anti-inflammatory (57). 

Such species present in the HH mice could contribute to enhancing immune suppression and thereby 

promote CLL development. Importantly, linking the presence of specific bacteria in the gut of these mice 

with specific functions according to the literature is not straightforward, partly because of the multiple 

effects that bacteria can have in different settings. 

Our study is limited by only assessing the microbiome on DNA level, whereas a more precise way would be 

the inclusion of metatranscriptomics and/or metabolomics focused on the microbiome. Other limitations of 

our study are the lack of consecutive samples per patient, which would allow us to describe the 

microbiome changes during disease progression more precisely, and small numbers in the extreme clusters 

(C1 and C2), which most likely prevent us from achieving statistical significance. A study set-up where stool 

samples are collected before and after treatment initiation has been applied as translational studies 

adjoined to several clinical trials (NCT04008706; NCT04639362; NCT04608318); thus, elucidation of 

microbiome dynamics throughout treatment will be the focus of upcoming studies. The observed 

association between microbiome low diversity and advanced CLL may be influenced by sampling bias with 

potential overrepresentation of patients starting treatment in planned clinical trials. Additionally, antibiotic 

exposures accompanying CLL treatment could confound our findings, influencing microbial composition 

and diversity. Given the purpose of this study, while a descriptive overview of the patient and mouse data 

itself is insightful, a translational and functional comparison of our findings in humans and mice would be 

ideal. However, exploration of the microbial overlap between human and mouse showed that 85% of 

bacterial genera found in the murine microbiome are not present in humans (58). These impressive 

differences might be caused by the obvious dissimilarity between the mouse and human systems, as well as 
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by external factors (59). Therefore, translating conclusions from murine to human data remains 

challenging.  

In conclusion, taxonomic analyses of gut microbiota provide evidence for a link between microbiome 

diversity and CLL aggressiveness and development in patients with CLL and mouse models, respectively. In 

the patient study, we grapple with a classic chicken-and-egg dilemma as it remains unclear whether the 

microbiome dysbiosis is a result of the CLL, its treatment, and antibiotic use, or whether it represents an 

underlying condition driving the disease's development. However, in the mouse study, we provide evidence 

through the TCL 1 AT which elucidates that the microbiome alterations are not just a consequence but 

indeed play a significant role in the progression of the disease. Further, we provide a complete overview of 

the taxonomical and functional composition identified in patient samples. Lastly, we attempt to apply 

metabolic potential analysis to provide a superior understanding of the biological processes underlying gut 

dysbiosis in this patient cohort. However, profound taxonomical changes were not reflected in changes in 

the gut metabolic potential. It is thus appealing to further investigate whether the intestinal microbial 

composition and function could serve as a potential predictor for CLL development.  
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Tables  
 

 

Feature  All Cluster 1 Cluster 2  Cluster 3  

  (n=60)  (n=12) (n=8) (n=40) 

Gender  Female 21 (35%) 6 (50%) 5 (62.5%) 10 (25%) 

 Male 39 (65%) 6 (50%) 3 (37.5%) 30 (75%) 

Median age at diagnosis (yr) 63.7 64.4 67.5 63.6 

 at microbiome sampling (yr) 68.6 69.3 69.6 66.4 

BMI kg/m2 26.2 24.6 25.2 26.9 

IGHV M-CLL 38 (63%) 8 (66.6%) 5 (62.5%) 25 (62.5%) 

 U-CLL 19 (32%) 4 (33.3%) 3 (37.5%) 12 (30%) 

 NA 3 (5%) 0 0 3 (7.5%) 

FISH Del17p 4 (6.6%) 0 1 (12.5%)  3 (7.5%) 

 Del11q 5 (8.3%) 2 (16.6%) 0 3 (7.5%) 

 Tri12 11 (18.3%) 1 (8.3%) 2 (25%) 8 (20%) 

 Normal 14 (23.3%) 2 (16.6%) 2 (25%) 10 (25%) 

 Del13q 24 (40%) 6 (50%) 3 (37.5%) 15 (37.5%) 

 NA 2 (3.3%) 1 (8.3%) 0 1 (2.5%) 

 

Table 1. Patient characteristics.  

N, number; yr, years; BMI, Body mass index (body mass divided by the square of the body height, units: 

kg/m2); IGHV, Immunoglobulin heavy-chain variable region gene, U-CLL, CLL with unmutated IGHV; M-CLL, 

CLL with mutated IGHV. 

Kruskal-Wallis H test of difference between the 3 clusters:  Age: p = 0.74, Gender: p = 0.06, BMI: p = 0.45, 

IGHV status: p = 0.75, FISH status: p = 0.16. 

  



 

21 
 

 

 GMM                  Mean (IQR)   

  All  Cluster1 Cluster 2  Cluster 3  

  (N=60)  (N=12) (N=8) (N=40) 

 Lactose degradation 68.5 (53.8-83.1) 77.9 (66.2-99.8) 64.0 (58.1-75.8) 66.6 (51.8-78.0) 

 Melibiose degradation 18.5 (15.5-22.0) 19.0 (15.1-25.2) 18.7 (17.3-20.2) 18.4(15.2-21.2) 

7 most Mannose degradation 17.8 (14.8-19.9) 16.6 (12.2-19.9) 16.1 (13.8-19.6) 18.5 (15.6-20.2) 

abundant Glycolysis (prep. phase) 17.4 (14.9-19.9) 15.8 (14.6-17.6) 19.0 (16.2-21.2) 17.6 (15.1-19.9) 

GMMs Arabinoxylan degradation  17.4 (13.9-21.4) 15.7 (13.0-19.7) 17.7 (15.1-20.0) 17.8 (13.9-22.2) 

 Starch degradation 15.7 (10.8-20.0) 12.9 (9.0-16.0) 17.7 (14.3-20.4) 16.1 (11.3-20.1) 

 Mucin degradation 14.7 (9.5-18.3) 18.2 (14.4-23.4) 11.5 (9.4-14.3) 14.2 (9.8-18.8) 

 Propionate Production I 0.15 (0-0.05) 0.13 (0.03-0.13) 0.06 (0-0.01) 0.12 (0-0.05) 

 Propionate Production II 0.7 (0.4-0.8) 1.2 (0.6-1.8) 0.7 (0.6-0.9) 0.6 (0.4-0.7) 

7 apriori  Butyrate Production I 5.6 (4.5-6.9) 5.5 (4.6-6.6) 5.3 (3.3-6.8) 5.7 (4.6-7.0) 

selected Butyrate Production II 5.7 (5.0-6.4) 5.2 (4.5-5.9) 6.4 (5.4-7.0) 5.7 (5.0-6.3) 

GMMs Acetyl-Coa to Acetate 10.4 (9.4-11.6) 9.5 (8.9-11.5) 10.4 (8.9-11.1) 10.6 (9.5-11.6) 

 Tryptophan Degradation 3.1 (1.8-4.0) 3.3 (1.2-5.2) 2.9 (1.4-4.4) 3.1 (1.9-3.8) 

 Tyrosine degradation I 6.4 (5.8-7.2) 6.8 (5.7-8.4) 6.8 (6.4-7.3) 6.2 (5.7-6.8) 

GMM abundance = normalized proxy for the portion of bacteria in a sample that can perform a specific   
function 

 

Table 2. Abundance of the seven most abundant and seven a priori selected GMMs.  

GMM, gut metabolic modules. Values, mean GMM values across samples belonging to the indicated 

clusters. IQR, interquartile range.   
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Figure legends 
 

Figure 1. Assessment of microbiome (dis)similarity and diversity in CLL patients. The (dis)similarity was 

measured by distance matrix constructed using Robust Aitchison distance. A) Hierarchical clustering over 

bacterial taxa. Hierarchical clustering (hclust function in R) with Ward's minimum variance method was run 

on the distance matrix calculated based on robust Aitchison distances. The clustering approach used was 

purely data-driven and the number of resulting clusters was not specified in advance. Cutting a hierarchical 

clustering tree at the point of the largest distance (“cut”), resulted in three clusters (Clusters 1 (C1): purple, 

C2: blue, and C3: orange). The patient diagnosed with T-PLL showed average microbiome values and has 

been marked by a black circle. B) Principal Coordinate Analysis (PCoA) representation of the CLL cohort 

(dis)similarity. Each dot in the PCoA plot represents one sample. Samples ordinated closer to one another 

are more similar than those ordinated further away. C) Shannon alpha diversity in CLL samples grouped 

according to clusters from A). Alpha diversity measures include richness - representing observed number of 

genera, and Shannon index - representing evenness of species in a community. In the box plots, box edges 

represent the 25th and 75th percentiles, the center line shows the median and whiskers extend from the 

box edges to the most extreme data point. The p-values (adjusted for multiple testing with the Benjamini-

Hochberg (BH)) obtained upon Wilcoxon rank-sum tests are indicated, values < 0.05 were considered 

significant. Ns, P > 0.05; *, P <0.05; **, P < 0.01. 

Figure 2. Swimmer plot illustrating the clinical course of disease of CLL patients. Patients from clusters C1 

and C2 in Figure 1 are included in the swimmer plot. All included patients were alive by 15/09/2022, the 

end of the follow-up period.  The time points of CLL diagnosis, CLL treatment, antimicrobial treatment, and 

microbiome sampling are shown in the swimmer plot. X-axis: Time before and after microbiome sampling, 

non-continuous time scale is marked by dashed lines. Y-axis: Subject numbers colored according to patient 

clusters (purple: C1, low diversity; blue: C2, high diversity). HSCT: hematopoietic stem cell transplantation; 

m: months; y: years.  

Figure 3. Heatmap representation of clinical outcomes over time for all patients. The color-coded cells in 

the heatmap depict different temporal intervals: time from diagnosis to sampling, time from diagnosis to 

initiation of first-line treatment (1L), time from 1L to sampling, time from sampling to 1L for patients 

without prior 1L treatment before microbiome sampling, and time from sampling to progression for 

patients who received 1L treatment before microbiome sampling. For instance, the time from diagnosis to 

1L: in C1, 92% of patients required 1L within a median period of 3.7 years; in C2, 50% of patients required 

1L within a median period of 0.8 years; in C3, 45% of patients required 1L within a median timeframe of 3.7 

years. Annotation of each patient sample:  cluster affiliation based on results from Figure 1, microbiome 

sample obtained before receiving 1L treatment (yes/no), IGHV mutation status (M-CLL/U-CLL), antibiotics 

treatment within the 6 months preceding microbiome sampling (yes/no), hematopoietic stem cell 

transplantation (HSCT), and/or Richters transformation. White color represents missing values. IGHV: 

Immunoglobulin heavy-chain variable region gene; U-CLL: CLL with unmutated IGHV; M-CLL: CLL with 

mutated IGHV; HSCT: Hematopoietic Stem Cell Transplantation; 1L: First-line treatment; AB: Antibiotics. 

Figure 4. Heatmap of differential abundance of bacteria in C1 and C2 patient samples. Relative abundances 

of all genera with logFC >1 in C1 and twelve genera with highest logFC in C2 patient samples are visualized. 

Color scale: Centered log ratio transformed relative abundance of bacterial genera, scaled by columns in 

pheatmap function in R. C1: patient cluster 1; C2: patient cluster 2 according to Figure 1. Subject 5 (from 

C1) omitted from visualization due to extremely low relative abundances across all genera. Abbreviations: 

gen.i.s., genus incertae sedis; for instance, Ruminococcaceae gen.i.s.: reads could not be certainly classified 

as Ruminococcus (genus), but were classified as Ruminococcaceae (family).   
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Figure 5. Leukemia development after TCL1 AT in mice derived from facilities with low (LH) or high hygiene 

(HH) levels. A) Schematics of experimental design of adoptive transfer of TCL1 leukemia (TCL1 AT) of LH 

mice (n = 9) and HH mice (n = 8). Mice without engraftment of TCL1 cells (n = 1 in LH group, n = 2 in HH 

groups) were removed from the study. Figure was created with BioRender.com B) Percentage of CLL cells in 

peripheral blood (PB) out of CD45+ viable cells 2, 3 and 4 weeks after TCL1 AT. C) Number of CLL cells per 

µL of PB at the same time points. Statistics: One independent study including 2 groups of 10 mice. Mann-

Whitney non-parametric test for each time point (p-value: * < 0.05, ** < 0.01).  

Figure 6. Microbiome composition and diversity in the TCL1 AT mouse model. A) Fecal alpha diversity in 

murine samples from the study described in Figure 5 collected at two different timepoints (before and after 

TCL1 AT; TP1 and TP2 respectively). Mice with low quality of their microbiome sequencing upon quality 

control were excluded from the analysis (n = 3 from LH group, n = 5 from HH group). Boxplots were 

constructed as described in Figure 1C. B) The relative abundance of bacterial genera in murine samples 

taken at TP1. Bacterial genera with abundance < 1% in a sample were omitted form plotting. Sequences 

that could not be assigned to a genus were grouped as Unclassified. C) Generalized linear model (GLM) for 

every bacterial genus to representing its abundance based on two predictor variables: hygiene and TCL1 

AT. Center log ratio (clr)-transformed relative abundance data at genus level were used as input. The 

position of a point is given by coefficients (betas), where betas represent weights assigned to the predictor 

variables. In other words, each of the points illustrate to what degree is the bacterial genus relative 

abundance influenced by the two predictor variables. Positive (negative) value at the x-axis indicates that 

mice initially housed in a high hygiene barrier will have higher (lower) relative abundance of a bacterial 

genera compared to mice initially housed in low hygiene barrier. Positive (negative) value at the y-axis 

indicates that mice transplanted with CLL cells will have higher (lower) relative abundance of a bacterial 

genera than mice before transplantation of CLL cells. Concrete example: Helicobacter is positioned at 

coordinates x: -0.95 and y: -0.25, which can be interpreted as Helicobacter’s relative abundance is more 

influenced by the hygiene of the barrier than by CLL cells transplantation. Also, based on this model, 

relative abundance of Helicobacter will be lower in mice kept in high hygiene barrier and slightly lower in 

mice transplanted with CLL cells.   
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1. Supplementary Methods

Animal models 
Eµ-TCL1 (TCL1) mice on a C57BL/6 J background were kindly provided by Carlo M. Croce (The Ohio State 

University, Columbus, Ohio, USA), and crossed at least 10 times to ensure C57BL/6 J background (1). 6-8 week 

old female C57BL/6 J mice for adoptive transfer (AT) of TCL1 tumors were bred and maintained at the central 

animal facility of the German Cancer Research Center (DKFZ, Heidelberg). 

Two colonies of C57BL/6 mice were maintained in two different animal facilities of the German Cancer 

Research Center (DKFZ) – a low hygiene facility, without user-entry restrictions, and a high hygiene facility 

(where altered Schaedler flora was ensured). Mice were kept on the same water and food restrictions on 

both facilities. Ten 7-week-old mice from each colony were submitted to adoptive transfer (AT) with leukemia 

cells from the TCL1 mouse model (TCL1 AT), as previously described (2, 3). In short, splenocyte suspensions 

obtained from 40-60 week-old female TCL1 mice underwent B cell purification with the EasySep Mouse Pan-

B Cell Isolation Kit (StemCell Technologies Inc., 19844) according to manufacturer instructions. The tumor 

content (percentage of CD5+CD19+ cells) post-purification reached 95% or higher, according to flow 

cytometry (FC) measurement. 2x107 cells were injected intraperitoneously, and animals were monitored for 

the development of leukemia, through weekly blood withdrawals starting at week 2 post-transplantation. 

Leukemic animals were identified given the presence of a growing CD5+CD19+ tumor population in the blood 

(as measured by FC), as well as palpable splenomegaly. 3 mice were removed from the study upon failing in 

tumor engraftment. 

Murine samples collection, DNA extraction and sequencing 

Fecal samples were collected at week 0, one day before TCL1 AT, and at week 3 post-transplantation (after 

tumor was established), into Stool Nucleic Acid Collection and Preservation System tubes (Norgen Biotek, 

63700). Fecal samples were snap-frozen with liquid N2 immediately after collection. QIAmp DNA Stool Mini 

Kit (Qiagen, Hilden, Germany) was used to extract DNA from fecal samples according to manufacturer 

instructions. The concentration of DNA was determined by NanoDrop spectrophotometry (NanoDrop, 

Germany). In short, 50 mg of fecal sample was lyophilized in 400 µL extraction buffer (methanol/ddH2O at a 

ratio of 4/1). Sample mixture was grinded for 6 minutes and sonicated at 5 ºC for 30 minutes. Mixture was 

then kept at -20 ºC for 30 minutes and centrifuged at 13,000 g and 4 ºC for 15 minutes. Supernatant was 

collected and snap-frozen. Snap-frozen sample was re-dissolved in 100 µL 90% methanol (in ddH2O). Quality 

control sample was prepared for NanoDrop measurement. Shotgun sequencing was conducted at the 

European Molecular Biology Laboratory (EMBL, Heidelberg) on Illumina HiSeq 4000 platform in a 2x150bp 

paired-end setup at the Genomics Core Facility, European Molecular Biology Laboratory in Heidelberg, 

Germany. 
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Peripheral blood (PB) was drawn from the submandibular vein for weekly measurements, and collected in 

ethylenediaminetetraacetic acid (EDTA)-coated tubes (Sarstedt) for immunostaining and FC measurement. 

Mice were euthanized by increasing concentrations of carbon dioxide (CO2). Single-cell suspensions from 

spleen, bone marrow (BM) and inguinal lymph nodes (LN) were prepared as described previously (2, 3). 

Briefly, splenocyte suspensions were generated with the GentleMACS tissue dissociator (Miltenyi Biotec), 

followed by red blood cell (RBC) lysis, and passing the cells by 70-µm strainers (BD Biosciences) to exclude 

fat and cell clumps. BM cells were flushed from femurs with PBS/2% fetal calf serum (FCS). LN cell suspensions 

were prepared through grinding the lymph nodes through 70-µm strainers (BD Biosciences). 

Flow cytometry 

All antibodies were purchased from BD, Biolegend or ThermoFisher Scientific. For surface staining, single-cell 

suspensions previously obtained were washed with PBS/2% FCS, and incubated with recommended 

antibodies against cell surface markers, using the respective recommended antibody dilutions. Incubation 

went on for 30 minutes, at 4 ºC in the dark. After washing twice with PBS/2% FCS, cells were fixed using IC 

fixation buffer (ThermoFisher Scientific, 00-8222-49), washed and stored in PBS/2% FCS at 4ºC in the dark 

until analyzed by FC. 

For intracellular staining with FoxP3, cells were fixed after surface staining using FoxP3 

fixation/permeabilization buffer (ThermoFisher Scientific, 00-552300) for 30 minutes at RT (in the dark). 

Then, permeabilization was performed with 1X permeabilization buffer (ThermoFisher Scientific, 00-5523-

00) and staining with antibody against FoxP3 transcription factor in 1X permeabilization buffer was started

for 30 minutes at 4 ºC. after two washes with 1X permeabilization buffer, cells were resuspended in the same 

buffer and stored at 4 ºC in dark conditions, until analyzed by FC. 

For PB staining, 25 µL of blood were stained with surface molecule antibodies for 30 minutes at 4 ºC in the 

dark. Then, blood samples were incubated for 10 minutes in 2 mL of 1X 1-step Fix/Lyse Solution 

(ThermoFisher Scientific, 00-5333-57) for RBC removal. After centrifugation and discarding of the 

supernatant, cell pellets were resuspended in PBS. Less than 1 hour before FC measurement, 25 µL of 

123count eBeads (ThermoFisher Scientific, 01-1234-42) were added, to allow calculation of absolute number 

of cells in the blood according to the formula: absolute count (cells/µL) = (cell count x bead volume x bead 

concentration)/(bead count x cell volume). 

Flow cytometry data acquisition was done using BD LSRFortessa flow cytometer (BD Biosciences). For 

analysis, dead cells and doublets were excluded. Median Fluorescence Intensity (MFI) was calculated and 

normalized by subtracting the MFI of the respective fluorescence minus one (FMO) control, for markers 

without a clear negative vs positive population distinction. Data analysis was performed using FlowJo X 10.0.7 

software (FlowJo LLC, BD Biosciences). 
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Patient cohort and patient data 

Fecal samples were collected from 60 patients enrolled in the CLL biobank and the PERSIMUNE biobank 

during regular out-patient visits at Rigshospitalet, Copenhagen, Denmark, between June 2017, and July 2020. 

The project was approved by the national ethics committee (approval no. 1804410) and written informed 

consent was obtained from all patients prior to sampling.  

Patient sample collection and sequencing 

Fecal samples were collected by the patient or nursing staff using the OMNIgene.GUT (DNA Stabilized-frozen 

Inc., Ottawa, ON, Canada) stabilization tube according to the manufacturer’s instructions and refrigerated 

for a maximum of 7 days before freezing at -80 C. All samples were processed and stored at the PERSIMUNE 

biobank located at Rigshospitalet. Samples were extracted from the biobank and transported on dry ice to 

the IrsiCaixa AIDS Research Institute, Spain. Here samples were thawed on ice and DNA was extracted from 

~200 mg of each fecal sample using the Power Soil DNA Extraction Kit (MO BIO Laboratories, Carlsbad, CA, 

US). 4 Extracted DNA was then stored at -80 ºC until sequencing. For sequencing, whole fecal DNA was 

chemically fragmented using the Nextera-XT® Illumina kit. Total fecal DNA was sequenced on an Illumina Hi-

Seq® platform in a 2x150bp paired-end setup.  

Preprocessing and taxonomical profiling 

Both, reads preprocessing and taxonomical profiling were done for the mouse and CLL samples using an in-

house pipeline implemented in ngless (4). After sequencing, reads underwent quality control and 

preprocessing steps, including trimming of reads using a quality score cutoff of 20, and removal of reads 

below 100 base pairs. Reads were mapped to the mouse and human genomes (mm39 and hg19, respectively) 

using BWA-MEM2 (5) and reads with a minimum identity of 80 across 90 bases were discarded. Gene profiling 

was carried out by mapping to the integrated gene catalogue (IGC) (6) with BWA-MEM2 and counting the 

number of reads mapping to each gene with a minimum match size of 60 and minimum identity of 90. 

Taxonomic profiling and estimation of the relative abundances at all taxonomical levels in mice and humans 

were done using mOTUs2 (7) and reference-independent method MetaPhlAn3 (8), respectively. The naming 

for mOTUs gives all possible species that the specific mOTU potentially represents. The format is 

species1/species2/species3/etc., meaning that all the species are possible annotations. MetaPhlAn3 utilizes 

the marker gene database to align the metagenomic sequencing data. By identifying the most suitable 

marker gene sequences, MetaPhlAn3 ensures a unique species assignment during the alignment of 

metagenomic sequencing data to the marker gene database. Taxa failing to be classified into any taxonomic 

ranks were marked as Unclassified by both mOTUs2 and MetaPhlAn3. 
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Bioinformatics and Statistical analysis 

Statistical analyses of FC mouse data were performed using GraphPad Prism software version 9. All graphs 

show means ± SEM, unless otherwise indicated. Comparisons of two different sample groups (n = 8, n = 9) at 

each blood withdrawal timepoint were performed using a non-parametric Mann Whitney t-test. All other 

statistical analyses were performed using R (version 4.2.0).  

Descriptive analyses were performed for both the mouse and human CLL cohorts with relative bacterial 

abundance as input data. Unless stated otherwise, Mann Whitney U Test (Wilcoxon Rank Sum Test) was used 

to identify significant differences between subgroups; Benjamini-Hochberg (BH) method was used for 

multiple-testing correction; BH adjusted p-value of <0.05 was considered significant. PERMANOVA (adonis2 

from vegan R package version 2.6-2) was used to test statistical differences in microbial composition among 

different groups of murine samples (such as cage effect) or groups of patient samples (such as gender, groups 

patients with different antibiotic usage, or resulting patient clusters). 

Alpha diversity measures (richness, Shannon index) were calculated at species level using vegan R package 

version 2.6-2 (9). Generalized linear model (GLM) was used to visualize relationship between two 

independent binary variables - TCL1 AT and hygiene of the animal facilities, and one dependent variable - 

bacterial relative abundance. Interpretation of the GLM statistical analysis is detailed in Figure 6C legend. 

The interindividual dissimilarities in gut microbiota composition (β-diversity) in patients with CLL were 

assessed by robust aitchison dissimilarity index (vegdist function from vegan R package version 2.6-2). 

Hierarchical clustering (hclust from base R package stats) with Ward's minimum variance method was run on 

the distance matrix. The interindividual dissimilarities represented by the distance matrix and the formed 

clusters were visualized using Principal Coordinate Analysis (PCoA, gl.pcoa function from dartR R package 

version 2.7.2) (10). First 3 components of PCoA were visualized using 3D plot as Figure 1B (scatter3D function 

from plot3D graphics library in R, version 1.4). Statistical differences in microbial composition given by β-

diversity estimates between the resulting cluster were tested using PERMANOVA.  

Differential abundance of bacterial species in fecal microbiome between CLL patient clusters was assessed 

using the R implementation of SIAMCAT (SIAMCAT R package version 2.0.0) (11). The cutoff value for bacterial 

taxa to be considered differentially abundant was log fold change > 1 (logFC).  

R script as well as taxonomical profiling data of the mice cohort are available at 

https://github.com/PERSIMUNE/PAC2023Faitova_Human_Mice_CLL.  

https://github.com/PERSIMUNE/PAC2023Faitova_Human_Mice_CLL
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2a. R Shiny applications – Methods 

Relative bacterial abundance and GMM abundance data from individual patient samples were retrieved as 

described in main Methods section. Relative bacterial abundance data refers to information about the 

proportional representation of different bacterial species or taxa within a given sample. GMM abundance 

represents a normalized proxy for the portion of bacteria in a sample that have the ability to perform a 

specific function. Graphs representing the abundances were constructed using ggplot2 package in R (version 

3.3.6). Interactive features such as tooltips, zooming, panning, and hover effects were introduced to the static 

ggplot2 graphs using plotly package (version 4.10.0). The ggplotly function was employed to convert the 

ggplot2 graphs into interactive plotly graphs.  

The R Shiny framework is employed to develop interactive web applications which were deposited on the 

open source Shinyapps.io. The applications are accessible through links that can be found in the main text.  
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2b. R Shiny applications – Tutorial 
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Supplemental Figure 1. A) Percentage of CLL cells (CD19+CD5+) out of CD45+ compartment in spleen.             
B) Absolute number of CLL cells in spleen (x10^6). C-E) Percentage of CD4+, CD8+ and CD3+ T cells in spleen 
out of viable compartment. F-H) Absolute number of CD4+, CD8+ and CD3+ T cells in spleen (x10^6).                   
I) Exemplary gating strategy for CD19+CD5+ CLL cells (“Tumor”). J) Exemplary gating strategy for CD8+ T 
cells. 
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Supplemental Figure  2. A-C) Percentage of effector, memory and naive CD8+ T cells out of T cell splenic 

compartment. D-G) Normalized median fluorescence intensity (nMFI) of PD-1, TIGIT, KLRG1 and LAG3 in CD8+ T 

effector cells in t he splenic compartment. H) Percentage of FoxP3+CD25+ Treg cells out of CD4+ cells in the 

splenic compartment. 
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Supplemental Figure 4. Heatmap visualization of differentially abundant bacterial genera between C1 and C2, 

all clusters. Relative abundances of selected genera visualized for all 3 clusters. Selected genera: genera with 

logFC >1 enriched in C1, and twelve genera with highest logFC enriched in C2 patient samples. Patient samples 

(y-axis) are labeled according to the cluster membership from Figure 1. Subject 5 (from C1) was omitted from 

visualization due to extremely low relative abundances across all genera. Bacterial species that were found to 

be differentially abundant also between C1 and C3 are marked in blue. Full list of differentially abundant 

bacterial genera and species between C1 and C3 can be found in Supplemental Table 3. Data used for 

visualization were clr-transformed relative abundances. Clustered heatmap was built and visualized using 

kmeans clustering method from pheatmap function in R. 
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Supplemental Figure 5. Heatmap visualiza�on of differen�ally abundant bacterial species between C1 and C2. 

Thirty bacterial species (x-axis) with highest fold change (analysis by SIAMCAT; Supplemental Table 3) were

selected for visualiza�on. Pa�ent samples (y-axis) were labeled according to the cluster membership from Fig 1.

Bacterial species enriched in pa�ents from C2 corresponding to healthy signature iden�fied by  Gacesa et al. (12) 

are marked in green.  Data used for visualiza�on were clr-transformed rela�ve abundances of bacterial species. 

Clustered heatmap was built and visualized using k-means clustering method from pheatmap func�on in R.   
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