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Abstract

The gut microbiota play a critical role in maintaining a healthy human body and their dysregulation is
associated with various diseases. In this study, we investigated the influence of the gut microbiome
diversity on chronic lymphocytic leukemia (CLL) development. Stool sample analysis of 59 CLL patients
revealed individual and heterogeneous microbiome compositions, but allowed for grouping of patients
according to their microbiome diversity. Interestingly, CLL patients with a lower microbiome diversity and
an enrichment of bacteria linked to poor health suffered from a more advanced or aggressive form of CLL.
In the En-TCL1 mouse model of CLL, we observed a faster course of disease when mice were housed in high
hygiene conditions. Shotgun DNA sequencing of fecal samples showed that this was associated with a lower
microbiome diversity which was dominated by Mucispirillum and Parabacteroides genera in comparison to
mice kept under lower hygiene conditions. In conclusion, we applied taxonomic microbiome analyses to
demonstrate a link between the gut microbiome diversity and the clinical course of CLL in humans, as well
as the development of CLL in mice. Our novel data serve as a basis for further investigations to decipher the

pathological and mechanistic role of intestinal microbiota in CLL development.



Introduction

The gut microbiome, an ecosystem formed by commensal, symbiotic, and pathogenic microorganisms
colonizing the gastrointestinal tract, is recognized as an important, life-long partner of the host (1, 2). The
significance of the gut microbiome in both health and disease is a rapidly growing field of research.
Recently, the role and direction of the crosstalk between the gut microbiome and immune cells, and its

impact on treatment and disease development, has come into focus.

Homeostasis in the host microbiome is constantly influenced by factors such as diet, medication and stress
levels (3), and the reciprocal interactions between gut microbiome and the immune system are being
constantly challenged. Dysbiosis, an imbalance of the gut microbiota often associated with loss of beneficial
microbes and blooms of pathogens, may lead to a disruption of the physical integrity of the intestinal
barrier and/or function of the immune system. Dysbiosis can disrupt the development and distribution of
immune cells, which may affect the immune response to pathogens and the ability to mount an

appropriate immune defense (4).

Gut dysbiosis has also been associated with cancer susceptibility (5, 6). Within the area of hematological
malignancies, the gut microbiome was suggested to play an important role in cancer microenvironment
alterations and disease progression (7) as well as in treatment outcomes such as CAR-T cell and targeted

therapy efficacies (8, 9).

Very little is known about the diversity of the gut microbiome and its interaction with the immune system
in patients with chronic lymphocytic leukemia (CLL). In a previous study, we have demonstrated that the
microbiome in CLL patients is less diverse when compared to healthy individuals, with half of the patients
demonstrating severe dysbiosis caused by dominance of Bacteroides (10). We also showed that patients
with CLL presented a lower abundance of bacterial species belonging to Lachnospiraceae and

Ruminococcaceae families, including some of the main producers of short chain fatty acids (SCFA).

Given the antigen-driven nature and inherent immune dysfunction of CLL (11-13), we hypothesized based

on our previous pilot study that the gut microbiome could contribute to CLL development. This might



happen by affecting the immune system through various mechanisms (14), including the production of
cytokines triggered by certain bacterial species (15, 16). The gut microbiome might also be itself impacted
by the immune dysfunction observed in CLL patients, and/or reflect the increased prescription of
antimicrobials for this patient group (17). Here, we investigated a potential association between the fecal
microbiome composition and CLL development in humans and mice. For this, we used a cohort of patients
with CLL, as well as the immunocompetent Ep-TCL1 transplantation mouse model kept under low or high

hygiene conditions.

Methods

Patient cohort, data, sample collection, sequencing, and profiling

Fecal samples were collected from 61 patients enrolled in the CLL biobank and the PERSIMUNE biobank
during regular out-patient visits at Rigshospitalet, Copenhagen, Denmark. The participants in our study are
new patients, excluding the N=12 from our previous study (10), with each patient contributing one sample.
One stool sample had to be excluded from further analysis due to low quality. Patient data and antibiotic
records were retrieved from the Danish National CLL registry and from manual review of medical health
records (18). The project was approved by the national ethics committee (approval no. 1804410) and
written informed consent was obtained from all patients prior to sampling. As previously described (19),
fecal samples were collected using OMNIgene.GUT (DNA Genotek) stabilization tubes according to the
manufacturer’s instructions. Briefly, samples were immediately fixated and subsequently frozen within 72
h. All samples were stored at -80°C until shipment for sequencing. Samples underwent shotgun
metagenomic sequencing on the Illumina Hi-Seq platform. Reads preprocessing and taxonomical profiling

were done using an in-house pipeline (Supplemental Methods).

Animal models

6-8 week old female C57BL/6 J mice born and maintained in two different animal facilities of the German
Cancer Research Center (DKFZ) were transferred to an experimental animal facility and subjected to
adoptive transfer (AT) with leukemia cells from the TCL1 mouse model (TCL1 AT), kindly provided by Dr.

Carlo Croce (The Ohio State University), as previously described (20-22). Leukemic development was
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monitored through weekly blood withdrawals starting at week 2 post-TCL1 AT. All animal experiments were
carried out according to governmental and institutional guidelines and authorized by the local authorities

(permit numbers: DKFZ337, G-16/15).

Murine samples collection and sequencing

Fecal samples were collected at week 0, one day before TCL1 AT, and at week 3 post-transplantation. Fecal
samples were snap-frozen immediately after collection. The QIAmp DNA Stool Mini Kit (Qiagen) was used
to extract DNA from fecal samples according to manufacturer instructions. Shotgun sequencing on the
lllumina Hi-Seq platform was conducted at the European Molecular Biology Laboratory (EMBL, Heidelberg).
Reads preprocessing and taxonomical profiling were done using an in-house pipeline (Supplemental
Methods). Peripheral blood (PB) was drawn from the submandibular vein for weekly flow cytometric

analysis (Supplemental Methods).

Metabolic Potential Profiles

As previously described (23), gut metabolic modules (GMMs) were used to profile the functional potential
of the bacterial community present in stool samples. In short, GMM profiling was performed by length
normalizing the IGC count profiles and summing the values for each KEGG (24) gene ontology term, which
were taken from IGC_catalog-v1.0.0.emapper.annotations-v2.tsv. The values were then 16sRNA normalized

and turned into GMM profiles using omixer-RPM (25).

Bioinformatics and Statistical analysis

Descriptive analyses were performed for both the human and mouse CLL cohorts with relative bacterial
abundance as input data. Unless stated otherwise, Wilcoxon rank-sum testing was used to identify
significant differences between subgroups and the Benjamini-Hochberg (BH) method was used for multiple-
testing correction; a BH adjusted p-value of <0.05 was considered significant. PERMANOVA was used to test
variations in the microbial composition among groups of patient samples (such as gender or antibiotic
usage) or different groups of murine samples (such as cage effect). Alpha diversity measures (richness,

Shannon index) were calculated at species level using the vegan R package (26).



The inter-individual dissimilarities in human gut microbiota composition (B-diversity) were assessed by
calculating a dissimilarity matrix. Hierarchical clustering was applied on the distance matrix, dissimilarities
were explored using Principal Coordinate Analysis (PCoA, gl.pcoa) (27), and the first 3 components of PCoA
were visualized using 3D plot. Differential abundance of bacterial species in the fecal microbiome between
CLL patient clusters was assessed using R implementation of SIAMCAT (28). Further details on

bioinformatics analyses are provided in Supplemental Methods.

A generalized linear model (GLM) was used to visualize the relationship between two independent binary
variables - TCL1 AT and hygiene of the animal facilities, and one dependent variable - bacterial relative

abundance.

Results

Microbial composition and diversity are heterogeneous in patients with CLL

Fifty-nine patients diagnosed with CLL and one patient diagnosed with T-cell prolymphocytic leukemia (T-
PLL, Pt ID=16) delivered stool samples between June 2017 and July 2020. Forty-four stool samples were
collected prior to any treatment; 16 stool samples were collected from patients who received treatment

before microbiome sampling. Characteristics of patients are provided in Table 1.

We evaluated the heterogeneity of microbiome composition in our patient cohort by pB-diversity estimates,
clustering, and statistical testing (PERMANOQOVA). We observed the microbial composition to be
heterogeneous within the CLL patient cohort. Unsupervised hierarchical clustering revealed 3 distinct
clusters based on the microbial composition of all patient samples (Figure 1A). The separation is visualized
in a 3D plot using the results of a PCoA (Figure 1B). The dissimilarity between microbial communities
estimated by B-diversity was evaluated and significant differences were observed between the 3 clusters
(RE= 0.09, PE=R0.001). The differences remained significant after adjusting for gender, age at sampling, and
BMI (R@= 0.086, PR=FI0.001). No significant differences in the microbiome structure were observed in terms
of age at microbiome sampling alone (R = 0.017, P=0.444), nor after adjustment for gender and BMI (R =

0.017, P=0.409). To evaluate differences in the microbial communities between the clusters, diversity was



assessed. The Shannon diversity for cluster 1 (C1) was lower than for clusters 2 and 3 (C2 and C3) (C1 vs C2:

median, 1.80 vs. 3.50, P = 2.4e-05; C1 vs C3: median, 1.80 vs. 2.80, P = 8.1e-05; Figure 1C).

Besides the observed differences in diversity between clusters, a high variability of the microbiome
composition was observed within and between clusters. At the genus level, Bacteroides was the most
abundant genus across the 60 samples. Additionally, there was a trend of Bacteroides acquiring bacterial
dominance (>30 % relative abundance) in 7 out of 12 samples in C1, and Prevotella dominating the
composition of 9 samples in C2 and C3 while being completely depleted in all samples in C1. A detailed

visualization of the microbiome composition of all 60 patients at the genus level can be explored through

an interactive web application at: https://terezafait.shinyapps.io/microbiome composition/. Instructions
and examples of how to navigate in the app can be found in Supplemental Methods. An overview of the

bacterial classification into six major taxonomic levels is provided as Supplemental Table 1.

CLL is associated with low microbiome diversity

Given that dysbiosis, often interpreted as loss of diversity, has been documented to play a role in the
development and progression of hematological diseases (29), we explored the individual course of the
disease for all patients and focused on comparing patients from C1 and C2, representing those with lowest
and highest gut microbiome diversity. In contrast to C2 patients, patients in C1 exhibited a more advanced
and progressive CLL. This was evidenced by an extended duration from CLL diagnosis to microbiome
sampling (C1: median 5.3 years, IQR: 0.3-9.2 y, C2: median 0.3y, IQR: 0.3-9.2 y; p-value: 0.47), a higher
proportion of patients who needed treatment for CLL before and/or after microbiome sampling (C1: 92%;
C2: 50%; p-value based on Kaplan-Meier analysis from diagnosis to first line treatment: 0.21), and a higher
occurrence of patients who underwent hematopoietic stem cell transplantation (HSCT) or developed
Richter’s transformation (RT) (1x RT, 1x HSCT, 1x RT+HSCT) as illustrated in Figures 2 and 3. Patients in C3
(intermediate microbiome diversity) demonstrated a greater similarity to C2 than to C1 in terms of time
from CLL diagnosis to microbiome sampling (median: 0.4y, IQR: 0.2-5.9y) and proportion of patients in need
of CLL treatment (47%). We further monitored the most recent antimicrobial prescriptions for all patients,

finding that 58% of C1 patients 25% of C2 patients, and 29% of C3 patients received antimicrobial



treatment within 6 months prior to microbiome sampling (Figure 3, Supplemental Table 2). In regard to
IGHV mutational status, all CLL patients, irrespective of diversity cluster, exhibited a comparable

percentage of mutated CLL (C1: 33%, C2: 37.5%, C3: 32%).

Differential abundance of bacterial taxa illustrates heterogeneity among CLL patients

Having observed a correlation between the clinical course of CLL and the gut microbiome composition, we
further aimed to identify groups of bacterial taxa differing significantly between the patient clusters. . In
total, the abundance of 30 bacterial genera was significantly different between C1 and C2 (log2 fold change
>1) as determined by SIAMCAT (Supplemental Table 3). Of these, Hungatella, Anaerotruncus, Dialister,
Erysipelatoclostridium/Clostridiales, Lachnoclostridium and Flavonifractor were more abundant among C1
(low diversity) patients, while Parabacteroides, Barnesiella, Odoribacter and Bilophila, amongst others,
were noticeably enriched among C2 (high diversity) patients (Figure 4). Interestingly, patient no. 2 from the
C2 cluster was clinically similar to patients in C1 (diagnosis 3 years prior to microbiome sampling and
antimicrobial treatment prior to sampling), and also showed a similar microbiome composition as C1
patients. Along the same line, patient no. 4 from C1, clinically similar to patients in C2 with regard to time
from diagnosis to microbiome sampling (<1 month), showed an enrichment of bacteria with higher
abundance in C2 patients. Bacterial genera differentially abundant between C1 and C3 partly overlapped
with those identified as differentially abundant between C1 and C2 (Supplemental Figure 4), whereas no

taxa were identified to be significantly different between C2 and C3 (Supplemental Table 3).

At the species level, 110 bacterial species were identified to be differentially abundant between C1 and C2
patient samples (Supplemental Table 3). All detected bacterial species were enriched in C2 and depleted in
C1 (Supplemental Figure 5), which is likely due to strong differences in abundance of individual species and
not groups of species as demonstrated at the genus level above. Intriguingly, bacteria such as Prevotella
copri, Dorea longicatena, or Bifidobacterium adolescentis that belong to a healthy microbiome signature

(30) were enriched among C2 (high diversity) patients.



Clustering of patients does not reflect shared metabolic functions

It has been shown that different bacterial species can have similar metabolic function (31). Hence, an
assessment of functional bacterial groups might be more informative than the bacterial composition itself.
Thus, we used the bacterial genes identified in a stool sample that were annotated to metabolic functions
by omixer-RPM (25) as estimates of a potential function of the bacterial community, i.e. gut metabolic
modules (GMMs). The most abundant GMM in samples from CLL patients was lactose degradation (Table
2). Despite the differences in diversity and composition of the microbiome, no clear pattern in GMM
between C1 (low diversity) and C2 (high diversity) could be detected. The potentially clinically relevant
GMMs related to production of overall beneficial SCFAs (32), and a variety of indole-derivatives promoting
fortification of the gut epithelial barrier (33) were detected in many samples, but not different between
patient clusters (Table 2). A detailed visualization of GMMs grouped according to Vieira-Silva, et al. (34)
(Supplemental Table 4) in all 60 patient samples can be explored through an interactive web application

accessible via this link: https://terezafait.shinyapps.io/gmm_modules/.

Hygiene level influences CLL progression in mice

Adoptive transfer of Eu-TCL1 leukemia (TCL1 AT) in C57BL/6 mice housed in two animal facilities at the
German Cancer Research Center with a different hygiene status revealed differences in the development of
CLL. In order to elucidate whether the gut microbiome is causally contributing to this observation, we
performed TCL1 AT with C57BL/6 mice that were born and kept in either, a closed breeding facility with
altered Schaedler flora (high hygiene, HH) (35) or an experimental barrier with individually-ventilated cages
(low hygiene, LH). One day before TCL1 AT, mice were brought into a common experimental facility with LH
conditions and kept there for the rest of the experiment (Figure 5A). Mice originating from the HH facility
developed CLL more rapidly compared to LH mice, reaching higher percentages and absolute numbers of
CLL cells in the blood over time (week 2: LH = 398.5 cells/uL vs HH = 1,390 cells/pL, p-value = 0.0037; and
week 4: LH = 17,489 cells/pL vs HH = 31,918 cells/uL, p-value = 0.0274; Figure 5B, C). To assess potential

differences in the immune system at a similar stage of leukemia development, HH mice were euthanized at
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4 weeks post-TCL1 AT, and mice from the LH group were euthanized 5 days later (Figure 5A). At these time
points, similar tumor burden in the spleen was achieved in both groups (Supplemental Figure 1A).
Immunophenotyping of splenic immune cell populations, specifically of the T-cell compartment, revealed

no differences between the two groups (Supplemental Figure 1,2).

Hygiene level and microbiome diversity in mice are inversely proportional

We hypothesized that mice kept in the HH environment would develop a less diverse microbiome than
mice kept in the LH facility (36). To confirm this in the setup described above, we analyzed the gut
microbiome by shotgun DNA sequencing of fecal samples. One day before TCL1 AT (TP1), corresponding to
the untouched microbiome status of the mice maintained in the two different facilities, lower diversity was
seen for the HH mice as shown by richness and diversity index (Figure 6A). Three weeks after TCL1 AT (TP2)
and co-housing of mice in the same LH facility, which was necessary to allow for experimental interventions
to the mice, the microbiome diversity of the two groups became more similar, with a massive increase in

diversity for the HH group, and only a minor change towards higher diversity in the LH group (Figure 6A).

Focusing on TP1 as the baseline condition for CLL onset in the mice, we explored differences of the gut
microbiome between the two groups (Figure 6B). Major differences were observed between the
composition of HH and LH microbiomes, with Mucispirillum and Muribaculaceae dominating (i.e.,
constituting more than 30 % of sequencing reads) the microbiomes of HH and LH, respectively. We further
explored relative abundances of specific bacterial species in relation to two predictor variables, high
hygiene condition and TCL1 AT, by running a generalized linear model (GLM). Each bacterial species is
represented as a dot weighted according to the predictor variable values (Figure 6C). Beta (B) values,
coefficients obtained from GLM analysis represent the potential influence of high hygiene condition and
TCL1 AT on the relative abundance of each bacterial species. For instance, we observed Clostridium to have
a B-value of 1.9 on the x-axis (representing high hygiene condition as correlated with high abundance) and

a B-value close to zero on the y-axis (representing no clear correlation with TCL1 AT).

In summary, the results of our study clearly link, for the first time, clinical course of CLL in patients and

development of CLL mouse models with the diversity of the gut microbiome, where higher microbiome
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diversity is associated with slower disease progression. Our in-depth characterization of bacterial species in
groups of patients with a difference in outcome provides relevant data to study the role and pathological

function of these microorganisms, with implications for stratification and therapy of CLL patients.

Discussion

There is increasing evidence for an important role of gut microbiota in human physiology, arguing for a
critical role of the microbiome to maintain a healthy state (37). A recent update of Hanahan’s hallmarks of
cancer has included the microbiota as an important player in carcinogenesis (38). This is based on results
from several studies showing that the microbiome contributes to the development of several cancer
entities, such as colorectal, gastric, or biliary cancer, and studying the underlying mechanisms will help to

develop novel therapies (39-41).

In this study, lower diversity of the gut microbiome was linked to more aggressive and/or more progressive
disease development in patients with CLL and TCL1 AT mice. The study of human stool samples showed
that upon unsupervised clustering of patients with CLL based on gut bacterial distribution, a group of
patients with lower microbiome diversity showed more severe clinical course. The severe disease course
was characterized by longer time from diagnosis to microbiome sampling signaling more advanced disease,
higher frequency of CLL treatment and disease progressions implying more aggressive disease, as well as
increased antimicrobial usage either implying pre-existing immune system impairment or being a cause of
the identified microbiota disruption. By applying TCL1 AT in immunocompetent C57BL/6 mice with basal
differences in microbiome diversity, co-housed during the development of CLL, we provide evidence for a
causal link between a lower gut microbiome diversity at onset of disease and a faster development of CLL.
Our novel data identify the microbiome as a driver of disease progression and therefore, as a potential

target to impact the course of CLL development.

In line with our findings suggesting more advanced or more aggressive CLL correlating with a less diverse,
dysbiotic microbiome, a study of B-cell lymphomas demonstrated an association between gut microbiome

composition and disease severity, where patients with indolent lymphomas presented higher microbiome
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diversity and enrichment of certain bacterial genera when compared to diffuse large B-cell lymphoma
patients (42). Similarly, the majority of patients with low diversity were either treated for CLL prior to or 1
month after microbiome sampling, illustrating the link between a dysbiotic microbiome and more advanced
CLL. Several studies, mainly focusing on chemotherapy regimens, reported changes in the gut microbiota
after treatment, some of which persist for years, which could also be part of the mechanism for dysbiosis in
patients having received CLL treatment prior to collection of the microbiome sample (43-45). However,
further studies and randomized clinical trials are needed to elucidate the influence of combination and

targeted therapies on CLL microbiomes.

As signs of dysbiosis among CLL patients we documented the loss of diversity (Shannon diversity < 2.0) as
well as blooms of bacteria associated with poor health. Several clinically important bacterial taxa enriched
in low diversity patients (C1) included Flavonifractor, Anaerotruncus and Dialister genera, whose members
were among the top 40 microbial species associated with disease by Gacesa et al. (30). Flavonifractor
plautii was recently shown to be associated with young-onset colorectal cancer (46), and together with
Angerotruncus colihominis was strongly associated with disease and smoking (30); Dialister invisus was a
common bacterium in individuals with poor diet habits (30, 47). Patients with higher diversity (C2) showed
significant abundance of bacterial species such as Prevotella copri, Dorea longicatena or Bifidobacterium
adolescentis, which are known to produce SCFAs through fermentation of dietary fibers (32, 48), also
overlapping with the pattern of healthy-like microbiome described by Gacesa et al (30). Thus, we
speculated that the presented bacterial composition in patients with higher microbiome diversity might

lead to beneficial outcomes during their course of CLL.

While results regarding the function of gut bacteria are sometimes contradictory and isolated effects of
specific bacteria are difficult to prove due to complex interactions (49), we hypothesized that exploring
taxonomic distributions reflected in the gut metabolic potential profiles, representing metabolic function of
individual gut microbiomes (25), might be more informative. A study using gut metabolic potential profiles
in patients receiving HSCT revealed that the conditioning regimen is associated with the degree of changes

in metabolic potential of their gut microbiomes (23). We focused on production of SCFAs such as
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propionate, and butyrate, the crucial gut microbiome metabolites with known ability to exhibit
immunomodulatory effects, and on starch degradation metabolism, which shows largely consistent health-
promoting effects. However, the abundances of metabolic pathways directly involved in the production of
SCFA and other compounds did not show substantial differences between patient subgroups. It may be that
the gut metabolic potential profiles will still reveal differences between patients with CLL as compared to
patients with other diseases and healthy volunteers. We are currently undertaking such studies to extend

on our previous exploration of a CLL gut microbiome signature (10).

Studying the impact of the gut microbiome on cancer development in mouse models remains a challenging
but essential task. Most studies of tumor mouse models are performed in facilities with various and often
unknown hygiene levels and microbiome status. In our study, we used mice that were born and maintained
in either a high or low hygiene facility which assured that the two groups were distinct in terms of their gut
microbiome. The clear difference in microbiome diversity that we observed in these mice impacted CLL
development. This approach comes, however, with the limitation of not using littermates in our study and
the risk of a slightly different genetic background in the two groups. To overcome this limitation, future
experiments should include animals from germ-free facilities that fully block the exposure of mice to any
microorganisms (50). Exposure of these mice to defined gut bacteria of interest will help to clarify their
impact on tumor development. A crucial and unequivocal takeaway from the findings in this study is that
when conducting tumor development studies, it is imperative to use animals that are co-housed and

possess identical microbial compositions.

Among the bacteria that were detected in the LH but not HH group, Muribaculaceae has been described as
an immune-protective bacterial family in a CT26 melanoma mouse model (51). Helicobacter, also highly
present in LH mice, is widely known for its correlation with the occurrence of gastric cancer. Its metabolites
are known to drive macrophages into an anti-inflammatory state (52, 53). In our study, the presence of
these bacteria in the LH mice could however have beneficial effects, perhaps by shaping myeloid cells into a
phenotype that is less supportive of CLL growth. Lastly, Bacteroidales, also upregulated in this group and

considered to be beneficial for gut health, but also correlated with worse disease outcome in lung cancer
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patients (54, 55), could be priming the gut-associated immune system in the LH mice and contributing to its

immune-protective action against leukemia development.

In HH mice, we detected an enrichment of Mucispirillum, which has been described as cancer-promoting
due to its induction of lipopolysaccharide production, which enhances inflammation (56). Parabacteroides,
also highly enriched among HH mice, is a bacterial genus generally considered as anti-inflammatory (57).
Such species present in the HH mice could contribute to enhancing immune suppression and thereby
promote CLL development. Importantly, linking the presence of specific bacteria in the gut of these mice
with specific functions according to the literature is not straightforward, partly because of the multiple

effects that bacteria can have in different settings.

Our study is limited by only assessing the microbiome on DNA level, whereas a more precise way would be
the inclusion of metatranscriptomics and/or metabolomics focused on the microbiome. Other limitations of
our study are the lack of consecutive samples per patient, which would allow us to describe the
microbiome changes during disease progression more precisely, and small numbers in the extreme clusters
(C1 and C2), which most likely prevent us from achieving statistical significance. A study set-up where stool
samples are collected before and after treatment initiation has been applied as translational studies
adjoined to several clinical trials (NCT04008706; NCT04639362; NCT04608318); thus, elucidation of
microbiome dynamics throughout treatment will be the focus of upcoming studies. The observed
association between microbiome low diversity and advanced CLL may be influenced by sampling bias with
potential overrepresentation of patients starting treatment in planned clinical trials. Additionally, antibiotic
exposures accompanying CLL treatment could confound our findings, influencing microbial composition
and diversity. Given the purpose of this study, while a descriptive overview of the patient and mouse data
itself is insightful, a translational and functional comparison of our findings in humans and mice would be
ideal. However, exploration of the microbial overlap between human and mouse showed that 85% of
bacterial genera found in the murine microbiome are not present in humans (58). These impressive

differences might be caused by the obvious dissimilarity between the mouse and human systems, as well as
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by external factors (59). Therefore, translating conclusions from murine to human data remains

challenging.

In conclusion, taxonomic analyses of gut microbiota provide evidence for a link between microbiome
diversity and CLL aggressiveness and development in patients with CLL and mouse models, respectively. In
the patient study, we grapple with a classic chicken-and-egg dilemma as it remains unclear whether the
microbiome dysbiosis is a result of the CLL, its treatment, and antibiotic use, or whether it represents an
underlying condition driving the disease's development. However, in the mouse study, we provide evidence
through the TCL 1 AT which elucidates that the microbiome alterations are not just a consequence but
indeed play a significant role in the progression of the disease. Further, we provide a complete overview of
the taxonomical and functional composition identified in patient samples. Lastly, we attempt to apply
metabolic potential analysis to provide a superior understanding of the biological processes underlying gut
dysbiosis in this patient cohort. However, profound taxonomical changes were not reflected in changes in
the gut metabolic potential. It is thus appealing to further investigate whether the intestinal microbial

composition and function could serve as a potential predictor for CLL development.
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Tables

Feature All Cluster 2 Cluster 3
s I o’ | Com
Gender Female 21 (35%) 6 (50%) 5 (62.5%) 10 (25%)
Male 39 (65%) 6 (50%) 3 (37.5%) 30 (75%)
Median age at diagnosis (yr) 63.7 64.4 67.5 63.6
at microbiome sampling (yr) 68.6 69.3 69.6 66.4
BMI kg/m2 26.2 24.6 25.2 26.9
IGHV M-CLL 38 (63%) 8 (66.6%) 5 (62.5%) 25 (62.5%)
U-CLL 19 (32%) 4 (33.3%) 3 (37.5%) 12 (30%)
NA 3 (5%) 0 0 3 (7.5%)
FISH Dell7p 4 (6.6%) 0 1(12.5%) 3 (7.5%)
Dell1q 5 (8.3%) 2 (16.6%) 0 3 (7.5%)
Tri12 11 (18.3%) 1(8.3%) 2 (25%) 8 (20%)
Normal 14 (23.3%) 2 (16.6%) 2 (25%) 10 (25%)
Del13q 24 (40%) 6 (50%) 3 (37.5%) 15 (37.5%)
NA 2 (3.3%) 1(8.3%) 0 1(2.5%)

Table 1. Patient characteristics.

N, number; yr, years; BMI, Body mass index (body mass divided by the square of the body height, units:
kg/m?); IGHV, Immunoglobulin heavy-chain variable region gene, U-CLL, CLL with unmutated IGHV; M-CLL,
CLL with mutated IGHV.

Kruskal-Wallis H test of difference between the 3 clusters: Age: p =0.74, Gender: p = 0.06, BMI: p = 0.45,

IGHV status: p = 0.75, FISH status: p = 0.16.
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GMM

All
(N=60)

Lactose degradation

Melibiose degradation

68.5 (53.8-83.1)
18.5 (15.5-22.0)

Mean (IQR)

77.9 (66.2-99.8)
19.0 (15.1-25.2)

Cluster 2
(N=8)

Cluster 3
(N=40)

64.0 (58.1-75.8)
18.7 (17.3-20.2)

66.6 (51.8-78.0)
18.4(15.2-21.2)

7 most Mannose degradation 17.8(14.8-19.9)  16.6(12.2-19.9)  16.1(13.8-19.6)  18.5(15.6-20.2)
abundant Glycolysis (prep. phase) 17.4 (14.9-19.9) 15.8 (14.6-17.6) 19.0 (16.2-21.2) 17.6 (15.1-19.9)
GMMs Arabinoxylan degradation | 17.4(13.9-21.4) 15.7 (13.0-19.7) 17.7 (15.1-20.0) 17.8(13.9-22.2)
Starch degradation 15.7 (10.8-20.0)  12.9(9.0-16.0)  17.7 (14.3-20.4)  16.1(11.3-20.1)
Mucin degradation 14.7 (9.5-18.3)  18.2(14.4-23.4)  11.5(9.4-14.3) 14.2 (9.8-18.8)
Propionate Production | 0.15 (0-0.05) 0.13 (0.03-0.13) 0.06 (0-0.01) 0.12 (0-0.05)
Propionate Production Il 0.7 (0.4-0.8) 1.2 (0.6-1.8) 0.7 (0.6-0.9) 0.6 (0.4-0.7)
7 apriori Butyrate Production | 5.6 (4.5-6.9) 5.5 (4.6-6.6) 5.3 (3.3-6.8) 5.7 (4.6-7.0)
selected Butyrate Production II 5.7 (5.0-6.4) 5.2 (4.5-5.9) 6.4 (5.4-7.0) 5.7 (5.0-6.3)
GMMs Acetyl-Coa to Acetate 10.4 (9.4-11.6) 9.5 (8.9-11.5) 10.4 (8.9-11.1) 10.6 (9.5-11.6)
Tryptophan Degradation 3.1(1.8-4.0) 3.3(1.2-5.2) 2.9 (1.4-4.4) 3.1(1.9-3.8)
Tyrosine degradation | 6.4 (5.8-7.2) 6.8 (5.7-8.4) 6.8 (6.4-7.3) 6.2 (5.7-6.8)

GMM abundance = normalized proxy for the portion of bacteria in a sample that can perform a specific

function

Table 2. Abundance of the seven most abundant and seven a priori selected GMMs.

GMM, gut metabolic modules. Values, mean GMM values across samples belonging to the indicated
clusters. IQR, interquartile range.
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Figure legends

Figure 1. Assessment of microbiome (dis)similarity and diversity in CLL patients. The (dis)similarity was
measured by distance matrix constructed using Robust Aitchison distance. A) Hierarchical clustering over
bacterial taxa. Hierarchical clustering (hclust function in R) with Ward's minimum variance method was run
on the distance matrix calculated based on robust Aitchison distances. The clustering approach used was
purely data-driven and the number of resulting clusters was not specified in advance. Cutting a hierarchical
clustering tree at the point of the largest distance (“cut”), resulted in three clusters (Clusters 1 (C1): purple,
C2: blue, and C3: orange). The patient diagnosed with T-PLL showed average microbiome values and has
been marked by a black circle. B) Principal Coordinate Analysis (PCoA) representation of the CLL cohort
(dis)similarity. Each dot in the PCoA plot represents one sample. Samples ordinated closer to one another
are more similar than those ordinated further away. C) Shannon alpha diversity in CLL samples grouped
according to clusters from A). Alpha diversity measures include richness - representing observed number of
genera, and Shannon index - representing evenness of species in a community. In the box plots, box edges
represent the 25th and 75th percentiles, the center line shows the median and whiskers extend from the
box edges to the most extreme data point. The p-values (adjusted for multiple testing with the Benjamini-
Hochberg (BH)) obtained upon Wilcoxon rank-sum tests are indicated, values < 0.05 were considered
significant. Ns, P > 0.05; *, P <0.05; **, P < 0.01.

Figure 2. Swimmer plot illustrating the clinical course of disease of CLL patients. Patients from clusters C1
and C2 in Figure 1 are included in the swimmer plot. All included patients were alive by 15/09/2022, the
end of the follow-up period. The time points of CLL diagnosis, CLL treatment, antimicrobial treatment, and
microbiome sampling are shown in the swimmer plot. X-axis: Time before and after microbiome sampling,
non-continuous time scale is marked by dashed lines. Y-axis: Subject numbers colored according to patient
clusters (purple: C1, low diversity; blue: C2, high diversity). HSCT: hematopoietic stem cell transplantation;
m: months; y: years.

Figure 3. Heatmap representation of clinical outcomes over time for all patients. The color-coded cells in
the heatmap depict different temporal intervals: time from diagnosis to sampling, time from diagnosis to
initiation of first-line treatment (1L), time from 1L to sampling, time from sampling to 1L for patients
without prior 1L treatment before microbiome sampling, and time from sampling to progression for
patients who received 1L treatment before microbiome sampling. For instance, the time from diagnosis to
1L: in C1, 92% of patients required 1L within a median period of 3.7 years; in C2, 50% of patients required
1L within a median period of 0.8 years; in C3, 45% of patients required 1L within a median timeframe of 3.7
years. Annotation of each patient sample: cluster affiliation based on results from Figure 1, microbiome
sample obtained before receiving 1L treatment (yes/no), IGHV mutation status (M-CLL/U-CLL), antibiotics
treatment within the 6 months preceding microbiome sampling (yes/no), hematopoietic stem cell
transplantation (HSCT), and/or Richters transformation. White color represents missing values. IGHV:
Immunoglobulin heavy-chain variable region gene; U-CLL: CLL with unmutated IGHV; M-CLL: CLL with
mutated IGHV; HSCT: Hematopoietic Stem Cell Transplantation; 1L: First-line treatment; AB: Antibiotics.

Figure 4. Heatmap of differential abundance of bacteria in C1 and C2 patient samples. Relative abundances
of all genera with logFC >1 in C1 and twelve genera with highest logFC in C2 patient samples are visualized.
Color scale: Centered log ratio transformed relative abundance of bacterial genera, scaled by columns in
pheatmap function in R. C1: patient cluster 1; C2: patient cluster 2 according to Figure 1. Subject 5 (from
C1) omitted from visualization due to extremely low relative abundances across all genera. Abbreviations:
gen.i.s., genus incertae sedis; for instance, Ruminococcaceae gen.i.s.: reads could not be certainly classified
as Ruminococcus (genus), but were classified as Ruminococcaceae (family).
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Figure 5. Leukemia development after TCL1 AT in mice derived from facilities with low (LH) or high hygiene
(HH) levels. A) Schematics of experimental design of adoptive transfer of TCL1 leukemia (TCL1 AT) of LH
mice (n = 9) and HH mice (n = 8). Mice without engraftment of TCL1 cells (n = 1 in LH group, n = 2 in HH
groups) were removed from the study. Figure was created with BioRender.com B) Percentage of CLL cells in
peripheral blood (PB) out of CD45+ viable cells 2, 3 and 4 weeks after TCL1 AT. C) Number of CLL cells per
pL of PB at the same time points. Statistics: One independent study including 2 groups of 10 mice. Mann-
Whitney non-parametric test for each time point (p-value: * < 0.05, ** <0.01).

Figure 6. Microbiome composition and diversity in the TCL1 AT mouse model. A) Fecal alpha diversity in
murine samples from the study described in Figure 5 collected at two different timepoints (before and after
TCL1 AT; TP1 and TP2 respectively). Mice with low quality of their microbiome sequencing upon quality
control were excluded from the analysis (n = 3 from LH group, n = 5 from HH group). Boxplots were
constructed as described in Figure 1C. B) The relative abundance of bacterial genera in murine samples
taken at TP1. Bacterial genera with abundance < 1% in a sample were omitted form plotting. Sequences
that could not be assigned to a genus were grouped as Unclossified. C) Generalized linear model (GLM) for
every bacterial genus to representing its abundance based on two predictor variables: hygiene and TCL1
AT. Center log ratio (clr)-transformed relative abundance data at genus level were used as input. The
position of a point is given by coefficients (betas), where betas represent weights assigned to the predictor
variables. In other words, each of the points illustrate to what degree is the bacterial genus relative
abundance influenced by the two predictor variables. Positive (negative) value at the x-axis indicates that
mice initially housed in a high hygiene barrier will have higher (lower) relative abundance of a bacterial
genera compared to mice initially housed in low hygiene barrier. Positive (negative) value at the y-axis
indicates that mice transplanted with CLL cells will have higher (lower) relative abundance of a bacterial
genera than mice before transplantation of CLL cells. Concrete example: Helicobacter is positioned at
coordinates x: -0.95 and y: -0.25, which can be interpreted as Helicobacter’s relative abundance is more
influenced by the hygiene of the barrier than by CLL cells transplantation. Also, based on this model,
relative abundance of Helicobacter will be lower in mice kept in high hygiene barrier and slightly lower in
mice transplanted with CLL cells.
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1. Supplementary Methods

Animal models
Ep-TCL1 (TCL1) mice on a C57BL/6 J background were kindly provided by Carlo M. Croce (The Ohio State

University, Columbus, Ohio, USA), and crossed at least 10 times to ensure C57BL/6 J background (1). 6-8 week
old female C57BL/6 J mice for adoptive transfer (AT) of TCL1 tumors were bred and maintained at the central

animal facility of the German Cancer Research Center (DKFZ, Heidelberg).

Two colonies of C57BL/6 mice were maintained in two different animal facilities of the German Cancer
Research Center (DKFZ) — a low hygiene facility, without user-entry restrictions, and a high hygiene facility
(where altered Schaedler flora was ensured). Mice were kept on the same water and food restrictions on
both facilities. Ten 7-week-old mice from each colony were submitted to adoptive transfer (AT) with leukemia
cells from the TCL1 mouse model (TCL1 AT), as previously described (2, 3). In short, splenocyte suspensions
obtained from 40-60 week-old female TCL1 mice underwent B cell purification with the EasySep Mouse Pan-
B Cell Isolation Kit (StemCell Technologies Inc., 19844) according to manufacturer instructions. The tumor
content (percentage of CD5+CD19+ cells) post-purification reached 95% or higher, according to flow
cytometry (FC) measurement. 2x107 cells were injected intraperitoneously, and animals were monitored for
the development of leukemia, through weekly blood withdrawals starting at week 2 post-transplantation.
Leukemic animals were identified given the presence of a growing CD5+CD19+ tumor population in the blood
(as measured by FC), as well as palpable splenomegaly. 3 mice were removed from the study upon failing in

tumor engraftment.

Murine samples collection, DNA extraction and sequencing

Fecal samples were collected at week 0, one day before TCL1 AT, and at week 3 post-transplantation (after
tumor was established), into Stool Nucleic Acid Collection and Preservation System tubes (Norgen Biotek,
63700). Fecal samples were snap-frozen with liquid N2 immediately after collection. QIAmp DNA Stool Mini
Kit (Qiagen, Hilden, Germany) was used to extract DNA from fecal samples according to manufacturer
instructions. The concentration of DNA was determined by NanoDrop spectrophotometry (NanoDrop,
Germany). In short, 50 mg of fecal sample was lyophilized in 400 pL extraction buffer (methanol/ddH20 at a
ratio of 4/1). Sample mixture was grinded for 6 minutes and sonicated at 5 2C for 30 minutes. Mixture was
then kept at -20 2C for 30 minutes and centrifuged at 13,000 g and 4 2C for 15 minutes. Supernatant was
collected and snap-frozen. Snap-frozen sample was re-dissolved in 100 puL 90% methanol (in ddH20). Quality
control sample was prepared for NanoDrop measurement. Shotgun sequencing was conducted at the
European Molecular Biology Laboratory (EMBL, Heidelberg) on lllumina HiSeq 4000 platform in a 2x150bp
paired-end setup at the Genomics Core Facility, European Molecular Biology Laboratory in Heidelberg,

Germany.



Peripheral blood (PB) was drawn from the submandibular vein for weekly measurements, and collected in
ethylenediaminetetraacetic acid (EDTA)-coated tubes (Sarstedt) for immunostaining and FC measurement.
Mice were euthanized by increasing concentrations of carbon dioxide (CO2). Single-cell suspensions from
spleen, bone marrow (BM) and inguinal lymph nodes (LN) were prepared as described previously (2, 3).
Briefly, splenocyte suspensions were generated with the GentleMACS tissue dissociator (Miltenyi Biotec),
followed by red blood cell (RBC) lysis, and passing the cells by 70-um strainers (BD Biosciences) to exclude
fat and cell clumps. BM cells were flushed from femurs with PBS/2% fetal calf serum (FCS). LN cell suspensions

were prepared through grinding the lymph nodes through 70-um strainers (BD Biosciences).

Flow cytometry

All antibodies were purchased from BD, Biolegend or ThermoFisher Scientific. For surface staining, single-cell
suspensions previously obtained were washed with PBS/2% FCS, and incubated with recommended
antibodies against cell surface markers, using the respective recommended antibody dilutions. Incubation
went on for 30 minutes, at 4 2C in the dark. After washing twice with PBS/2% FCS, cells were fixed using IC
fixation buffer (ThermoFisher Scientific, 00-8222-49), washed and stored in PBS/2% FCS at 42C in the dark

until analyzed by FC.

For intracellular staining with FoxP3, cells were fixed after surface staining using FoxP3
fixation/permeabilization buffer (ThermoFisher Scientific, 00-552300) for 30 minutes at RT (in the dark).
Then, permeabilization was performed with 1X permeabilization buffer (ThermoFisher Scientific, 00-5523-
00) and staining with antibody against FoxP3 transcription factor in 1X permeabilization buffer was started
for 30 minutes at 4 2C. after two washes with 1X permeabilization buffer, cells were resuspended in the same

buffer and stored at 4 2C in dark conditions, until analyzed by FC.

For PB staining, 25 uL of blood were stained with surface molecule antibodies for 30 minutes at 4 2C in the
dark. Then, blood samples were incubated for 10 minutes in 2 mL of 1X 1-step Fix/Lyse Solution
(ThermoFisher Scientific, 00-5333-57) for RBC removal. After centrifugation and discarding of the
supernatant, cell pellets were resuspended in PBS. Less than 1 hour before FC measurement, 25 uL of
123count eBeads (ThermoFisher Scientific, 01-1234-42) were added, to allow calculation of absolute number
of cells in the blood according to the formula: absolute count (cells/uL) = (cell count x bead volume x bead

concentration)/(bead count x cell volume).

Flow cytometry data acquisition was done using BD LSRFortessa flow cytometer (BD Biosciences). For
analysis, dead cells and doublets were excluded. Median Fluorescence Intensity (MFI) was calculated and
normalized by subtracting the MFI of the respective fluorescence minus one (FMO) control, for markers
without a clear negative vs positive population distinction. Data analysis was performed using FlowJo X 10.0.7

software (FlowJo LLC, BD Biosciences).



Patient cohort and patient data

Fecal samples were collected from 60 patients enrolled in the CLL biobank and the PERSIMUNE biobank
during regular out-patient visits at Rigshospitalet, Copenhagen, Denmark, between June 2017, and July 2020.
The project was approved by the national ethics committee (approval no. 1804410) and written informed

consent was obtained from all patients prior to sampling.

Patient sample collection and sequencing

Fecal samples were collected by the patient or nursing staff using the OMNIgene.GUT (DNA Stabilized-frozen
Inc., Ottawa, ON, Canada) stabilization tube according to the manufacturer’s instructions and refrigerated
for a maximum of 7 days before freezing at -80 C. All samples were processed and stored at the PERSIMUNE
biobank located at Rigshospitalet. Samples were extracted from the biobank and transported on dry ice to
the IrsiCaixa AIDS Research Institute, Spain. Here samples were thawed on ice and DNA was extracted from
~200 mg of each fecal sample using the Power Soil DNA Extraction Kit (MO BIO Laboratories, Carlsbad, CA,
US). 4 Extracted DNA was then stored at -80 2C until sequencing. For sequencing, whole fecal DNA was
chemically fragmented using the Nextera-XT® Illumina kit. Total fecal DNA was sequenced on an Illumina Hi-

Seq® platform in a 2x150bp paired-end setup.

Preprocessing and taxonomical profiling

Both, reads preprocessing and taxonomical profiling were done for the mouse and CLL samples using an in-
house pipeline implemented in ngless (4). After sequencing, reads underwent quality control and
preprocessing steps, including trimming of reads using a quality score cutoff of 20, and removal of reads
below 100 base pairs. Reads were mapped to the mouse and human genomes (mm39 and hg19, respectively)
using BWA-MEM?2 (5) and reads with a minimum identity of 80 across 90 bases were discarded. Gene profiling
was carried out by mapping to the integrated gene catalogue (IGC) (6) with BWA-MEM2 and counting the
number of reads mapping to each gene with a minimum match size of 60 and minimum identity of 90.
Taxonomic profiling and estimation of the relative abundances at all taxonomical levels in mice and humans
were done using mOTUs2 (7) and reference-independent method MetaPhlAn3 (8), respectively. The naming
for mOTUs gives all possible species that the specific mOTU potentially represents. The format is
speciesl/species2/species3/etc., meaning that all the species are possible annotations. MetaPhlAn3 utilizes
the marker gene database to align the metagenomic sequencing data. By identifying the most suitable
marker gene sequences, MetaPhlAn3 ensures a unique species assignment during the alignment of
metagenomic sequencing data to the marker gene database. Taxa failing to be classified into any taxonomic

ranks were marked as Unclassified by both mOTUs2 and MetaPhlAn3.



Bioinformatics and Statistical analysis

Statistical analyses of FC mouse data were performed using GraphPad Prism software version 9. All graphs
show means + SEM, unless otherwise indicated. Comparisons of two different sample groups (=8, n=9) at
each blood withdrawal timepoint were performed using a non-parametric Mann Whitney t-test. All other

statistical analyses were performed using R (version 4.2.0).

Descriptive analyses were performed for both the mouse and human CLL cohorts with relative bacterial
abundance as input data. Unless stated otherwise, Mann Whitney U Test (Wilcoxon Rank Sum Test) was used
to identify significant differences between subgroups; Benjamini-Hochberg (BH) method was used for
multiple-testing correction; BH adjusted p-value of <0.05 was considered significant. PERMANOVA (adonis2
from vegan R package version 2.6-2) was used to test statistical differences in microbial composition among
different groups of murine samples (such as cage effect) or groups of patient samples (such as gender, groups

patients with different antibiotic usage, or resulting patient clusters).

Alpha diversity measures (richness, Shannon index) were calculated at species level using vegan R package
version 2.6-2 (9). Generalized linear model (GLM) was used to visualize relationship between two
independent binary variables - TCL1 AT and hygiene of the animal facilities, and one dependent variable -

bacterial relative abundance. Interpretation of the GLM statistical analysis is detailed in Figure 6C legend.

The interindividual dissimilarities in gut microbiota composition (B-diversity) in patients with CLL were
assessed by robust aitchison dissimilarity index (vegdist function from vegan R package version 2.6-2).
Hierarchical clustering (hclust from base R package stats) with Ward's minimum variance method was run on
the distance matrix. The interindividual dissimilarities represented by the distance matrix and the formed
clusters were visualized using Principal Coordinate Analysis (PCoA, gl.pcoa function from dartR R package
version 2.7.2) (10). First 3 components of PCoA were visualized using 3D plot as Figure 1B (scatter3D function
from plot3D graphics library in R, version 1.4). Statistical differences in microbial composition given by B-

diversity estimates between the resulting cluster were tested using PERMANOVA.

Differential abundance of bacterial species in fecal microbiome between CLL patient clusters was assessed
using the R implementation of SIAMCAT (SIAMCAT R package version 2.0.0) (11). The cutoff value for bacterial

taxa to be considered differentially abundant was log fold change > 1 (logFC).

R script as well as taxonomical profiling data of the mice cohort are available at

https://github.com/PERSIMUNE/PAC2023Faitova Human Mice CLL.



https://github.com/PERSIMUNE/PAC2023Faitova_Human_Mice_CLL

2a. R Shiny applications — Methods

Relative bacterial abundance and GMM abundance data from individual patient samples were retrieved as
described in main Methods section. Relative bacterial abundance data refers to information about the
proportional representation of different bacterial species or taxa within a given sample. GMM abundance
represents a normalized proxy for the portion of bacteria in a sample that have the ability to perform a
specific function. Graphs representing the abundances were constructed using ggplot2 package in R (version
3.3.6). Interactive features such as tooltips, zooming, panning, and hover effects were introduced to the static
ggplot2 graphs using plotly package (version 4.10.0). The ggplotly function was employed to convert the

ggplot2 graphs into interactive plotly graphs.

The R Shiny framework is employed to develop interactive web applications which were deposited on the

open source Shinyapps.io. The applications are accessible through links that can be found in the main text.



2b. R Shiny applications — Tutorial
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Supplemental Figure 1. A) Percentage of CLL cells (CD19+CD5+) out of CD45+ compartment in spleen.
B) Absolute number of CLL cells in spleen (x1076). C-E) Percentage of CD4+, CD8+ and CD3+ T cells in spleen
out of viable compartment. F-H) Absolute number of CD4+, CD8+ and CD3+ T cells in spleen (x1076).

I) Exemplary gating strategy for CD19+CD5+ CLL cells (“Tumor”). J) Exemplary gating strategy for CD8+ T
cells.
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Supplemental Figure 2. A-C) Percentage of effector, memory and naive CD8+ T cells out of T cell splenic
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Supplemental Figure 4. Heatmap visualization of differentially abundant bacterial genera between C1 and C2,
all clusters. Relative abundances of selected genera visualized for all 3 clusters. Selected genera: genera with
logFC >1 enriched in C1, and twelve genera with highest logFC enriched in C2 patient samples. Patient samples
(y-axis) are labeled according to the cluster membership from Figure 1. Subject 5 (from C1) was omitted from
visualization due to extremely low relative abundances across all genera. Bacterial species that were found to
be differentially abundant also between C1 and C3 are marked in blue. Full list of differentially abundant
bacterial genera and species between C1 and C3 can be found in Supplemental Table 3. Data used for
visualization were clr-transformed relative abundances. Clustered heatmap was built and visualized using
kmeans clustering method from pheatmap function in R.



Supplemental Figure 5

Supplemental Figure 5. Heatmap visualization of differentially abundant bacterial species between C1 and C2.
Thirty bacterial species (x-axis) with highest fold change (analysis by SIAMCAT; Supplemental Table 3) were
selected for visualization. Patient samples (y-axis) were labeled according to the cluster membership from Fig 1.
Bacterial species enriched in patients from C2 corresponding to healthy signature identified by Gacesa et al. (12)
are marked in green. Data used for visualization were clr-transformed relative abundances of bacterial species.
Clustered heatmap was built and visualized using k-means clustering method from pheatmap function in R.





