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CD22-targeted glyco-engineered natural killer cells offer a 
further treatment option for B-cell acute lymphoblastic 
leukemia

The safety and efficacy of natural killer (NK) cell therapy 
have been demonstrated in clinical trials, highlighting its 
potential as an off-the-shelf product with diverse clinical 
application.1,2 NK cells differ from T cells in that they can 
be activated without the need for antigen presentation 
and can directly eliminate various cancer cells.3 By binding 
to ligands on target cells, NK cells can rapidly distinguish 
between normal and cancer cells, activating and initiating 
the cytotoxic activity against cancer cells. Importantly, NK 
cells exhibit minimal toxic side effects on patients during 
cancer therapy, and allogeneic NK cells do not induce graft-
versus-host disease (GVHD).4 CD22 is an inhibitory receptor 
highly expressed in various B-cell malignancies.5 Thera-
peutic approaches targeting CD22, such as CD22-specific 
chimeric antigen receptor (CAR) T cells and antibody-drug 
conjugates, have demonstrated clinical efficacy in treating 
B-cell lymphoma and leukemia.6,7 In this study, through 
glycoengineering of primary NK cells derived from umbilical 
cord blood (UCB), we successfully generated NK cells with 
CD22 ligands, referred to as “MsNK” cells. These glycoen-
gineered MsNK cells exhibited the ability to selectively kill 
CD22-positive B-cell lymphoma and leukemia cells both 
in vitro and in vivo. In a phase I clinical trial, where two 
patients with B-cell acute lymphoblastic leukemia (B-ALL) 
received infusions of MsNK cells, no significant toxicity 
was observed in either patient, and one patient achieved 
partial remission.
In order to obtain an adequate quantity of NK cells, UCB 
mononuclear cells were isolated and cultured using an 
NK-cell amplification kit. After 14 days of expansion, over 
1×1010 cells with a purity of more than 98% were obtained 
(Online Supplementary Figure S1A). The CD22 ligand was 
introduced into NK cells via metabolic engineering using a 
modified sialic acid derivative called MPB-sia1,8 in a dose- 
and time-dependent manner. Increasing the concentration 
of MPB-sia1 enhanced the expression level of the CD22 
ligand on the cell surface and prolonging the incubation 
time to 48 and 72 hours resulted in higher levels of CD22 
binding to the NK cells (Online Supplementary Figure S1B, 
D). However, cell viability was significantly reduced when 
the concentration of MPB-sia1 exceeded 2 mM or when the 
incubation time exceeded 48 hours (Online Supplementary 
Figure S1E, F). Therefore, for further study, NK cells were 
incubated with 2 mM MPB-sia1 for 48 hours. Confocal mi-
croscopy confirmed that over 99% of NK cells expressed 
CD22 ligands after incubation (Figure 1A). Phenotypic anal-
ysis showed no differential markers between MsNK cells 

and unmodified NK cells (Online Supplementary Figure S2A, 
B). The persistence of CD22 ligands on the MsNK cells was 
analyzed, and approximately 30% of the ligands remained 
on the cells 48 hours after the removal of MPB-sia1 from 
the cell culture medium (Online Supplementary Figure S2C). 
Several studies have suggested that IL-15 can enhance 
NK-cell persistence in preclinical and clinical investiga-
tions.1,2,9,10 In our experiments conducted in NCG-IL15 mice 
(which endogenously secrete human interleukin [IL]-15), 
we observed the persistence of CD22 ligand expression on 
MsNK cells. However, we found that IL-15 did not prolong 
their persistence (Online Supplementary Figure S2D).
In order to assess cytotoxicity, MsNK cells were co-incubat-
ed with CD22-expressing Raji and BALL-1 cells, as well as 
non-CD22-expressing K562 cells. Compared to unmodified 
NK cells, MsNK cells demonstrated significantly enhanced 
cytotoxicity against Raji and BALL-1 cells, while no sig-
nificant cytotoxicity was observed against CD22-negative 
K562 cells (Figure 1B). Furthermore, the co-incubated su-
pernatants were collected to analyze interferon-γ (IFN-γ) 
levels, which were significantly increased after interaction 
with Raji and BALL-1 cells compared to unmodified NK 
cells (Figure 1C). In vivo analysis using a leukemia mouse 
model established by injecting luciferase-engineered and 
CD22-overexpressing Nalm6 cells (human B-ALL cell line) 
demonstrated that mice injected with MsNK cells exhibited 
significantly slower tumor growth and extended survival 
compared to mice injected with PBS or unmodified NK cells 
(Figure 1D-F). These results were confirmed using NK cells 
from at least two independent donors. The persistence of 
CD22 ligands on MsNK cells in vivo was found to be short, 
with approximately 50% of the ligands remaining on the 
cells after 12 hours, indicating the need for multiple infu-
sions for effective treatment (Online Supplementary Figure 
S2D). The results stated above suggest that MsNK cells 
hold promise as a treatment strategy for CD22-positive 
B-cell malignancies.
Following approval by the Ethics Committee of Tianjin 
First Central Hospital, the clinical study was registered 
for trials at the China Clinical Trial Registration Center 
(ChiCTR2000041024, http://www.chictr.org.cn/showproj.
aspx?proj=65785). Two patients diagnosed with B-ALL, 
having undergone multiple lines of treatment with evident 
disease progression, were enrolled in the study (Table 1). 
Both patients had high-risk characteristics and refractory 
diseases. Flow cytometry analysis confirmed that over 
90% of the tumor cells in both patients expressed CD22. 
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Lymphodepleting chemotherapy with fludarabine and cy-
clophosphamide was administered to both patients for 3 
days (Table 1), followed by three infusions of MsNK cells 
at a dose of 3×107/kg with a 1-day interval. Post-treat-
ment management was determined based on the treating 
physician’s assessment at day 30. Both patients exhibited 

grade 1 cytokine release syndrome (CRS), characterized by 
transient fever that resolved without medical intervention. 
No symptoms of neurotoxicity or hemophagocytic lym-
phohistiocytosis were observed. Additionally, there were 
no cases of GVHD despite human leukocyte antigen (HLA) 
mismatches between the MsNK cells and the patients. 

Figure 1. MsNK cells can target CD22-positive tumor cells in vitro and in vivo. (A) Confocal microscopy imaging showing the ex-
pression and statistical results of the CD22 ligand. (B) Unmodified natural killer (NK) cells and MsNK cells were co-incubated 
with K562, Raji and BALL-1 cells, respectively, at different effector cell target cell ratios to evaluate their specific cytotoxicity. (C) 
Supernatants from the co-incubation (effector cell:target cell =1:1) were collected and the interferon-γ (INF-γ) content of the 
supernatants was analyzed (experiments were conducted using cells from 3 different donors; mean ± standard deviation [SD]; 
***P<0.001). (D) Luciferase engineering and CD22-overexpressing Nalm6 (Nalm6-Luc22) leukemia cells were injected into NSG 
mice through the tail vein to establish leukemia mouse models. On days 8, 10, and 12 after tumor inoculation, phosphate-buffered 
saline (PBS) was injected into the tail vein, and after NK cells and MsNK cells were treated, the tumor load of mice was detect-
ed by in vivo imaging technique at the specified time points (N=5, representative pictures of 3 mice in each group are given). (E) 
Quantitative plot of leukemia burden of each group of mice at different time points (N=5, mean ± SD; *P<0.05; **P<0.01). (F) 
Survival time of mice treated with PBS, NK cells, and MsNK cells (N=5; *P<0.05).
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Transient and reversible hematological toxicity events, 
primarily related to lymphodepleting chemotherapy, were 
observed. Therefore, it was difficult to determine if the 
infusion of MsNK cells resulted in hematological toxicity. 
All adverse events observed in the study are listed in the 
Online Supplementary Table S1. None of the patients re-
quired admission to the intensive care unit for management 
of MsNK cell-related adverse events.
After 2 weeks of treatment, patient 1 achieved partial re-
mission, with a reduction in the proportion of bone marrow 
tumor cells. There was a slight decrease in tumor cell CD22 
expression post-treatment, while CD19 remained strongly 
expressed (Figure 2A). However, the patient experienced 
disease progression after 1 month of treatment. Subse-
quently, the patient received anti-CD19 CAR T-cell thera-
py and achieved a complete response. In order to ensure 
long-term survival, the patient underwent unrelated donor 
hematopoietic stem cell transplantation but ultimately 
succumbed to post-transplant organ failure. Patient 2 had a 
high tumor burden at enrollment, and no decrease in tumor 
burden was observed during treatment evaluation. There 
was a trend of decreased CD22 expression on tumor cells 
post-treatment, while CD19 remained strongly expressed 
(Figure 2A). The patient died due to disease progression 
after 2 months of treatment. CD22-positive B cells were 

detected in the peripheral blood only in patient 1, and there 
was a transient decrease in these cells following MsNK cell 
infusion (Online Supplementary Figure S2E). B-cell counts 
did not return to normal levels in either patient during 
follow-up. Flow cytometry and short tandem repeat (STR) 
assays were used to dynamically measure the metabolism 
of MsNK and NK cells in the patients. The proportion of 
MsNK cells among the total NK cells in patients peaked on 
the sixth day post-infusion, reaching approximately 20%, 
followed by a rapid decline (Figure 2B). STR data indicated 
the rapid disappearance of allogeneic NK cells, suggesting 
potential autologous immune rejection of the allogeneic 
NK cells by the patients (Figure 2C). Inflammatory cyto-
kine levels, including IL-6 and IFN-γ, showed only a slight 
increase, which corresponded to the mild cytokine-release 
syndrome (CRS) observed after MsNK cell infusion (Figure 
2D, E). There were no significant abnormalities in total bili-
rubin or other indicators related to GVHD-related liver injury 
during treatment (Figure 2F; Online Supplementary Figure 
S2F). No cases of GVHD, rash, or diarrhea were observed.
NK cells, known for their potent anti-cancer activity, face 
limitations in intrinsic targeting ability against cancer cells. 
Glycoengineering was employed to enhance this capability 
through CD22 ligands, resulting in the generation of MsNK 
cells from UCB-derived NK cells. In both in vitro and in vivo 

Table 1. Characteristics of patients and outcomes of MsNK cell therapy.

Characteristic Patient 1 Patient 2

Age in years/sex 46/F 53/F
Disease type B-ALL B-ALL
Gene mutation NA WT1
Karyotype 46,XX,t(9;22)(q34;q11) [20] Normal
Prior lines of treatment, N 6 7
Extramedullary invasion Yes No
Pretreatment disease burden % 59.77 93.70
CD22 positivity % 99.45 99.01
Initial therapy VDCP+Imatinib VDLP
Lymphodepletion FC FC
CRS/grade 1 1
CRES/grade 0 0
GVHD No No
MsNK in the infusion % 98.85 97.60
MsNK dose/kg 9×107 9×107

HLA matching loci 2/6 1/6
KIR matching No No
Response PR SD
Status at last follow-up (time point in days) Died of post-transplant organ failure (431) Died of disease progression (43)

Cytokine release syndrome (CRS) was graded per a modified grading system proposed by Lee et al.15 Individual symptoms of CRS were grad-
ed per CTCAE version 5.0. F: female; B-ALL: B-cell acute lymphoblastic leukemia; NA: not available; VDCP: vincristine, daunorubicin, cyclo-
phosphamide, prednisone; VDLP: vincristine, daunorubicin, L-asparaginase, prednisone; CRS: cytokine release syndrome; CRES: chimeric 
antigen receptor T-cell-related encephalopathy syndrome; GVHD: graft-versus-host disease; NK: natural killer; PR: partial response; SD: sta-
ble disease.
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experiments, MsNK cells demonstrated superior CD22 
target-dependent killing efficacy compared to unmodified 
NK cells. Two patients with B-ALL were treated with MsNK 
cell therapy, confirming safety and efficacy.
UCB was chosen as a source for MsNK cells due to stable 
availability and cytotoxicity comparable to peripheral blood 
NK cells.1,11 A 1-day interval infusion mode was adopted 
due to the short half-life of MsNK cells. In the clinical 
study, the dose of infused MsNK cells was guided by the 
treatment doses established in previous CAR NK-cell 
therapies.2 Our research indicates that the administered 
dose of MsNK cells did not reach the maximum tolerated 
dose. Given the short duration of MsNK cell persistence 
and the mild observed toxicity, higher doses may poten-
tially benefit patients. HLA and killer immunoglobulin-like 
receptor mismatches might contribute to the cytotoxicity 
of allogeneic NK cells against tumors.12,13 However, these 
mismatches may also trigger the recognition and elim-
ination of allogeneic MsNK cells by the patient’s autol-
ogous immune system,14 as suggested by our STR data. 
Therefore, implementing more profound lymphodepleting 
chemotherapy before infusion could potentially enhance 
the persistence of allogeneic MsNK cells within the pa-
tient’s body.
Patient 1 achieved complete remission after subsequent 
CD19 CAR T-cell therapy, even though the treatment 
target differed. This indirect observation suggests that 
the efficacy of MsNK cells might be weaker compared 
to CAR T cells. Furthermore, our preclinical and clinical 

investigations both revealed the rapid in vivo metabolism 
and loss of CD22 ligands on MsNK cells, indicating their 
potential suitability for patients with low tumor burdens. 
Additionally, the observed mild treatment toxicity in pa-
tients suggests that MsNK cells have significant poten-
tial when combined with other therapeutic modalities. 
In conclusion, glycoengineering emerges as a promising 
approach to enhance NK-cell targeting in cancer therapy. 
With its lower toxicity, further exploration of higher doses 
or combination therapies could provide a complementary 
strategy for the treatment of B-ALL.
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Figure 2. Dynamic index analysis of the patient during MsNK cell infusion. (A) Expression of CD19 and CD22 on tumor cells in the 
bone marrow of patients before and 14 days after treatment. (B) The proportion of MsNK cells among all natural killer (NK) cells 
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cells was determined by short tandem repeat (STR). (D, E) Data on interleukin-6 (IL-6) and interferon-γ (IFN-γ) during treatment 
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