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Abstract

Genetic predisposition to hematologic malignancies has historically been addressed utilizing patients recruited from clini-
cal trials and pedigrees constructed at major treatment centers. Such efforts leave unexplored the genetic basis of variations 
in risk by race/ethnic group shown in population-based surveillance data where cancer registration, compulsory by law, 
delivers universal enrollment. To address this, we performed exome sequencing on DNA isolated from newborn bloodspots 
derived from sibling pairs with early-onset cancers across California in which at least one of the siblings developed a he-
matologic cancer, using unbiased recruitment from the full state population. We identified pathogenic/likely pathogenic (P/
LP) variants among 1,172 selected cancer genes that were private or present at low allele frequencies in reference popula-
tions. Within 64 subjects from 32 families, we found 9 LP variants shared between siblings, and an additional 7 such variants 
in singleton children (not shared with their sibling). In 8 of the shared cases, the ancestral origin of the local haplotype that 
carries P/LP variants matched the dominant global ancestry of study participant families. This was the case for Latino sib-
ling pairs on FLG and CBLB, non-Latino White sibling pairs in TP53 and NOD2, and a shared GATA2 variant for a non-Latino 
Black sibling pair. A new inherited mutation in HABP2 was identified in a sibling pair, one with diffuse large B-cell lympho-
ma and the other with neuroblastoma. Overall, the profile of P/LP germline variants across ancestral/ethnic groups suggests 
that rare alleles contributing to hematologic diseases originate within their race/ethnic origin parental populations, demon-
strating the value of this discovery process in diverse, population-based registries. 
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Online Supplementary Tables included with “Evaluation of the genetic basis of familial-
associated early- onset hematologic cancers in an ancestral/ethnically diverse 
population” by Feng, Q., et al.  

Online Supplementary Table 1. List of genes evaluated for pathogenicity.  

Online Supplementary Table 2. Variants of uncertain significance (VUS) shared 
between family members.  

Online Supplementary Table 3. Pathogenic/Likely pathogenic (P/LP) variants shared 
between family members: Results using manual curation after software variant calling.  

Online Supplementary Table 4. Pathogenic/Likely pathogenic (P/LP) variants and 
variants of uncertain significance (VUS) shared between family members: Initial 
predictions based on Varsome and Clinvar (via PeCanPIE), and Manual Curation 
updated variant designations. Supp Table 2b includes the manual variant curation 
decision process.  

Online Supplementary Table 5. Pathogenic/Likely pathogenic (P/LP) variants not shared 
between family members.  

Online Supplementary Table 6. Basic clinical diagnostic information of all families 
included in this study.  

 
 
Supplemental Methods  
 
DNA preparation and sequencing 

DNA used for augmented whole exome sequencing (WES)1 was isolated from neonatal 

dried blood samples obtained from the California Biobank Program2 using Beckman GenFind v3 

reagents on an Eppendorf robotic sample handling platform. Uniquely barcoded samples 

underwent WES on the IDT xGen Exome V1 plus spike-in of a small panel of clinically relevant 

probes that cover additional non-coding loci where predisposition alleles reside (detailed in1). 

Approximately 250 million paired end reads, each 100 bp in length, were generated for each 

sample.   

 

Mapping and variant identification  



The Genome Analysis ToolKit (GATK) pipeline for germline short variant (SNVs + indels) 

discovery was used for mapping and variant calling3-5, based on the GRCh37 assembly. 

Resulting gene sequence variations stored in variant call format (VCF) files were annotated with 

ANNOVAR6. Variants with alternative allele reading depth £5, or variant allele fraction £0.2 were 

excluded. Variants with quality by depth>2 and genotype quality>10 were included.  

We filtered all variants for minor allele frequency (MAF) in reference populations in the 

Genome Aggregation Database (gnomAD)7, 8 and the 1000 Genomes Project (1KG)9. Rare 

variants with both global and population-specific allele frequency<=0.001 in the exome 

sequencing data in gnomAD and 1KG were included in the filtered VCF file.  

 

Identification of Down syndrome (DS) 

The presence of DS (trisomy 21) for each subject was identified by comparing the 

sequencing read ratio for chromosome 21 to all other chromosomes. Then, any subject with 

number of reads for chromosome 21: other ratio greater than the mean + 2*standard deviation 

(SD) of the reads of all other subjects on this chromosome were identified to have constitutive 

trisomy 21.  

 

Annotation of pathogenicity 

We used the Pediatric Cancer Variant Pathogenicity Information Exchange (PeCanPIE) 

Medal Ceremony pipeline for the initial identification of P/LP variants across all sequenced 

siblings. PeCanPIE works by first sifting through variants in sequencing data, and then 

annotating the pathogenicity of the variants based on American College of Medical Genetics 

and Genomics (ACMG)10/Association for Molecular Pathology (AMP) guidelines11. The potential 

pathogenicity of the variants is classified into three tiers (gold, silver, and bronze)12. We 

examined variants on a list of 1173 genes that are reported to be 

cancer/immunodeficiency/nonmalignant hematological-related genes (n=986)12, 13, pediatric 



cancer predisposition genes (n=162)14, 15, tumor suppressor genes, tyrosine kinase genes, or 

cancer genes classified based on their recurrent somatic mutation in cancer (n=565)16, and/or 

Hodgkin lymphoma-related genes identified from genome-wide association or sequencing 

studies (n=327)17-25 (Online Supplementary Table 1).  

Then, the pathogenicity of ‘gold’ and ‘silver’ medal variants identified by PeCanPIE was 

cross-checked with VarSome26, a search engine for variants in the human genome that 

classifies different pathogenicity categories according to ACMG/AMP guidelines by 

incorporating information from external databases and risk prediction scores from multiple in 

silico algorithms. The pathogenicity of each variant is annotated as ‘pathogenic’, ‘likely 

pathogenic’, ‘likely benign’, ‘benign’ or ‘uncertain significance’ according to ACMG/AMP 

guidelines.  

Variants that have a PeCanPIE ‘gold’ medal, or VarSome annotation as ‘pathogenic’ or 

‘likely pathogenic’ are referred to as ‘P/LP’ in the subsequent analyses. Other PeCanPIE ‘silver’ 

medal variants are referred to as variants of unknown significance (VUS) in the subsequent 

analyses. All P/LP/VUS variants were then manually annotated manually for pathogenicity by 

examining multiple sources including literature reports, defined mutational hotspots, database 

reports, and functional studies. Initial “in silico” variant classifications (by PeCanPIE) are shown 

in Supplementary Table 2 only; all manually curated alleles are displayed in other key tables 

(Table 2, Figure 1, Online Supplementary Tables 2, 3, 5).  

All putative P/LP variants and VUS that were shared by both siblings were inspected 

visually with the Integrative Genomics Viewer27 to ensure adequate sequencing depth, and the 

percentage of alternative allele reads was recorded for each variant (and displayed in tables). 

We also performed manual inspection of putative P/LP variants that were found in only one 

sibling and subjected these variants to the same manual curation process. 

 

Ancestry of variants 



To evaluate if the variants originated from a specific genetic ancestry, we examined the 

global ancestries of each study subject further, and the local ancestries surrounding each 

variant. The ancestries were classified into 5 superpopulations: European (EUR), African (AFR), 

Amerindian (AMR), East Asian (EAS), and South Asian (SAS). RFMix28 was used to determine 

the global and local ancestries.  

We used gene sequence variations from the 1KG9 and Human Genome Diversity Project 

(HGDP)29 to construct a reference panel for the ancestry analysis with RFMix. First, 

ADMIXTURE30 was used to identify the 1KG and HGDP subjects with a ‘pure’ global ancestry 

(100%EUR/100%AFR/100%AMR/100%EAS/100%SAS). A total of 345 ancestrally unmixed 

subjects (69 AFR, 69 AMR, 69 EAS, 69 EUR, 69 SAS – with AMR being the group with the 

fewest available ancestrally uniform subjects thus limiting the size of each reference group) 

were included in the reference panel for RFMix. We then mapped the local gene sequence 

variations of all study participants to the gene sequence variations of these reference subjects 

to determine the global ancestry of each chromosome and the local ancestry of each variant. 

The global ancestry of each subject was calculated by averaging the global ancestry of each 

chromosome for that subject. The local ancestry of a common SNP that is closest to the variant 

of interest was deemed to be the local ancestry of that variant. A full listing of all family clinical 

information is presented in Online Supplementary Table 6.  
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