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Abstract

Antibody-drug conjugates (ADC) represent one of the most successful therapeutic approaches introduced into clinical 
practice in the last few years. Loncastuximab tesirine (ADCT-402) is a CD19-targeting ADC in which the antibody is conju-
gated through a protease cleavable dipeptide linker to a pyrrolobenzodiazepine dimer warhead (SG3199). Based on the 
results of a phase II study, loncastuximab tesirine was recently approved for adult patients with relapsed/refractory large 
B-cell lymphoma. We assessed the activity of loncastuximab tesirine using in vitro and in vivo models of lymphomas, cor-
related its activity with levels of CD19 expression, and identified combination partners providing synergy with the ADC. 
Loncastuximab tesirine was tested across 60 lymphoma cell lines. It had strong cytotoxic activity in B-cell lymphoma cell 
lines. The in vitro activity was correlated with the level of CD19 expression and intrinsic sensitivity of cell lines to the ADC’s 
warhead. Loncastuximab tesirine was more potent than other anti-CD19 ADC (coltuximab ravtansine, huB4-DGN462), al-
though the pattern of activity across cell lines was correlated. The activity of loncastuximab tesirine was also largely cor-
related with cell line sensitivity to R-CHOP. Combinatorial in vitro and in vivo experiments identified the benefit of adding 
loncastuximab tesirine to other agents, especially BCL2 and PI3K inhibitors. Our data support the further development of 
loncastuximab tesirine for use as a single agent and in combination for patients affected by mature B-cell neoplasms. The 
results also highlight the importance of CD19 expression and the existence of lymphoma populations characterized by re-
sistance to multiple therapies.

Introduction

Despite recent improvements, current therapies are not yet 
curative for too many patients affected by lymphoid neo-
plasms,1-3 and novel therapeutic strategies are still needed. 
Antibody-drug conjugates (ADC) represent one of the most 

successful therapeutic approaches introduced into clinical 
practice in the last 25 years.4,5 ADC are complex compounds 
that contain three components: an antibody, a warhead 
(i.e., a cytotoxic agent), and a linker that joins the two to-
gether. ADC enable targeted delivery of potent warheads 
into tumor cells using antibodies against tumor antigens. 
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Due to its pattern of expression and its biological role in 
lymphocytes, the B-cell marker CD19 has been heavily ex-
ploited for antibody-based therapies, including ADC, and, 
more recently, for cellular therapies.4,6-10 Loncastuximab 
tesirine (ADCT-402) is a CD19-targeting ADC, in which 
the CD19-specific antibody is stochastically conjugated 
through a protease cleavable dipeptide linker to a pyrrolo-
benzodiazepine (PBD) dimer warhead (SG3199).11 Following 
binding to CD19-positive cells, loncastuximab tesirine is 
rapidly internalized and transported to lysosomes, where 
the linker is cleaved to release the PBD dimer SG3199.11 
In contrast to the microtubule-disrupting monomethyl 
auristatin E (MMAE) used in the CD30-targeting brentux-
imab vedotin and the CD79B-targeting polatuzumab ve-
dotin ADC,12,13 SG3199 belongs to a new generation of DNA 
cross-linking agents. It binds to guanine residues in the 
DNA minor groove, forming covalent cross-links of the two 
DNA strands.14,15 Loncastuximab tesirine has been studied 
in various clinical trials16-18 and, based on the results of a 
phase II study,16,19 it was recently approved in the USA and 
Europe for the treatment of adult patients with relapsed/
refractory (R/R) large B-cell lymphoma after at least two 
prior lines of systemic therapy.20

Here, we assessed the anti-tumor activity of loncastuximab 
tesirine in a large panel of lymphoma cell lines, with a fo-
cus on the expression of its target and the identification 
of active combination partners.

Methods

Details on the cell lines and compounds used in this study, 
together with information on the Ly4.0 cancer personal-
ized profiling (CAPP)-sequencing genomic DNA assay and 
variant calling are provided in the Online Supplementary 
Materials and Methods. The full methods for the immuno-
blotting, and cell cycle analysis as well as the data mining 
are also described in the Online Supplementary Materials 
and Methods.

In vitro cytotoxic activity 
The cytotoxic activity of loncastuximab tesirine was as-
sessed in vitro, as previously described.21 Briefly, cells were 
exposed to each compound for 96 hours and assayed by 
MTT (3-[4,5-dimethylthiazolyl-2]-2, 5-diphenyltetrazolium-
bromide). For R-CHOP treatment, cells were exposed for 
72 hours to 1 μg/mL CHOP + 100 μg/mL rituximab at five 
different concentrations in 1:10 serial dilutions. Rituximab 
was diluted to clinically recommended serum levels22 and 
CHOP represented a mix reflecting the clinical ratios of the 
drugs23,24 (85%, 4-hydroperoxy-cyclophosphamide; 5.5%, 
doxorubicin; 0.16%, vincristine; 11.1%, prednisolone). Cells 
were also exposed in parallel to the PBD dimer SG3199 
and the isotype-control ADC B12-SG3249.25 
Synergism was assessed by exposing cells for 96 hours to 

increasing doses of loncastuximab tesirine and each of the 
other agents, either alone or in combination, followed by 
an MTT assay. The Chou-Talalay combination index (CTI) 
was determined as previously described.26 Combinations 
were defined as synergistic (median CTI <0.9), additive 
(median CTI, 0.9-1.1), or of no benefit/antagonist (median 
CTI >1.1). 

CD19 expression
Absolute cell surface CD19 expression was determined via 
quantification of the antigen on the surface of lymphoma 
cell lines using Quantum Simply Cellular anti-human IgG 
beads (Bangs Laboratories) to create a calibration curve. 
Antibody-binding capacity values were then normalized to 
those of the control isotype antibody B12.
CD19 RNA expression values were extracted from the 
datasets GSE94669, previously obtained using a targeted 
RNA-sequencing approach (HTG EdgeSeq Oncology Bio-
marker panel) and microarray-based technology (Illumina 
HT-12 arrays),26 and GSE221770, previously produced via 
total RNA sequencing.27 

Patient-derived xenograft cell line 
A patient-derived xenograft was produced in the context 
of protocols approved by Cornell University (Institutional 
Review Board: 107004999, 0201005295, and 1410015560; 
Universal consent: 1302013582; in vivo protocol 2014-0024). 
Full methods are provided in the Online Supplementary 
Materials and Methods.

In vivo experiments
Mice maintenance and animal experiments were performed 
under the institutional guidelines established for the Animal 
Facility at The Institute of Research in Biomedicine (license 
number TI 49-2018) (TMD8 experiment) or following the 
policies and regulations set out by the Institutional Animal 
Care and Use Committee of Case Western Reserve Univer-
sity (JEKO1 experiment). Full methods are provided in the 
Online Supplementary Materials and Methods.

Results

Loncastuximab tesirine has strong cytotoxic activity in 
B-cell lymphoma cell lines
Loncastuximab tesirine was tested for its antiproliferative 
activity across 60 lymphoma cell lines, which were ex-
posed to the ADC for 96 hours (Online Supplementary Table 
S2). Loncastuximab tesirine had activity in the picomolar 
range, with a median half-maximal inhibitory concentration 
(IC50) of 4.1 pM (95% confidence interval: [95% CI]:, 2-9.6 
pM) among 48 lymphoma cell lines derived from mature 
B-cell lymphomas. Conversely, the antiproliferative activ-
ity of loncastuximab tesirine was over 800-fold lower in 
nine T-cell lymphoma cell lines (median IC50 3.5 nM; 95% 
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CI: 0.8-11 nM; P<0.0001) (Online Supplementary Figure S1). 
The activity was similar among all the individual B-cell 
lymphoma subtypes except Hodgkin lymphoma models, 
which were over 600-fold less sensitive to loncastuximab 
tesirine than were the other cell lines (P=0.009) (Table 1). 
Loncastuximab tesirine exerted its antilymphoma activity 
via induction of apoptosis, as shown in two exemplar cell 
lines derived from activated B-cell (ABC) DLBCL (TMD8 cell 
line) or germinal center B-cell (GCB) DLBCL (VAL cell line) 
(Online Supplementary Figure S2).
The sensitivity to loncastuximab tesirine did not differ 
between DLBCL cell lines with (N=15) and without (N=11) 
BCL2 translocation or with (N=16) and without (N=7) TP53 
inactivation. Instead, DLBCL cell lines with MYC translo-
cation (N=10) versus cell lines without the translocation 
(N=16) and DLBCL cell lines with (N=7) versus those without 
(N=19) concomitant BCL2 and MYC translocation (double hit) 
had lower IC50 values (both comparisons, P<0.05) (Online 
Supplementary Figure S3).
The sensitivity to loncastuximab tesirine was also cor-
related with mutational status determined by targeted 
DNA sequencing designed to cover various coding genomic 
regions recurrently mutated in mature B-cell neoplasms 
(Online Supplementary Table S4). After multiple correc-
tions, no somatic mutation was significantly associated 
with response to loncastuximab tesirine. 
In parallel, we exposed the cells to an isotype-control ADC 
(B12-SG3249), which was active in the nanomolar range 
with no difference between B- and T-cell lymphoma cell 
lines: median IC50 values were 0.9 nM (95% CI: 0.7-2.2 nM) 
and 1.7 nM (95% CI: 0.8-12 nM), respectively. 
Finally, loncastuximab tesirine was tested in three non-hu-
man lymphoma cell lines: IC50 values were 2 nM and 
500 pM in two mouse cell lines and 175 pM in a canine 
DLBCL cell line, similar to what was achieved using the 
isotype-control ADC B12-SG3249, indicating a non-cross 
species anti-lymphoma activity not driven by CD19 tar-
geting (Online Supplementary Table S2).

CD19 levels correlate with the cytotoxic activity of 
loncastuximab tesirine 
We then focused on cell lines derived from mature B-cell 
lymphomas to assess whether CD19 cell surface expression 
levels correlated with the antitumor activity of loncastux-
imab tesirine. We measured the absolute CD19 surface 
expression levels on each cell line (Online Supplementary 
Table S2), and we used additional protein and RNA expres-
sion data we had previously obtained on the same panel of 
cell lines.27,28 We observed that the CD19 expression levels 
associated with loncastuximab tesirine activity, as demon-
strated by the negative correlation between IC50 values and 
CD19 expression values measured both at the cell surface 
protein level [(absolute quantitation, N=46, r=-0.44, P=0.002; 
relative quantitation, N=45, r=-0.4, P=0.006]) and RNA level 
[(microarrays, N=53, r=-0.74, P<0.0001; HTG, N=36, r=-0.5, 
P=0.002; RNA sequencing, N=44, r=-0.55, P<0.0001] (Figure 
1A-E). 
Based on the association mentioned above between the 
presence of MYC translocation and loncastuximab tesirine 
lower IC50 values (i.e., greater sensitivity), we explored the 
possible relationships between CD19 and MYC expression 
levels in DLBCL cells. Neither CD19 surface protein expres-
sion levels nor CD19 RNA levels differed between cell lines 
with or without MYC translocation (as a single genetic event 
or together with BCL2 translocation) (Online Supplementary 
Figure S4A-C). Similarly, CD19 and MYC levels were not cor-
related (Online Supplementary Figure S4D, E). Finally, MYC 
RNA levels were negatively correlated with loncastuximab 
tesirine IC50 values (R=-0.35) but without reaching a statistical 
significance (P=0.089) (Online Supplementary Figure S4F).

The cytotoxic activity of loncastuximab tesirine’s 
warhead SG3199 is not affected by the lymphoma subtype 
but differs based on the presence of genetic lesions
All cell lines were exposed to loncastuximab tesirine’s 
warhead SG3199 (Online Supplementary Table S2). The 
median IC50 value was 0.85 pM (95% CI: 0.69-1.14) across 

N of cell lines Median IC50, pM 95% confidence interval, pM
ABC DLBCL 7 35 7.3-880
GCB DLBCL 19 2 1.17-10.6
Mantle cell lymphoma 10 1.75 1.1-5.4
Marginal zone lymphoma 6 2.5 0.47-496
Chronic lymphocytic leukemia 2 15.75 5.5-26*
Hodgkin lymphoma 3 2750 600-14,000*
PMBCL 1 1.5 ND
Anaplastic large cell lymphoma 4 4875 700-11,500*
Cutaneous T-cell lymphoma 4 2500 900-35,000*
PTCL-NOS 1 850 ND

Table 1. Antitumor activity of loncastuximab tesirine in lymphoma cell lines.

Half maximal inhibitory (IC50) values were obtained after 96 hours of treatment. *The upper confidence limit was held at a maximum for the 
sample. ABC: activated B cell; DLBCL: diffuse large B-cell lymphoma; GCB: germinal center B cell; PMBCL: primary mediastinal large B-cell 
lymphoma; PTCL-NOS: peripheral T-cell lymphoma - not otherwise specified; ND: not determined.
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all 60 lymphoma cell lines. Unlike what had been observed 
with loncastuximab tesirine, the activity of SG3199 did not 
differ between B- and T-cell lymphomas (Table 2, Online 
Supplementary Figure S5), and there was no correlation 
between the SG3199 IC50 values and CD19 expression values 
(Online Supplementary Figure S6). SG3199 was more potent 
than the ADC. The differences in terms of IC50 values be-
tween SG3199 and loncastuximab tesirine were statistically 
significant both considering all cell lines (P<0.0001) and 
considering only cell lines derived from B-cell lymphomas 
(P<0.0001) (Online Supplementary Figure S7).
The sensitivity to SG3199 appeared reduced in DLBCL cell 
lines with TP53 inactivation when compared to TP53 wild-
type cell lines (P<0.001) (Online Supplementary Figure S8A). 
The BCL2 translocation per se did not affect sensitivity to 
SG3199 (Online Supplementary Figure S8B). SG3199, like 
loncastuximab tesirine, was more  active in DLBCL bearing 
MYC translocation as a single event or concomitant with 
BCL2 translocation (P<0.05) (Online Supplementary Figure 
S8C-D). No correlation was observed between sensitivity to 
SG3199 and MYC RNA levels (Online Supplementary Figure S9).

The cytotoxic activities of loncastuximab tesirine and 
its warhead SG3199 are strongly correlated
The cytotoxic activity of loncastuximab tesirine and its 
warhead were strongly, positively correlated among all 
the cell lines (r=0.60, P<0.0001) and within the cell lines 
derived from mature B-cell lymphomas (r=0.63, P<0.0001) 
(Figure 2). Most of the cell lines that were less sensitive 
to the ADC (IC50 values higher than the 75th percentile, i.e., 
768 pM) but sensitive to SG3199 (IC50 values lower than 
the 75th percentile, i.e., 2.9 pM) were the CD19-negative 
models (T-cell lymphomas, Hodgkin lymphoma) and the 
non-human lymphomas. Some cell lines, such as the splen-
ic marginal zone lymphoma VL51, were highly sensitive to 
the warhead, but due to low CD19 expression had a high 
loncastuximab tesirine IC50 (VL51 IC50 >100 fold the median 
IC50 of the B-cell lymphoma cell lines). There were a few 
cell lines, especially the mantle cell lymphoma (MCL) REC1 
and the DLBCL Pfeiffer and U2932, which had IC50 values 
higher than the 75th percentile for both loncastuximab 
tesirine and the SG3199 warhead, suggestive of primary 
resistance to the warhead. The GCB DLBCL cell line SU-

A B

C D E

Figure 1. The in vitro antiproliferative activity of loncastuximab tesirine is correlated with CD19 expression. (A, B) Pearson cor-
relations between loncastuximab tesirine activity and CD19 protein absolute expression (A) and relative expression (B). (C-E) 
Pearson correlations between loncastuximab tesirine’s activity and CD19 transcripts measured with Illumina HT-12 arrays (C), the 
HTG biomarker panel (D), and total RNA sequencing data (E). ABC: antibody-binding capacity; IC50: half maximal inhibitory con-
centration; MFI: mean fluorescence intensity.
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DHL-6 was sensitive to loncastuximab tesirine but resistant 
to its warhead SG3199. We confirmed that the antitumor 
activity was driven by the activity of the antibody itself 
rather than by the antibody complexed to the toxin (Online 
Supplementary Figure S10). 

The cytotoxic activity of loncastuximab tesirine is 
correlated with the cytotoxicity of other CD19-targeting 
antibody-drug conjugates
We exploited data previously produced in our laboratory 
on the same panel of cell lines with two CD19-targeting 
ADC, coltuximab ravtansine (SAR3419), comprising the may-
tansinoid microtubule disruptor DM4, and huB4-DGN462, 
incorporating a DNA-alkylating payload.28 The pattern of 
activity of loncastuximab tesirine correlated with those 
of both coltuximab ravtansine (r=0.38, P=0.01) and huB4-
DGN462 (r=0.6, P<0.0001) (Online Supplementary Figure S11). 
Loncastuximab tesirine was more potent than both huB4-
DGN462 (P=0.034) and coltuximab ravtansine (P<0.0001), 
although the exposure time previously used for the two 

additional ADC was shorter (72 vs. 96 hours). REC1, Pfeiffer, 
and U2932, the cell lines most resistant to loncastuximab 
tesirine, were also resistant to huB4-DGN462 and coltux-
imab ravtansine. 

The pattern of cytotoxic activity of loncastuximab 
tesirine and R-CHOP are correlated 
We exposed DLBCL cell lines (n=26) to the in vitro equiv-
alent of R-CHOP (rituximab, cyclophosphamide, doxoru-
bicin, vincristine, and prednisone) (Online Supplementary 
Table S3). The IC50 values obtained with R-CHOP correlat-
ed with the IC50 values of both loncastuximab tesirine 
(r=0.655, P<0.001) and SG3199 (r=0.425, P=0.03) (Figure 
3). Some cell lines had a reduced sensitivity to R-CHOP 
(IC50 values higher than the 75th percentile, i.e., 0.077 μg/
mL) but were very sensitive to loncastuximab tesirine and 
its warhead. A few cell lines (Pfeiffer, U2932, SU-DHL-16, 
SU-DHL-2) were less sensitive to loncastuximab tesirine 
and R-CHOP.

N of cell lines Median IC50, pM 95% confidence interval, pM
ABC DLBCL 7 1.17 0.63-7.85
GCB DLBCL 19 1.14 0.75-1.53
Mantle cell lymphoma 10 0.53 0.53-1.66
Marginal zone lymphoma 6 0.53 0.53-0.85
Chronic lymphocytic leukemia 2 0.83 0.53-1.14*
Hodgkin lymphoma 3 4.97 0.85-29.24*
PMBCL 1 0.56 ND
Anaplastic large cell lymphoma 4 2.34 0.85-17.54*
Cutaneous T-cell lymphoma 4 1.59 0.53-23.39*
PTCL-NOS 1 0.53 ND

Table 2. Antitumor activity of the SG3199 warhead in lymphoma cell lines.

Half maximal inhibitory (IC50) values were obtained after 96 hours of treatment. *The upper confidence limit was held at a maximum for the 
sample. ABC: activated B cell; DLBCL: diffuse large B-cell lymphoma; GCB: germinal center B cell; PMBCL: primary mediastinal large B-cell 
lymphoma; PTCL-NOS: peripheral T-cell lymphoma - not otherwise specified; ND: not determined.

Figure 2. Correlation between the activity of loncastuximab tesirine and that of its warhead SG3199. (A, B) Pearson correlations 
between the half maximal inhibitory concentrations for loncastuximab tesirine and SG3199 across all cell lines (A) and in cell 
lines derived from B-cell lymphomas and Hodgkin lymphoma (B). IC50: half maximal inhibitory concentration.

A B
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Loncastuximab tesirine is active in lymphoma cells 
following chimeric antigen receptor T-cell therapy 
We took advantage of patient-derived xenograft cells from 
a patient treated with CD19-targeting chimeric antigen re-
ceptor (CAR) T cells (SS POST CAR19) to investigate a novel 
potential clinical application of loncastuximab tesirine. 
Cells expressed surface CD19 at a 26.72-fold level nor-
malized to isotype (Online Supplementary Figure S14). The 
antiproliferative activity of loncastuximab tesirine (IC50=0.7 
nM) was superior to that of the naked antibody rB4v1.2 or 
the isotype associated with toxin B12-C220-SG3249 (IC50 
values of 17.8 nM and not reached because the IC50 was 
beyond the tested range, respectively). The sensitivity to 
loncastuximab tesirine was below the 75th percentile in cell 
lines. Cells were still sensitive to the toxin (IC50=0.37 pM).

Loncastuximab tesirine-based combinations appear 
beneficial in vitro 
We explored the potential benefit of combining loncas-
tuximab tesirine with drugs having an established role in 
treating lymphoma patients. We tested these combina-
tions in two GCB DLBCL cell lines (VAL and WSU-DLCL2), 
two ABC DLBCL cell lines (TMD8 and OCI-LY-3) and two 
MCL lines (JEKO1 and JVM2). The combination partners 
were the BCL2 inhibitor venetoclax, the PI3Kd inhibitor 
idelalisib, the PIK3α/d inhibitor copanlisib, the anti-CD20 
monoclonal antibody rituximab, the chemotherapy agent 
bendamustine, and the PARP inhibitor olaparib (Table 3). 
The combinations of loncastuximab tesirine with the pro-
teasome inhibitor bortezomib, the BTK inhibitor ibrutinib, 
and the immunomodulator lenalidomide, were only tested 
on the ABC DLBCL cell lines, as these drugs are only used 
for the treatment of ABC DLBCL. 
In DLBCL, the most beneficial combinations were loncas-
tuximab tesirine plus venetoclax or idelalisib, with syner-
gism achieved in all the models tested, followed by the 

combinations of the ADC plus bendamustine, copanlisib or 
olaparib. Synergism was also observed in one (OCI-Ly-3) of 
the two ABC DLBCL cell lines tested with loncastuximab 
tesirine plus ibrutinib. Combination with rituximab was 
synergistic in one cell line (VAL). No advantage was seen 
in combining loncastuximab tesirine with bortezomib or 
lenalidomide. In MCL, the most beneficial combinations 
were observed with venetoclax and copanlisib, with syner-
gism in two out of two cell lines. The addition of idelalisib 
was synergistic in only one cell line (JVM2).
The effect on the cell cycle was investigated in four DLBCL 
cell lines (TMD8, OCI-LY-3, VAL, and WSU-DLCL2) treat-
ed with loncastuximab tesirine and the most promising 
targeted agents, i.e., venetoclax, idelalisib and copanlisib, 
as single agents and in combination, after 96 hours of 
treatment. In all the DLBCL cell lines, the increase of cells 
in sub-G1, compatible with cell death, was higher than in 
control in cells treated with loncastuximab tesirine either 
as a single agent or in combination (Online Supplementa-
ry Figure S12). Treatment with venetoclax, idelalisib, and 
copanlisib as single agents also increased the proportion 
of cells in the sub-G1 phase in WSU-DLCL2 and VAL and 
OCI-LY-3. In TMD8, an increase in sub-G1 was observed 
only with copanlisib as a single agent.
To understand the mechanism underlying the benefit 
given by loncastuximab tesirine when combined with 
venetoclax, idelalisib, or copanlisib, specific signaling 
pathways were explored by immunoblotting in TMD8 
(ABC DLBCL) and WSU-DLCL2 (GCB DLBCL) cell lines 
(Figure 4, Online Supplementary Figure S13). CD19 down-
regulation was observed in both cell lines 24 hours after 
treatment with loncastuximab tesirine alone, and the 
downregulation increased further when loncastuximab 
tesirine was combined with each of the three drugs. The 
levels of pAKT were reduced in cells treated with the 
PI3K inhibitors idelalisib and copanlisib as single agents 

A B

Figure 3. Correlation between the activity of loncastuximab tesirine or its warhead SG3199 and R-CHOP in diffuse large B-cell 
lymphoma cell lines. (A, B) Pearson correlations between the half maximal inhibitory concentrations values for R-CHOP and lon-
castuximab tesirine (A) or SG3199 (B). DLBCL: diffuse large B-cell lymphoma; R-CHOP: rituximab, cyclophosphamide, doxorubicin, 
vincristine, prednisone; IC50: half maximal inhibitory concentration.
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or in combination with loncastuximab tesirine (Figure 4, 
Online Supplementary Figure S13). The levels of the an-
ti-apoptotic protein MCL1 were downregulated by treat-
ment with loncastuximab tesirine in the TMD8 cell line, 
and the effect was maintained when the combinations 
were used. In the WSU-DLCL2 cell line, MCL1 levels were 
also downregulated in cells treated with loncastuximab 
tesirine and with the PI3K inhibitors as single agents and 
in combination. In both cell lines, exposure to venetoclax 
upregulated MCL1, which was reduced in combination 
with loncastuximab tesirine. Cleaved PARP1, a marker of 
apoptosis, was slightly increased when loncastuximab 
tesirine was combined with the other three drugs.

Loncastuximab tesirine-based combinations are 
beneficial in vivo
An ABC DLBCL xenograft (TMD8 cell line) was used to 
validate the combination of loncastuximab tesirine with 
copanlisib in vivo. We first evaluated both compounds as 
single agents to define the doses to be combined. Mice 
(N=5 per group) bearing subcutaneous (sc) TMD8 xeno-
grafts were treated with control (phosphate-buffered sa-
line, administered intravenously [iv]), three different doses 
of loncastuximab tesirine (0.1 mg/kg vs. 0.3 mg/kg vs. 0.6 
mg/kg; iv qd x 1), two different doses of the non-binding 
control ADC B12-SG3249 (0.3 mg/kg vs. 0.6 mg/kg; iv qd 
x 1) (Online Supplementary Figure S15), or two different 

Combination partner Histology Cell line
Median Chou-Talalay 

combination index
95% 

confidence interval

Venetoclax

ABC DLBCL OCI-Ly-3 0.48 0.3-0.6
ABC DLBCL TMD8 0.63 0.48-1.17
GCB DLBCL VAL 0.75 0.66-0.91
GCB DLBCL WSU-DLCL2 0.4 0.19-1.86

MCL JVM2 0.37 0.25-0.69
MCL JEKO-1 0.88 0.37-1.01

Copanlisib

ABC DLBCL OCI-Ly-3 0.53 0.41-0.68
ABC DLBCL TMD8 1.07 0.52-1.22
GCB DLBCL VAL 0.84 0.63-0.93
GCB DLBCL WSU-DLCL2 1.56 0.87-1.80

MCL JVM2 0.19 0.09-0.47
MCL JEKO-1 0.75 0.41-1.05

Idelalisib

ABC DLBCL OCI-Ly-3 0.1 0.07-0.22
ABC DLBCL TMD8 0.9 0.41-1.24
GCB DLBCL VAL 0.86 0.67-1.22
GCB DLBCL WSU-DLCL2 0.5 0.30-0.75

MCL JVM2 0.42 0.36-0.79
MCL JEKO-1 1.32 0.68-1.65

Bendamustine

ABC DLBCL OCI-Ly-3 1 0.7-1.75
ABC DLBCL TMD8 0.6 0.35-1.92
GCB DLBCL VAL 0.89 0.59-1.14
GCB DLBCL WSU-DLCL2 0.62 0.51-0.83

Bortezomib ABC DLBCL OCI-Ly-3 >3 >3
ABC DLBCL TMD8 1.13 0.86-1.57

Ibrutinib ABC DLBCL OCI-Ly-3 0.76 0.39-0.9
ABC DLBCL TMD8 1.07 0.96-1.25

Lenalidomide ABC DLBCL OCI-Ly-3 1.58 0.82-4.08
ABC DLBCL TMD8 1.88 0.93-2.36

Olaparib

ABC DLBCL OCI-Ly-3 1.41 0.99-2.06
ABC DLBCL TMD8 0.95 0.41-1.29
GCB DLBCL VAL 0.86 0.67-1.22
GCB DLBCL WSU-DLCL2 0.5 0.30-0.75

Rituximab

ABC DLBCL OCI-Ly-3 >3 >3
ABC DLBCL TMD8 >3 >3
GCB DLBCL VAL 0.09 0.06-0.14
GCB DLBCL WSU-DLCL2 >3 >3

Table 3. Loncastuximab tesirine-containing combinations in diffuse large B-cell lymphoma and mantle cell lymphoma cell lines.

ABC DLBCL: activated B-cell-like diffuse large B-cell lymphoma; GCB DLBCL: germinal center B-cell-like diffuse large B-cell lymphoma; MCL: 
mantle cell lymphoma.
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schedules of copanlisib (13 mg/kg, iv; 1 day on/6 days off 
vs. 2 days on/5 days off) (Online Supplementary Figure S16). 
We defined the sub-active schedules of the drugs used in 
the combination study based on the observed dose-de-
pendent antitumor activity for both loncastuximab tesirine 
and copanlisib. Thus, the combination experiment included 
animals treated with a single dose of loncastuximab te-
sirine (0.3 mg/kg iv; day 1; N=7) or copanlisib (13 mg/kg iv, 
1 day on/6 days off; days 1 and 8; N=7) as single agents or 
in combination (N=9) (Figure 5A). As a control, a group of 
mice was treated with vehicle (phosphate-buffered saline) 
or non-binding control ADC B12-SG3249 at 0.3 mg/kg (N=4 
each, iv, qd x 1; day 1). The combination of loncastuximab 
tesirine with the PIK3α/d inhibitor copanlisib decreased 
tumor volume compared to that following administration 
of the vehicle, isotype control or single treatments (area 
under the curve for the combination=1.115; vehicle=3.702; 
B12-SG3249=2.883; copanlisib=1,952; and loncastuximab 
tesirine=2,032). After day 1, the antitumor effect of the com-
bination was always superior to that of copanlisib (q<0.001), 
loncastuximab tesirine (q<0.001), vehicle (q<0.001), and ADC 
isotype control (q<0.001) treatment. The antitumor activity 

of B12-SG3249 did not differ from that of vehicle alone 
(q>0.1) or the other single-agent treatments. In terms of 
tumor weight, the effect of the combination was superior 
to that of the single agents (P=0.003; combination vs. co-
panlisib, P<0.0001; combination vs. loncastuximab tesirine, 
P<0.0001; combination vs. ADC isotype, P=0.003) (Online 
Supplementary Figure S17A). The combination presented 
an additive/slight synergistic coefficient of drug interaction 
(CDI) at day 38 (CDI=0.959 using B12-SG3249 as the con-
trol; CDI=1.03 using merged vehicle and B12GS3249 as the 
control). No toxicities were observed with single agents or 
combinations in this setting. 
A MCL xenograft model (JEKO1) was used to assess the 
combination of loncastuximab tesirine with venetoclax. 
Mice (N=4 per group) were treated with a single injection of 
loncastuximab tesirine (1 mg/kg iv) and/or oral venetoclax 
(100 mg/kg daily 5 days a week) or vehicle at day 16 after cell 
injection when all tumors were palpable. Tumor volume was 
decreased in the animals treated with the combination arm 
compared to those given the vehicle and single treatments 
(area under the curve, combination=2,059; vehicle=4,692; 
venetoclax=3,470; loncastuximab tesirine=4,162), and the 

Figure 4. Proteins modulated after exposure to loncastuximab tesirine. Representative immunoblots from one germinal center 
B-cell-like diffuse large B-cell lymphoma cell line (WSU-DLCL2) and one activated B-cell-like diffuse large B-cell lymphoma cell 
line (TMD8) treated for 24 hours with drugs as single agents or with combinations of loncastuximab tesirine with venetoclax, 
idelalisib or copanlisib at concentrations corresponding to double the IC50 values. DMSO: dimethylsulfoxide; Lonca: loncastuximab 
tesirine; Vene: venetoclax; Ide: idelalisib; Copa: copanlisib.
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antitumor effect was statistically significant compared 
to the vehicle and loncastuximab tesirine (q<0.001) as a 
single agent at all timepoints but day 1 (Figure 5B, Online 
Supplementary Figure S17B). A synergistic CDI (0.53) was 
calculated for this combination at the end of the experi-
ment (day 15).

Discussion

In this study we have shown that: (i) the CD19-targeting ADC 
loncastuximab tesirine has strong cytotoxic activity in a large 
panel of cell lines derived from B-cell lymphomas; (ii) its in 
vitro activity correlated with the level of CD19 expression; 
and (iii) there is benefit of adding loncastuximab tesirine to 
other agents, especially BCL2 and PI3K inhibitors. We also 
showed the similarities and differences in activity of lon-
castuximab tesirine with its warhead, other CD19-targeting 
ADC, and R-CHOP. 
These findings extend the initial preclinical data,11 confirming 

loncastuximab tesirine’s cytotoxic activity in mature B-cell 
lymphomas. In the initial publication, only a weak trend 
was observed between the antitumor activity of loncas-
tuximab tesirine and CD19 expression levels across ten cell 
lines, including CD19-negative cells.11 Here, we expanded 
the number of cell lines analyzed and, even when focusing 
only on B-cell lymphoma models, we observed a signif-
icant correlation between the activity of loncastuximab 
tesirine and CD19 expression on the cell surface as well 
as CD19 RNA levels, determined using multiple platforms, 
including one specifically designed for the analysis of for-
malin-fixed, paraffin-embedded clinical specimens.29 So far, 
immunohistochemistry applied to tumor samples from the 
loncastuximab tesirine phase I and phase II trials have not 
demonstrated a correlation between CD19 expression and 
overall response rate, with patients with extremely low or 
no detectable immunohistochemically determined CD19 
expression responding to loncastuximab tesirine.17,30 How-
ever, our data in cell lines and the observation that mea-
suring CD19 surface density in addition to the immunohis-

Figure 5. The combination of loncastux-
imab tesirine plus copanlisib or veneto-
clax is superior in vivo to single agents in 
activated B-cell-like diffuse large B-cell 
lymphoma and mantle cell lymphoma 
xenograft models. (A) NOD-SCID mice 
were subcutaneously injected with TMD8 
cells and treated (N=9 per group) with 
loncastuximab tesirine and copanlisib as 
single agents and in combination and, as 
a control, with vehicle (phosphate-buff-
ered saline) or the non-binding control 
antibody-drug conjugate B12-SG3249 (N=4 
per group). *q<0.01 for the combination 
versus all other groups (vehicle, B12-
SG3249, loncastuximab tesirine, copan-
lisib) was determined by the Mann-Whit-
ney test followed by two-stage step-up 
(Benjamini, Krieger, and Yekutieli) multiple 
comparisons, FDR(q)=0.01. (B) NSG mice 
were subcutaneously injected with JEKO1 
cells and treated (N=8 per group) with 
loncastuximab tesirine and venetoclax as 
single agents and in combination, and 
phosphate-buffered saline as a control. 
The average tumor volume is shown on 
the Y axis. *q<0.01 for the combination 
versus vehicle and loncastuximab tesirine 
group, as determined by the Mann-Whit-
ney test followed by two-stage step-up 
(Benjamini, Krieger, and Yekutieli) multiple 
comparisons, FDR(q)=0.01. SEM: standard 
error of mean; Lonca: loncastuximab te-
sirine; Copa: copanlisib; Vene: venetoclax; 
FDR: false discovery rate.

A

B
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tochemically determined expression improves the response 
prediction30 suggest that more sensitive measurements of 
CD19 in clinical specimens might be helpful to predict the 
type and the duration of response of patients treated with 
loncastuximab tesirine.
Besides loncastuximab tesirine, we tested its warhead, 
SG3199, on all the cell lines. As expected, SG3199 did not 
correlate with CD19 expression, and it was equally active in 
CD19-positive and CD19-negative cell lines. Interestingly, the 
antitumor activity of loncastuximab tesirine correlated with 
the intrinsic sensitivity of the cell lines to SG3199. Indeed, 
we could identify three different groups of cell lines. One 
group of cell lines was highly sensitive to both loncastux-
imab tesirine and SG3199 and presented the highest CD19 
expression. A second group of cell lines was sensitive to 
the warhead but not to the ADC (IC50 values higher than the 
75th percentile). These included models not derived from 
human B-cell lymphomas but also from B-cell lymphomas 
with low CD19 expression. One example was the VL51 cell 
line, derived from a splenic marginal zone lymphoma. In-
terestingly, we recently reported that VL51 derivatives with 
resistance to PI3K and BTK inhibitors, acquired after months 
of exposure to idelalisib or ibrutinib, present higher CD19 
expression levels than the parental cells and an increased 
sensitivity to loncastuximab tesirine31 and anti-CD19 CAR T 
cells,32 further indicating the importance of CD19 expression 
levels. A third group of cell lines was characterized by IC50 
values for both SG3199 and loncastuximab tesirine higher 
than the 75th percentiles, indicative of low sensitivity to the 
agents and intrinsic resistance to the PBD warhead. 
There was no effect of histology, DLBCL cell of origin, TP53 
or BCL2 genes status on the in vitro cytotoxic activity of 
loncastuximab tesirine. Among DLBCL cell line models, we 
discovered an association between MYC translocation, as 
a single alteration or together with BCL2 translocation, and 
a greater sensitivity to loncastuximab tesirine and its war-
head, which might be sustained by the interplay between 
MYC-induced replication stress and the SG3199-induced 
DNA interstrand cross-links.33-35 The clinical relevance of 
this finding remains to be determined. Interestingly, in the 
phase II study, patients with MYC translocation were as 
sensitive as the remaining patients. This suggests that even 
this group of patients with an otherwise poor outcome can 
benefit from the ADC.36 
The cytotoxic activity of PBD dimers can occur via TP53-in-
dependent and TP53-dependent mechanisms,34 and we 
observed decreased activity of SG3199 in TP53-inactive 
DLBCL cell lines when compared with its activity in the 
TP53 wild-type models. Although this difference was not 
observed when cells were exposed to loncastuximab tesirine, 
it suggests that payloads with an alternative mechanism of 
action might work better in the context of inactive TP53. 
Next, we compared the activity of loncastuximab tesirine 
against all cell lines with the activity of R-CHOP, which is 
used in the first-line treatment of DLBCL. Loncastuximab 

tesirine was more active in many cell lines with low/mod-
erate sensitivity to R-CHOP, although the antitumor activity 
of loncastuximab tesirine and its warhead correlated sig-
nificantly with the activity of R-CHOP. Indeed, there were 
cell lines that were very sensitive to all treatments and, 
conversely, cell lines resistant to R-CHOP, loncastuximab 
tesirine and its warhead.
We took advantage of a previous study28 and compared 
the activity of loncastuximab tesirine to that of coltuximab 
ravtansine and huB4-DGN462, two other CD19-targeting 
ADC that were analyzed using the same panel of cell lines. 
Interestingly, despite a higher potency, the cytotoxic activity 
of loncastuximab tesirine correlated with the activities of 
both coltuximab ravtansine and huB4-DGN462. The cor-
relation was stronger with the latter ADC, which is more 
potent in vitro and in vivo than coltuximab ravtansine,28 
and carries the DNA-alkylating agent indolinobenzodiaz-
epine pseudodimer DGN462 as its warhead,28 rather than 
the maytansinoid microtubule disruptor N2’-deacetyl-N2’-
(4-mercapto-4-methyl-1-oxopentyl) (DM4 or ravtansine),37 

present in coltuximab ravtansine. This observation and the 
comparison with R-CHOP highlight the importance of finding 
novel treatment modalities, including new active molecules 
as payloads. 
We combined loncastuximab tesirine with other antilym-
phoma agents to identify potentially active combinations 
that may provide better outcomes for patients. In DLBCL, 
the loncastuximab tesirine-based combinations that were 
synergistic in most cell lines included those with the BCL2 
inhibitor venetoclax, PI3K inhibitors (idelalisib, copanlisib), 
and with the chemotherapy agent bendamustine, followed 
to a lesser extent by the PARP inhibitor olaparib, the BTK 
inhibitor ibrutinib and the anti-CD20 monoclonal antibody 
rituximab. The in vitro findings with venetoclax and the PI3K 
inhibitors were extended to MCL cell lines and confirmed in 
vivo. While venetoclax has been extensively combined with 
small molecules, much less information regarding the com-
bination with ADC is available. Synergy with venetoclax has 
been previously reported for two ADC bearing microtubule- 
targeting agents as payloads, the CD79B-targeting polatu-
zumab vedotin and the CD205-targeting MEN1309. Exposure 
to both agents, containing MMAE and DM4, respectively, 
caused downregulation of MCL138,39 due to protein degrada-
tion via the ubiquitin/proteasome system.38 Also, alkylating 
agents have been shown to induce proteasome-mediated 
degradation of MCL1;40 hence, we anticipate a similar mech-
anism of action mediated by loncastuximab tesirine via its 
SG3199 payload, supporting the observed synergism with 
venetoclax. The combination of loncastuximab tesirine and 
venetoclax is currently being explored in a phase I study 
(NCT05053659). No trial is being conducted to examine the 
combination of loncastuximab tesirine with PI3K inhibitors, 
which appears promising based on the in vitro and in vivo 
antitumor activity. The novel, highly specific PI3Kd inhibitors 
seem to have an improved toxicity profile,41,42 which might 
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overcome the problems observed with first-generation 
compounds.43

The combination of loncastuximab tesirine with ibrutinib, 
supported by other preclinical work,44 has been clinically 
evaluated with results reported in R/R DLBCL and or MCL.45 
The toxicity was manageable, and the overall response 
rates were 67% in non-GCB DLBCL, 20% in GCB DLBCL, 
and 86% in MCL.45 
The benefit of combining loncastuximab tesirine with a 
PARP inhibitor could lead to novel clinical opportunities. 
The observed benefit of combining a PBD-based ADC with 
a PARP inhibitor aligns with the data reported mainly in 
BRCA-deficient solid tumor models.46-48 Interestingly, the 
GCB DLBCL marker LMO2 inhibits BRCA1 recruitment to DNA 
double-strand breaks in DLBCL cells, causing a BRCA1-defi-
ciency-like phenotype and sensitizing DLBCL cells to PARP 
inhibition.49 Indeed, we observed synergism in the GCB DL-
BCL cells but only an additive effect in one of the two ABC 
DLBCL models. PARP inhibitors have been explored in lym-
phoma patients.50 In particular, the PARP inhibitor veliparib 
has shown evidence of clinical activity, including complete 
remissions and safety in combination with bendamustine 
with or without rituximab.50,51 
Since there are multiple CD19-targeting therapeutic mo-
dalities that share CD19 loss as one of the mechanisms 
of resistance,4,6-10,52 it will be crucial to define the best se-
quencing or prioritization strategy for using these agents,53-57 
as well as their integration with bispecific antibodies.6-8 
Here, we demonstrated the in vitro activity of loncastuximab 
tesirine in a cell line derived from a patient who progressed 
after CD19-targeting CAR T-cell therapy, strengthening the 
clinical data showing responses in patients after treatment 
with CAR T cells.53,57 
In conclusion, our data support the further development of 
loncastuximab tesirine as a single agent and in combina-
tion for patients affected by mature B-cell neoplasms. The 
results also highlight the importance of CD19 expression 
and the existence of lymphoma populations characterized 
by resistance to multiple therapies. 
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