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Abstract 

The gut microbiota makes critical contributions to host homeostasis, and its role in the treatment 

of acute myeloid leukaemia (AML) has attracted attention. We investigated whether the gut 

microbiome is affected by AML, and whether such changes are associated with cachectic 

hallmarks. Biological samples and clinical data were collected from 30 antibiotic-free AML 

patients at diagnosis and matched volunteers (1:1) in a multicenter cross-sectional prospective 

study. The composition and functional potential of the faecal microbiota were analyzed using 

shotgun metagenomics. Faecal, blood, and urine metabolomics analyses were performed.  

AML patients displayed muscle weakness, anorexia, signs of altered gut function, and glycaemic 

disorders. The composition of the faecal microbiota differed between patients with AML and 

control subjects, with an increase in oral bacteria. Alterations in bacterial functions and faecal 

metabolome support an altered redox status in the gut microbiota, which may contribute to the 

altered redox status observed in patients with AML. Eubacterium eligens, reduced 3-fold in AML 

patients, was strongly correlated with muscle strength and citrulline, a marker of enterocyte mass 

and function. Blautia and Parabacteroides, increased in patients with AML, were correlated with 

anorexia. Several bacterial taxa and metabolites (e.g. Blautia, Prevotella, phenylacetate, and 

hippurate) previously associated with glycaemic disorders were altered. Our work revealed 

important perturbations in the gut microbiome of AML patients at diagnosis, which are 

associated with muscle strength, altered redox status, and anorexia. These findings pave the way 

for future mechanistic work to explore the function and therapeutic potential of the bacteria 

identified in this study. 

Keywords: MicroAML study, cachexia, GDF15, FGF21, Lachnospira eligens, HOMA-IR2. 
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Introduction 

The role of the gut microbiota (GM) in acute myeloid leukaemia (AML) has attracted the 

attention of the scientific community. The complex microbial community inhabiting the human 

gastrointestinal tract cultivates an intricate and mutually beneficial relationship with its host. The 

GM synthesizes essential metabolites and releases bioactive compounds, which can influence 

host physiology1. 15% of the metabolites found in mammalian blood are derived from the GM2, 

underlying the deep imbalance between the host and GM metabolism. The GM can also regulate 

host metabolism and immunity through the regulation of gut function3. Therefore, GM is 

considered a key regulator of host metabolism and inflammatory status in different 

pathophysiological contexts, including metabolic syndrome and insulin resistance4. 

AML is a clonal disorder of hematopoietic stem cells, resulting in impaired production of the 

myeloid blood cell lineage. The standard treatment for younger AML patients (< 65 years) is 

intensive induction chemotherapy followed by consolidation chemotherapy, and in some cases, 

allogeneic hematopoietic stem cell transplantation (HSCT). The GM seems to control aspects of 

haematopoiesis through mechanisms including metabolite production as well as through 

circulating microbial DNA5. AML is also characterized by an altered host immunity, the latter 

being widely influenced by the GM. Despite the expected links between AML and GM, little is 

known about the influence of AML on GM composition and more is known about the impact of 

chemotherapy. 

Indeed, patients undergoing induction chemotherapy experience loss of microbiota diversity6, 7. 

The reduction in some beneficial bacterial species, such as Faecalibacterium prausnitzii and 

Bifidobacterium spp., persisted even after completion of chemotherapy8. A higher microbial 

diversity at diagnosis was linked to a reduced risk of infectious complications following 

induction chemotherapy, suggesting an interest in microbiota profiling for infectious risk 

stratification9. Much of the recent work investigating the GM in the context of AML has focused 

on its relationship with the development of graft-versus-host disease (GVHD) after allogeneic 

HSCT. Higher α-diversity was associated with better survival10 and higher levels of Blautia with 

reduced GVHD mortality11. The presence of Eubacterium limosum is also associated with a 

reduced risk of disease relapse12. During the post-transplant period, the presence of antibiotic-

resistant bacteria or domination by some bacteria, such as Enterococcus species and 
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Proteobacteria, is associated with a higher risk of infection13, 14. These observations have 

encouraged the evaluation of strategies to enhance microbial diversity. In this context, a recent 

study investigated the safety and diversity-enhancing ability of autologous faecal microbiota 

transfer in patients with AML receiving intensive chemotherapy and antibiotics15. Faecal material 

collected at the time of diagnosis was used for faecal microbiota transfer. This transfer appeared 

to be safe and could restore microbial richness and diversity based on α-diversity indices.  

Many unknowns remain concerning the composition and activity of GM at diagnosis and its 

potential influence on the host in AML. In a mouse model of leukaemia, we showed that GM 

composition was altered alongside the gut barrier and that reversing these changes through pre- 

and probiotics improved cachectic features16, 17. Cachexia is a multifactorial systemic syndrome 

characterized by substantial weight loss (coming from atrophy of the skeletal muscle and adipose 

tissue), often accompanied by anorexia, muscle weakness, insulin resistance, and inflammation, 

which occurs in approximately 50–80% of patients with cancer18. Although cachexia affects 40% 

of patients with hematological cancer and is often witnessed in clinics, studies focusing on AML-

related cachexia are scarce19. Therefore, we launched an academic multicentric cross-sectional 

prospective study to evaluate GM composition and activity in AML patients and volunteers (CT) 

matched for age, sex, BMI and smoking status. Thirty patients newly diagnosed with AML were 

recruited before therapeutic intervention. We collected information on the patients’ food habits 

and cachectic hallmarks. We also assessed the inflammatory status of the patients, as well as 

metabolic and gut function markers. Through a multi –omics integrative approach combining 

metagenomics, faecal, blood, and urine metabolomics, and clinical data, we investigated the GM 

of AML patients at diagnosis and their links to cachectic hallmarks. 

Methods  

Subjects 

Thirty patients newly diagnosed with AML were recruited between December 2015 and 

December 2019 from three Belgian University hospitals (Saint-Luc Brussels (n = 13), UZ Leuven 

(n = 15), and UZ Gent (n = 2)). The exclusion criteria included antibiotic consumption within the 

last 30 days, chronic intestinal diseases, obesity (body mass index (BMI) > 30), pregnancy, 

gastric bypass, and treatment with antidiabetic or hypoglycaemic drugs.  
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Control (CT) subjects from the general population were recruited between December 2017 and 

January 2020 based on the same inclusion/exclusion criteria, except for the AML diagnosis. They 

were matched (1:1) for age, sex, BMI, and smoking status, all factors known to impact GM. This 

study followed the ethical guidelines set out in the Declaration of Helsinki, was approved by the 

“Comité d’éthique Hospitalo-facultaire des Cliniques Universitaires Saint-Luc” 

(B403201317128), and all participants provided written informed consent. A full description of 

the study design is provided in the Supporting Information. 

Sample and data collection 

All biological sampling and data collection were performed at diagnosis (i.e. before the initiation 

of chemotherapy and antibiotic treatment). The full details are provided in the Supporting 

Information. 

Sample and data analyses 

Biochemical, gut microbiota, 1H-NMR and statistical analyses are detailed in the Supporting 

Information. Statistical significance was set at p < 0.05 and q-value < 0.1. 

Results 

CT and AML patients display similar anthropometric characteristics and habits 

As ensured by one-to-one matching, the CT and AML patient groups did not display any 

differences in terms of age, sex, BMI, body composition, and smoking percentage (Table 1). 

They also had similar habits in terms of daily alcohol consumption. The food frequency 

questionnaire20 revealed no differences in the overall dietary score. No differences between the 

groups were detected for drug exposure, food supplement consumption, and transit scores (Table 

S1, Figure S1).  

AML patients display specific GM alterations  

GM composition was assessed in the same stool samples using two independent techniques (16S 

rRNA gene sequencing and metagenomics). GM composition was not differentially clustered 

between CT and AML patients, as revealed by PCA at the genus level (Figure 1A, Figure S2A). 
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Permutational multivariate analysis of variance (PERMANOVA) revealed that 3.1% of the 

variation in GM composition, as assessed at the genus level by shotgun metagenomics, was 

explained by AML (Figure 1A-B). At the species level, the disease explained 3.2% of the 

variation of the dataset (Figure S3A). We also assessed the explanatory power of other factors 

previously shown to explain most of the variation in GM composition in the Belgian Flemish Gut 

Flora Project, a cohort of 1106 Belgian volunteers21, namely BMI, hemoglobin, and age (Figure 

1B and Figure S3B). Disease presence had the highest explanatory power, close to BMI (3.1% in 

this cohort and ~3% in the Belgian Flemish Gut Flora Project) while age and sex were not 

significant. Total bacterial levels were similar between both groups (Figure S2B), as were the α-

diversity indices (Figure S2C). However, the univariate analyses revealed specific changes. Three 

genera, namely Actinomyces, Blautia and Parabacteroides, and one species, Parvimonas micra, 

were increased in the faeces of patients with AML, whereas Eubacterium eligens was decreased 

(Figure 1C). These changes, highlighted by shotgun metagenomics, were confirmed by 16S 

rRNA gene sequencing, with the exception of Blautia (Figure S2D, Table S2). Coprococcus and 

Prevotella were reduced in AML patients using 16S rRNA gene sequencing (q = 0.109 using 

shotgun metagenomics) (Figure S2D, Table S2). The relative abundances of oral species 

increased more than two-fold, while obligate relative abundances of anaerobe genera were 

reduced (Figure 1D).  

PCA of metagenomic functions (Figure 1E) confirmed the compositional analyses, with no clear 

global functional changes between the two groups. However, 22 functions were significantly 

different (Figure 1F, Table S3). Of these 22 functions, only four were decreased in AML patients, 

whereas the others were increased. The contributions of the species and genera to each of these 

functions are shown in Figure S4. A visual inspection of such graphs indicates that for the 

majority of the functions, the changes in their functional abundances observed in AML patients 

cannot be ascribed to specific species/genera, thereby suggesting that functional changes in the 

GM may be independent of compositional changes. These compositional and functional changes 

were sufficient to predict disease status in a testing set with an accuracy of 87% based on the top 

altered bacteria and 77% based on the altered functions using Random Forest models (Figure S5). 
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AML patients demonstrate anorexia, muscle weakness and glycaemic disorders 

Patients with AML displayed changes in hemoglobin levels and white blood cell count, C-

reactive protein (CRP), albumin, and glycaemia levels characteristics of the disease (Figure 2, 

Figure S6). They also had higher CRP and lower albumin levels, leading to a higher modified 

Glasgow prognostic score (mGPS) (Figure 2A). In addition to reflecting a higher inflammatory 

status, mGPS has been recently associated with adverse outcomes in patients with newly 

diagnosed AML22. Appetite score and muscle strength were reduced in patients with AML 

(Figure 2B). Fasted glycaemia and insulinemia, as well as HOMA-IR2, were higher in AML 

patients (Figure 2C), collectively reflecting and confirming glucose metabolism alterations in 

AML23. This appears especially the case for a subset of patients that, intriguingly, presented a 

specific microbial signature (Figures S7, S8 and supplementary results and discussion).  

In addition to an increase in CRP, other inflammatory markers (i.e. interleukin-6 (IL6), 

interleukin-8 (IL8), monocyte chemoattractant protein 1 (MCP1), and tumor necrosis factor alpha 

(TNFα)) were elevated in AML patients as compared to CT (Figure 3A). Together with the 

increase in interleukin-10 (IL10) and reduction in transforming growth factor beta-1 (TGFβ1), 

this confirms alterations in cytokine levels in AML patients24 and a high inflammatory status. We 

also reported an increase in growth differentiation factor-15 (GDF15), a member of the TGFβ 

superfamily, and fibroblast growth factor 21 (FGF21) in AML patients (Figure 3B). GDF15 

mediates tumor-induced anorexia and body weight loss25 while FGF21 has been implicated in 

fasting-induced muscle atrophy and weakness in mice26.  

Plasma levels of citrulline, a non-proteinogenic amino acid reflecting enterocyte mass and 

function27, were decreased in patients with AML (Figure 3C). Together with the increased level 

of lipopolysaccharide-binding protein (LBP) (Figure 3C), the reduction in citrulline levels in 

AML patients suggests an alteration of the gut function. 

AML patients display specific faecal, blood and urine metabolome alterations 

PCA performed on faecal, blood, and urine metabolites did not reveal a clear clustering between 

CT and AML (Figure S9), with AML samples being more dispersed than the CT samples. 

PERMANOVA revealed that 11.2% and 2.9% of the variation in blood and urine metabolomics, 

respectively, can be explained by the presence of AML (p < 0.05). The metabolites driving the 
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separation between both groups were identified using multivariate discriminant analysis (Figure 

S9). Univariate analysis also revealed significantly altered metabolites (Figure 4, Table S4). In 

AML faeces, two sugars (glucose and galactose), three alcohols (methanol, ethanol, and glycerol) 

and two amino acids (phenylalanine and threonine) decreased. Bacterial amino acid-derived 

metabolites were modified: 3-phenylpropionate decreased, while phenylacetate increased. In 

AML blood, two sugars (glucose and mannose), as well as ethanol, increased. Amino acids 

(alanine, asparagine, citrulline, cystine, glutamine, methionine, sarcosine, and threonine) 

decreased, except for glutamate, which increased. Uridine and urea levels were decreased. 

Lactate levels increased, while acetate, fumarate, and succinate levels decreased. Amino acid 

catabolic products, such as 3-hydroxyisovalerate, 2-hydroxybutyrate, formate, and 

dimethylamine, were increased. Ascorbate, also known as vitamin C, was decreased in AML 

patients. In the urine of AML patients, the metabolites were mainly increased. This was the case 

for most amino acids (2-aminobutyrate, 3-aminoisobutyrate, carnitine, isoleucine, leucine, 

taurine, threonine, and tyrosine) and nucleic base-related metabolites (hypoxanthine and 

pseudouridine), with the exception of uracil, which decreased. Formate, maleate, and Sumiki’s 

acid also increased, whereas hippurate and trigonelline decreased. Consistent with the alterations 

in glucose metabolism mentioned earlier, glucose levels were also increased in the AML urine 

samples. 

Altered bacteria and functions in AML patients correlate with several faecal, blood and 

urine metabolites 

Next, we performed correlations between the top altered bacterial taxa/functions and faecal, 

blood, and urine metabolite levels. The genus Eubacterium, as well as the associated species E. 

eligens and E. hallii, showed the strongest correlations with faecal metabolites, especially 

malonate (negative correlation) and glycerol (positive correlation) (Figure 5). Several blood 

metabolites were strongly correlated with the different bacterial taxa (Figure 5). Urea was 

negatively correlated with Blautia genus and positively correlated with the Sutterellaceae family 

and E. eligens. Ascorbate levels were negatively correlated with Clostridium spiroforme. 3-

hydroxyisobutyrate correlated negatively with the Erysipelatoclostridium genus, and 2-

hydroxybutyrate correlated positively with the Parabacteroides genus. The correlations were 

weaker for urine metabolites (Figure S10). E. eligens displayed the highest number of 
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correlations (all negative), mainly with amino acids. Parabacteroides also showed several 

positive correlations. Most of these correlations were maintained when corrected for age (Figure 

S11). Among those correlations, faecal malonate and glycerol correlations with Eubacterium, E. 

eligens, and E. hallii were also found in the healthy control group alone (Figure S12). In the 

healthy control group, blood urea also correlated with Blautia as well as E. eligens, and 3-

hydroxyisobutyrate correlated with Erysipelatoclostridium genus (Figures S13, S14).  

Interestingly, when looking at the correlations between altered microbial functions and faecal, 

blood, and urine metabolomes, some faecal and blood metabolites demonstrated strong 

correlations with many different functions (Figure S15). For instance, in faeces, glycerol showed 

strong negative correlations with almost all increased functions in the AML group. In blood, 

several metabolites showed multiple correlations with bacterial function. Some were positive 

(e.g. correlation with formate) and some were negative (e.g. correlation with ascorbate and 

propylene glycol). In contrast, ferredoxin-nitrite reductase was negatively correlated with many 

urine metabolites, whereas glycerol dehydratase was positively correlated with similar 

metabolites (Figure S16). 

Altered bacteria and functions in AML patients associate with clinical, metabolic and 

inflammatory parameters 

We then looked for associations between altered bacterial taxa and functions and the collected 

clinical, dietary, inflammatory, and metabolic parameters in the whole cohort and exclusively in 

the AML group to delineate the strongest correlations. We found that many taxa, including 

Parvimonas micra, Actinomyces, Parabacteroides and Blautia, were positively associated with 

inflammatory markers in the entire cohort (Figure 6). E. eligens, decreased in AML patients, was 

negatively associated with inflammation and positively associated with citrulline and muscle 

strength, while the latter correlation was maintained inside the AML group (Figure S17). 

Consistent with these findings, muscle strength was strongly correlated with blood citrulline (rho 

= 0.3522, p = 0.0058) and CRP levels (rho = -0.4585, p = 0.0002). Looking at the negative 

correlations, we noticed that Blautia was inversely associated with muscle strength. Some 

parameters, such as haemoglobin, IL6 and IL8 as well as TGFβ1, and citrulline, were associated 

with many different functions (Figure S18), with some associations maintained when considering 
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exclusively the AML patients (Figure S19). Most of these correlations were maintained when 

corrected for age (Figure S20).  

Discussion 

This study highlights alterations in GM composition and activity, cachectic hallmarks and 

metabolic and inflammatory disturbances in patients newly diagnosed with AML, with several 

associations found between these alterations (Figure 7).  

Altered bacterial functions in AML patients are genes catalyzing redox reactions, suggesting an 

altered redox status in the GM of AML. Two elements from faecal metabolomics further support 

the hypothesis of redox imbalance in AML GM towards a more pro-oxidative status. First, 

phenylalanine, which is decreased in the faeces of patients with AML, can be metabolized by the 

GM into 3-phenylpropionate and phenylacetate. 3-phenylpropionate, reduced in AML patients, is 

produced through a reductive pathway, while phenylacetate, which is increased in AML patients, 

arises through an oxidative pathway28. Along these lines, faecal phenylacetate was associated 

with a higher pro-oxidant and pro-inflammatory status in elderly volunteers29 whereas blood 

phenylacetate was elevated in cancer cachectic patients30. Second, glycerol levels were reduced 

in AML faeces. This decrease could result from an oxidative stress on the bacterial membranes, 

requiring increased lipid synthesis. This is supported by the increase in lipid synthesis functions 

(glycerol dehydratase and lipoate protein ligase), as well as by the correlations between glycerol 

and redox and lipid synthesis functions. Notably, the reduction in the relative abundance of 

obligate anaerobic genera may reflect increased oxygen levels in the intestine, contributing to the 

altered bacterial redox status. Several elements from blood and urine metabolomics indicate the 

presence of oxidative stress on the host side, which is consistent with previous studies31. First, 

taurine, a non-proteinogenic amino acid with antioxidant properties, was more excreted in the 

urine of patients with AML. Second, ascorbate, another antioxidant, was decreased in the blood 

of AML patients compared with CT. Interestingly, a few preclinical studies have demonstrated 

that the GM affects the host antioxidant defence system32. Considering all these elements, we 

propose that the altered activity and composition of the GM observed in AML patients could 

contribute to the oxidative stress present in these patients. This hypothesis is in line with the 

results of a previous study arguing for a microbial role in the oxidative stress present in some 
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patients with acute leukaemia under chemotherapy. Specifically, the authors proposed oxidative 

stress as a mediator involved in Akkermansia-related neutropenic fever33. 

In addition to their link with the GM redox pathways, some metabolites pointed out previously 

could be linked to altered glycaemic homeostasis in AML patients. Indeed, an increase in 

systemic phenylacetate was causally associated with insulin resistance34 and 2-hydroxybutyrate, a 

marker for insulin resistance35, was increased in the blood of our AML patient cohort. Hippurate, 

a glycine conjugate of microbial benzoate, was decreased in the urine of AML patients. This 

metabolite is commonly seen as a general marker of metabolic health and is causally associated 

with glucose tolerance36. Hippurate and Prevotella increased following the administration of 

fibre37. Their positive correlation in the current study suggests that reduced hippurate levels may 

be explained by a decrease in Prevotella. Blautia has been inconsistently associated with 

different aspects of metabolic syndrome38. This genus is increased in anorectic patients39. 

Consistent with this finding, in our study, Blautia increased in AML patients and correlated 

negatively with appetite and positively with the pro-anorexigenic cytokine GDF15. Collectively, 

our data reinforce previous observations of the contribution of the GM to metabolic 

derangements in acute leukaemia preclinical models40 and suggest that the GM could influence 

glucose metabolism and energy intake in AML patients, strengthening the relevance of GM 

alterations in this pathological context. 

Among all the alterations and correlations with the most altered bacteria, E. eligens stands out. 

This species, reduced three-fold in leukemic patients compared to CT, was strongly correlated 

with muscle strength in the entire cohort and when considering exclusively AML patients. Based 

on urinary metabolomics, we found that E. eligens was widely associated with the urinary 

excretion of amino acids and amino acid metabolites. Higher urinary excretion of carnitine and 2-

aminobutyrate was previously associated with cachexia and muscle loss41. Blood metabolomics 

revealed a strong association between E. eligens and urea. Such associations with urea, a 

metabolite involved in the regulation of ammonium levels, may be related to the urinary 

excretion of amino acids, representing a loss of ammonium. The increase in 8-oxoguanine 

deaminase and caffeine dehydrogenase, which are two functions strongly correlated with urea, 

could also indicate greater ammonium use by the GM. In elderly individuals, E. eligens was 

positively associated with markers of lower frailty42 reinforcing the relevance of the association 
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of this bacterial species with muscle strength. Considering the growing awareness of the 

importance of muscle wasting in AML outcomes19, GM modulation could be an innovative 

strategy to help patients fight muscle weakness. 

E. eligens was also correlated with the blood levels of citrulline. Reduction in citrulline levels 

following intensive chemotherapy was previously reported in AML mice and patients43 and low 

plasma citrulline levels before allogeneic HSCT were associated with a higher risk of 

gastrointestinal GVHD and non-relapse mortality in patients44. Citrulline decrease combined with 

an increase in systemic LBP levels suggests an alteration of the gut function in AML patients at 

diagnosis. Gut permeability was not assessed at the functional level in this study as the procedure 

for ingestible probes is incompatible with the clinical management of patients at diagnosis. An 

alteration in intestinal functions, such as absorption and gut barrier, could potentially contribute 

to the inflammation, metabolic disorders and oxidative stress (the latter through reduced 

ascorbate absorption) found in these patients.  

Parabacteroides, especially P. merdae and P. distasonis, were increased in patients with 

leukaemia. These two genera were reported to be affected in many pathologies38 and were 

ascribed both beneficial and harmful effects. An increase in Parabacteroides was also found in 

leukemic mice and was attributed to a reduction in food intake17. Consistently, in our dataset, P. 

merdae negatively correlated with appetite. In mice with acute leukaemia, we found a bloom in 

members of the Enterobacteriaceae family17. In our AML cohort, Enterobacteriaceae levels did 

not change (Figure S21). Prevotella showed significantly lower abundance in leukemic patients, 

a reduction mainly explained by a six-fold reduction in P. copri, a genus also reduced in 

cachectic patients45. Actinomyces and P. micra were increased in our cohort of AML patients. 

These two oral bacteria were previously found to be increased in colorectal cancer patients38, 46. 

In line with these studies, the relative abundance of oral species increased more than twice. 

Translocation of oral bacteria to the gut has been associated with many severe diseases, such as 

inflammatory bowel disease and liver cirrhosis and can promote intestinal inflammation47. 

Reciprocally, we hypothesize that modifications of the microbiota composition observed upon 

AML are triggered by inflammation, a key driver of microbial dysbiosis48, 49.This hypothesis is 

coherent with the positive correlations found between inflammatory cytokines and bacteria 

increased in AML. Based on preclinical studies50, we further speculate that this dysbiosis 
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contributes to the disease progression, hence the notion that AML and dysbiosis may be co-

evolving. 

Our clinical data are consistent with our previous preclinical observations16, 17. In both settings, 

we observed metabolic and inflammatory alterations, impaired gut function, and altered GM 

composition and function. We previously showed that counteracting microbial alterations using 

rationally selected pre- and/or probiotics, including fibres, improved gut function, and 

counteracted muscle atrophy in leukemic mice16, 17. These observations further support the 

therapeutic potential of GM-based adjuvant treatments. 

This study has several limitations. The sample size was limited, and the data from this 

exploratory pilot study will need to be confirmed in a larger cohort. As the primary objective of 

this study was to evaluate GM composition and function, we enforced several exclusion criteria 

for metabolic and pathological situations already known to be associated with changes in GM. 

The exclusion of patients treated with antibiotics within 30 days and obese patients led us to 

exclude a considerable proportion of the patients referred to the hospital centers involved in the 

study. Impedancemetry is less precise than CT-scan in evaluating body composition, but CT-scan 

was not compatible with the clinical management of patients at diagnosis. In addition, the 

analysis of skeletal muscle function would have benefited from whole-body strength and range of 

movement tests. 

In conclusion, our work reveals important alterations in the GM composition and function of 

AML patients at diagnosis before any therapeutic intervention. This finding may be of clinical 

importance considering that autologous FMT is emerging as an option for these patients15. Our 

findings call for caution when using autologous faecal material transfer during the therapeutic 

care of AML patients and goes in favour of heterologous transfer to increase the gut microbiota 

diversity and richness in these patients. Whether such FMT would also benefit cachexia will need 

to be determined. Furthermore, these GM alterations are associated with cachectic hallmarks 

(muscle weakness, anorexia, and inflammation), redox status, and signs of gut dysfunction. 

However, association does not imply causality. Therefore, our findings will constitute the basis of 

future mechanistic studies exploring the contribution and therapeutic potential of the bacteria 

identified in this study, such as Eubacterium eligens.   
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Table 1. Study participants display similar characteristics at baseline 

 

 

Varia

bles 

that 

are 

norma

lly 

distrib

uted 

are 

expres

sed as 

mean 

(stand

ard 

deviat

ion) and are tested using a Student t-test. aVariables that are non-normally distributed are 

expressed as median (interquartile range) and are tested by a Mann-Whitney U-test.  Frequency 

distributions are tested using a Fisher’s exact test. Daily alcohol intake is missing for one AML 

patient (n = 29). Dietary scores are missing for 3 AML patients (n = 27). **p-value < 0.01. CT : 

control subjects; AML : acute myeloid leukaemia patients; BMI : body mass index.   

 

 

  

Characteristics Total (n = 60) CT (n = 30) AML (n = 30) 

Agea, y 59.0 [51.0-67.8] 60.5 [50.0-67.3] 59.0 [52.8-68.8] 

Sex, %  

• Female 

• Male 

 

46.7 

53.3 

 

46.7 

53.3 

 

46.7 

53.3 

BMI, kg/m2 25.0 (3.2) 25.0 (3.2) 25.1 (3.2) 

Lean mass, % 70.7 (8.4) 71.6 (8.1) 69.7 (8.7) 

Fat mass, % 25.6 (8.8) 24.6 (8.5) 26.6 (9.1) 

Smoker, % 15  13.3 16.7 

Alcohol per daya, g  8.6 [0.0-20.0] 8.2 [2.5-18.6] 9.7 [0.0-23.1] 

Overall dietary score 

Dietary quality score** 

Dietary diversity score 

Dietary equilibrium score 

(A) Adequacy score 

(B) Moderation score 

57.3 (11.2) 

62.0 (18.6) 

43.1 (18.2) 

66.9 (11.0) 

71.4 (12.2) 

92.6 (8.5) 

59.0 (10.4) 

68.8 (14.9) 

40.7 (16.6) 

67.6 (10.6) 

70.6 (10.7) 

94.1 (5.9) 

55.4 (12.0) 

54.5 (19.6) 

45.7 (19.8) 

66.2 (11.5) 

72.4 (13.8) 

91.0 (10.6) 



23 

 

Figure legends 

 

Figure 1. AML (acute myeloid leukaemia) patients display alterations in the gut microbiota 

composition and function compared to CT (control) subjects (results of the metagenomics 

sequencing). A) Principal component analysis (PCA) at the genus level (metagenomics results).  

PERMANOVA (Permutational multivariate analysis of variance): R2 = 3.1%, p-value < 0.01. B) 

Contribution of disease, BMI (body mass index), muscle strength, hemoglobin, sex, and age to 

the variance in the PCA at the genus level (PERMANOVA results). **p-value < 0.01; $p-value = 

0.055. C) Significantly changed taxa at the lowest taxonomical level from metagenomics results. 

Mann-Whitney U-tests with an FDR (false discovery rate) correction were applied. Data 

expressed as median (interquantile range). *q-value < 0.1. D) Oral species and obligate anaerobe 

genera. **p-value < 0.01; *p-value < 0.05. E) PCA on bacterial EC (Enzyme Commission) 

enzyme functions. PERMANOVA: R² = 2.1% ns. F) Significantly changed bacterial EC enzyme 

functions in CT subjects and AML patients. n = 30. AML patients in orange vs. CT subjects in 

grey. 

Figure 2. AML (acute myeloid leukaemia) patients display anorexia, muscle weakness and 

glycaemic disorders compared to CT (control) subjects. A) CRP (C-reactive protein), albumin 

and mGPS (modified Glasgow prognostic score). B) Appetite (SNAQ score, Simplified 

Nutritional Appetite Questionnaire) and muscle strength. C) Glycaemia (fasted), insulin and 

HOMA-IR2 (second homeostatic model assessment for insulin resistance). A, B : n = 30. C : 

fasted glycaemia, n = 20; insulin and HOMA-IR2 : n = 19. AML patients in orange vs. CT 

subjects in grey. Variables that are normally distributed are expressed as mean (standard 

deviation) and are tested using a Student t-test or a Welch’s t test. Variables that are non-

normally distributed are expressed as median (interquartile range) and are tested by a Mann-

Whitney U-test. mGPS (modified Glasgow prognostic score) differences is tested using a χ2 test. 

*p-value < 0.05; **p-value < 0.01; ***p-value < 0.001 

Figure 3. AML (acute myeloid leukaemia) patients display inflammation and signs of gut 

dysfunction compared to CT (control) subjects.  A) Inflammatory markers in CT subjects and 

AMLpatients. IL6 : interleukin-6; IL8 : interleukin-8; IL10 : interleukin-10; MCP1 : monocyte 

chemoattractant protein 1; TNFα : tumor necrosis factor alpha-1; TGFβ1 : transforming growth 
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factor beta-1. B) Metabolic markers in CT subjects and AML patients. GDF15 : growth 

differentiation factor 15; FGF21 : fibroblast growth factor 21. C) Gut function markers in CT 

subjects and AML patients. LBP : lipopolysaccharide-binding protein. Variables that are 

normally distributed are expressed as mean (standard deviation) and are tested using a Student t-

test or a Welch’s t test. Variables that are non-normally distributed are expressed as median 

(interquartile range) and are tested by a Mann-Whitney U-test. AML patients in orange vs. CT 

subjects in grey. * p-value < 0.05; **p-value < 0.01; ***p-value < 0.001; ****p-value < 0.0001 

Figure 4. Univariate analyses pinpoint differences in the relative concentration of identified 

metabolites in the three analysed compartments. Bubbleplot. Bubble size depicts concentration 

fold change based on the group median. Coloured bubbles correspond to affected metabolites. 

Light and dark orange are used for metabolites increased in the AML (acute myeloid leukaemia) 

group (respectively at p-value < 0.05 and FDR (false discovery rate) -corrected q-value < 0.1). 

Light and dark grey are used for metabolites decreased in the AML group (respectively at p-value 

< 0.05 and FDR-corrected q-value < 0.1). Uncoloured bubbles represent non-affected 

metabolites. n = 30 per group. 

Figure 5. The top altered bacteria correlate with several blood and faecal metabolites. Spearman 

correlations. Metabolites with at least one correlation with an altered taxon are present. Microbial 

taxa are ordered by fold change. ‘+’ symbolizes a p-value < 0.05 and ‘*’ symbolizes an FDR 

(false discovery rate) -corrected q-value < 0.1.    

Figure 6. Top altered bacteria correlate with clinical, dietary, inflammatory, and metabolic 

parameters in CT (control) subjects and AML (acute myeloid leukaemia) patients. Spearman 

correlations. ‘+’ symbolizes a p-value < 0.05 and ‘*’ symbolizes an FDR (false discovery rate) -

corrected q-value < 0.1. Parameters with at least one correlation with an altered taxon are present. 

Microbial taxa are ordered by fold change. BMI: body mass index; WBCC: white blood cell 

count; appetite (SNAQ score); CRP: C-reactive protein; mGPS: modified Glasgow prognostic 

score; HOMA-IR2: second homeostatic model assessment for insulin resistance; IL6: interleukin-

6; IL8: interleukin-8; IL10: interleukin-10; MCP1: monocyte chemoattractant protein 1; TNFα: 

tumor necrosis factor alpha-1; TGFβ1: transforming growth factor beta-1; GDF15: growth 

differentiation factor 15; FGF21: fibroblast growth factor 21; LBP: lipopolysaccharide binding 

protein.  
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Figure 7. Graphical abstract. Altered bacteria and functions in AML (acute myeloid leukaemia) 

patients associate with cachectic hallmarks and altered host redox status. Full two-way arrows 

display significant correlations, dashed two-way arrows display associations and simple way 

arrows display contributions based on literature. Created with BioRender.com. 
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Supplementary Materials and Methods  

Study objectives 

This cohort study aims to investigate the composition and activity of the gut microbiota of patients 

newly diagnosed for acute myeloid leukaemia (AML), in relationship with their food habits and 

cachectic hallmarks. The recruitment for this study took place with the help of clinicians, nurses 

and data managers at the Saint-Luc clinics, University Hospital Leuven (Campus Gasthuisberg) 

and University Hospital Gent. 

The primary objective was to assess the composition and activity of the gut microbiota in patients 

with acute myeloid leukaemia (AML) compared to matched control subjects. 

Secondary objectives were the following ones: (i) to investigate correlations between the gut 

microbiota, cachectic hallmarks and gut microbiota-related markers in the blood (gut permeability 

markers, microbial compounds, microbial metabolites); (ii) to characterize the changes in the gut 

microbial ecosystem that are induced by chemotherapy and associated with colitis; (iii) to assess 

whether the composition of the gut microbiota can predict the severity of chemotherapy-related 

colitis. Only the first secondary outcome is presented in the current manuscript. 

The study was registered at ClinicalTrials.gov (NCT03881826). 

Study design 

Thirty patients newly diagnosed with AML were recruited between December 2015 and December 

2019 from three Belgian University hospitals (Saint-Luc Brussels (n = 13), UZ Leuven (n = 15), 

and UZ Gent (n = 2)). This is an academic multi-centric prospective study. Patients were included 

before any chemotherapy. Biological samples (urine, faeces, blood) were collected, alongside 

information on nutritional habits, appetite and medical records. Muscle strength and body 

composition were also measured. Only patients receiving a standard chemotherapy were followed 

after the start of the chemotherapy. For these patients, biological samples were collected and body 

composition, muscle strength and appetite were evaluated at 2 different time points, namely at the 

end of the chemotherapy and at discharge. Control (CT) subjects from the general population were 

recruited between December 2017 and January 2020 based on the same inclusion/exclusion 

criteria, except for the AML diagnosis. They were matched (1:1) for several factors known to 

impact GM, such as age1, sex2-4, BMI5, and smoking status6. Whole-group analyses were applied 
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on these matched cohorts as previously advised7. When we initiated the project in 2015, sample 

size could not be calculated as the effect size and the inter-individual variability were unknown. 

This study was considered as exploratory and expected to provide information concerning the 

effect size8. The number of patients was therefore chosen based on similar studies9-13. 

Retrospectively, we estimated the power of the MicroAML study using information collected in a 

previous study performed in a cohort of 24 healthy volunteers10, 14. In the Food4Gut healthy cohort, 

we found an average standard deviation of 12% for the Shannon index of alpha-diversity10, a 

measurement of the microbial diversity. Using PASS 14.0.7, we found a power of 89% to detect 

with 30 subjects/group at a threshold p-value (alpha) of 0.05 a minimal 10% change in this alpha-

diversity index, supposing a similar standard deviation of 12%. This calculation indicates that the 

MicroAML study is adequately powered to detect such changes in the gut microbiota of leukemic 

patients vs healthy volunteers. 

Inclusion Criteria for AML patients 

Patients with 

 A diagnosis of AML and related precursor neoplasms according to WHO 2008 

classification (excluding acute promyelocytic leukaemia) including secondary AML (after 

an antecedent haematological disease (e.g. MDS) and therapy-related AML) OR acute 

leukaemia’s of ambiguous lineage according to WHO 2008 OR a diagnosis of refractory 

anaemia with excess of blasts (MDS REAB) 2 and IPSS (International Prognostic Scoring 

System)-R score > 2. 

 World Health Organization performance status 0, 1 or 2 

 Sampled bone marrow and/ blood cells at diagnosis with molecular analysis. 

 Written informed consent 

 Good command of the French or Dutch language 

Inclusion Criteria for CT subjects 

 For each enrolled patient, a healthy control was recruited and matched for age, sex, BMI 

and smoking habits (except one). 

 Written informed consent 

 Good command of the French or Dutch language 
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Exclusion Criteria for AML patients and CT subjects 

 Age < 18 years 

 Age > 75 years 

 Pregnancy 

 Antibiotics consumption during the last 30 days before inclusion 

 Recent chemotherapy (< 3 months), with exclusion of hydroxyurea 

 BMI >30 

 Any history of chronic intestinal affections (Crohn disease, inflammatory bowel disease, 

gluten intolerance) 

 Gastric bypass 

 Current treatment with antidiabetic or hypoglycaemic drugs 

Data collection 

All biological sampling and data collection were performed at the time of diagnosis before the 

beginning of the chemotherapy treatment and the administration of any antibiotics.  

Biological sampling 

Faeces and urine were collected and were immediately (< 15 min) frozen at -20°C for a maximum 

of one week and then stored at -80°C. Blood samples were kept on ice, centrifuged at 4°C within 

30 min and plasma aliquots were stored at -80°C. Fasting status was reported.  

Case report form 

Case report forms were collected to document medical history, drug records including consumption 

of pre- and probiotics, antibiotics in the last 90 days, as well as lab assessment of haemoglobin, 

white blood cell count, C-reactive protein, albumin, and glycaemia levels.   

Body composition and muscle strength 

Body composition was assessed using bioimpedancemetry (Body composition analyser, Tanita 

BC-420MA/SMA).  Muscle strength was measured using a Jamar hand dynamometer in the 

dominant hand (3 measures, separated by 15 s). Patients were asked for weight loss during the last 

six months. 

Dietary and other assessments 
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The overall quality of patients’ dietary habits was evaluated by a food frequency questionnaire 

(FFQ) validated in the Belgian population15. The analysis of the FFQ gives an overall dietary score 

and several sub-scores: dietary quality score, dietary diversity score, dietary equilibrium score 

(adequacy and moderation scores). Patients also filled questionnaires to evaluate their alcohol 

intake on a weekly basis. The short tobacco test was used to evaluate tobacco dependence and 

consumption16. Appetite was assessed using the simplified nutritional assessment questionnaire 

(SNAQ)17. A score ≤ 14 reflects a risk of weight loss in the next six months. 

Measurement of cytokines, GDF15, FGF21, LBP, insulin and citrulline 

Plasma cytokines (IL6, IL8, IL10, MCP1, TNFα, TGFβ1, GDF15), FGF21 and insulin (in fasted 

state) were measured using a customized U-plex kit and a Meso Scale Discovery microplate reader 

(Meso Scale Discovery, Rockville, MD, USA). LBP levels were assessed using an ELISA kit 

(HycultBiotech, PA, USA). Citrulline was measured in plasma (EDTA) using ion exchange 

chromatography. Combining fasted glycaemia and insulin, we calculated the HOMA-IR2 index18 

for 19 patients in each group. 

Gut microbiome analyses 

DNA extraction and total bacteria quantification 

DNA was extracted from faecal samples following the protocol Q described by Costea et al19. This 

protocol uses the QIAamp DNA Stool Mini Kit (Qiagen, Germany) and includes a bead-beating 

step. Treatment with RNAse A was performed (10 mg/ml, Thermo Fisher Scientific, USA). DNA 

concentration was determined, and purity (A260/A280) was checked using a NanoDrop 2000 

(Thermo Fisher Scientific, USA).  

Absolute quantification of the total bacterial load was performed by quantitative polymerase chain 

reaction (qPCR) using the primers Bacteria Universal P338F (ACTCCTACGGGAGGCAGCAG)

 and P518r (ATTACCGCGGCTGCTGG)20. Real-time PCR was performed with a 

QuantStudio3 (Applied Biosystems, The Netherlands) using SYBR Green (GoTaq® qPCR mix, 

Promega, USA) for detection. All samples (0.1ng/µl) were run in duplicate in a single 96-well 

reaction plate. Final concentrations were as follow: cDNA 2 µl/25 µl, primers 300 nM, and 

SyberGreen mix 1X (MeteorTaq DNA polymerase, dNTP, RT buffer, MgCl2 4 mM, SYBR® 

Green I, ROX passive reference and stabilizers, as provided by the manufacturer).  Thermocycling 
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conditions were as follow: initiation step at 95°C 2 min; cycling stage at 95°C 30 s, 60°C 30 s, 

72°C 30 s, 40 cycles; melt curve stage at 95°C 1 s, 65°C 20 s, increment of 0.1°C every 1 s until 

reaching 95°C. Threshold was manually adjusted to reach the linear range of the log-fluorescent 

curves and CT values were determined using the QuantStudio Software (Version 1.4.3, Applied 

Biosystems, The Netherlands). Absolute quantification was achieved through the inclusion of a 

standard curve (performed in duplicate) on each plate generated by diluting DNA from pure culture 

of L. acidophilus NCFM (five-fold serial dilution).  Cell counts were determined by plating and 

expressed as “colony-forming unit” (CFU) before DNA isolation.  

16S rRNA gene sequencing - data generation 

Sequencing of 16S rRNA gene is a well-established technique allowing taxonomical assessment 

of the gut microbiota. This method uses primers that target a specific region of the 16S rRNA gene. 

Indeed, this gene has the advantage to have highly variable regions flanked by highly conserved 

regions in all bacteria. The sequencing of these variable regions allows microbial phylogenies 

determination. In this study, amplicon sequencing of the microbiome was done at the University 

of Minnesota Genomics Centre. Briefly, the V5-V6 region of the 16S rRNA gene was PCR-

enriched using the primer pair V5F_Nextera 

(TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGRGGATTAGATACCC) and 

V6R_Nextera 

(GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCGACRRCCATGCANCACCT) in a 

25 μl PCR reaction containing 5 μl of template DNA, 5 μl of 2X HotStar PCR master mix, 500 nM 

of final concentration of primers and 0.025 U/μl of HostStar Taq+ polymerase (QIAGEN). PCR-

enrichment reactions were conducted as follow, an initial denaturation step at 95°C for 5 min 

followed by 25 cycles of denaturation (20 s at 98°C), annealing (15 s at 55°C), and elongation (1 

min at 72°C), and a final elongation step (5 min at 72°C). Next, the PCR-enriched samples were 

diluted 1:100 in water for input into library tailing PCR. The PCR reaction was analogous to the 

one conducted for enrichment except with a KAPA HiFi Hot Start Polymerase concentration of 

0.25 U/μl, while the cycling conditions used were as follows: initial denaturation at 95°C for 5 min 

followed by 10 cycles of denaturation (20 s at 98°C), annealing (15 s at 55°C), and elongation (1 

min at 72°C), and a final elongation step (5 min at 72°C). The primers used for tailing are the 

following: F-indexing primer 

AATGATACGGCGACCACCGAGATCTACAC[i5]TCGTCGGCAGCGTC and R-indexing 
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primer CAAGCAGAAGACGGCATACGAGAT[i7]GTCTCGTGG  GCTCGG, where [i5] and 

[i7] refer to the index sequence codes used by Illumina. The resulting 10 μl indexing PCR reactions 

were normalized using a SequalPrep normalization plate according to the manufacturer’s 

instructions (Life Technologies). 20 μl of each normalized sample was pooled into a trough, and a 

SpeedVac was used to concentrate the sample pool down to 100 μl. The pool was then cleaned 

using 1X AMPureXP beads and eluted in 25 μl of nuclease-free water. The final pool was 

quantitated by QUBIT (Life Technologies) and checked on a Bioanalyzer High-Sensitivity DNA 

Chip (Agilent Technologies) to ensure correct amplicon size. The final pool was then normalized 

to 2 nM, denatured with NaOH, diluted to 8 pM in Illumina’s HT1 buffer, spiked with 20% PhiX, 

and heat denatured at 96°C for 2 min immediately prior to loading. A MiSeq 600 cycle v3 kit was 

used to sequence the pool. Raw sequences can be found in the SRA database (project ID: 

PRJNA813705).  

16S rRNA gene sequencing - bioinformatics 

Subsequent bioinformatics analyses were performed in-house as previously described21. Initial 

quality filtering of the reads was performed with the Illumina Software, yielding an average of 84 

585 pass-filter reads per sample. Quality scores were visualized with the FastQC software 

(http://www.bioinformatics.babraham.ac.uk/ publications.html), and reads were trimmed to 220 bp 

(R1) and 200 bp (R2) with the FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/). Next, 

reads were merged with the merge-illumina-pairs application v1.4.2 (with P = 0.03, enforced Q30 

check, perfect matching to primers which are removed by the software, and otherwise default 

settings including no ambiguous nucleotides allowed)22. The UPARSE pipeline implemented in 

USEARCH v1123 was used to further process the sequences. Amplicon sequencing variants 

(ASVs) were identified using UNOISE324. Such method infers the biological sequences in the 

sample prior to the introduction of amplification and sequencing errors, and distinguishes sequence 

variants differing by as little as one nucleotide25. The analysis allowed the identification of 3968 

ASVs. ASVs were identified using the RDP database. Taxonomic prediction was performed using 

the nbc_tax function26, an implementation of the RDP Naive Bayesian Classifier algorithm27. 

Alpha diversity indexes were calculated using QIIME28 on the rarefied ASV table. Rarefaction was 

performed using Mothur 1.32.129 by randomly selecting 40 612 sequences for all samples, except 

two (103: 24 133 sequences and 507: 16 814 sequences). 
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16S rRNA gene sequencing - biostatistics 

Unrarefied data were filtered to select for a minimum abundance of 0.01% and a minimal 

prevalence of 25% in one group. Principal component analysis (PCA) was performed on CLR-

transformed data30 using the pca function in the mixOmics R package31. The CLR transformation 

consists in a centered log ratio transformation and allows transforming compositional data into an 

Euclidian space. A pseudo-count equal to half the minimal value found in the dataset was applied 

prior the CLR transformation32. Significantly impacted phyla, families and genera were identified 

using a Mann-Whitney U-test in R since normality was not inspected for every 

phylum/family/genus. The p-value was adjusted to control for the false discovery rate (FDR) for 

multiple testing according to the Benjamini and Hochberg (BH) procedure33. A q-value < 0.1 was 

considered significant. 

Metagenomics sequencing - data generation 

Untargeted metagenomics sequencing was performed at the Centre d’expertise et de services 

Génome Québec. Genomic DNA was quantified using the Quant-iT™ PicoGreen® dsDNA Assay 

Kit (Life Technologies). Libraries were generated from 50 ng of genomic DNA using the NEBNext 

Ultra II DNA Library Prep Kit for Illumina (New England BioLabs) as per the manufacturer’s 

recommendations. Adapters and PCR primers were purchased from IDT. Size selection of libraries 

contained the desired insert size has been performed using SparQ beads (Qiagen). Libraries were 

quantified using the Kapa Illumina GA with Revised Primers-SYBR Fast Universal kit (Kapa 

Biosystems). Average size fragment was determined using a LabChip GXII (PerkinElmer) 

instrument. 

The libraries were normalized and pooled and then denatured in 0.05 N NaOH and neutralized 

using HT1 buffer. The pool was loaded at 225 pM on an Illumina NovaSeq S4 lane using Xp 

protocol as per the manufacturer’s recommendations. The run was performed for 2x150 cycles 

(paired-end mode). A phiX library was used as a control and mixed with libraries at 1% level. Base 

calling was performed with RTA v3.4.4 . Program bcl2fastq2 v2.20 was then used to demultiplex 

samples and generate fastq reads. 

Metagenomics sequencing – bioinformatics 

Trimmomatic (version 0.39)34 was used to trim adapters and low-quality reads (average quality 

scores < 20), and only reads with the length no less than 100 bp remained for the downstream 



9 
 

analysis. Bowtie2 (version 2.3.5.1)35, with -N 1 and otherwise default options, was applied to 

remove reads classified as bacteriophage phiX174 (NCBI accession: NC_001422.1) and filter out 

human DNA reads based on the human genome reference GRCh38 . MetaPhlAn3 (version 3.0.2) 

and HUMAanN 3.0 was used to estimate the taxonomic composition and functional profiles of the 

gut microbiome, with the default settings36. Genes were then regrouped in 2373 Level-4 enzyme 

commission (EC) categories system (humann_regroup_table --groups uniref90_level4ec). Both 

genes and EC enzyme functions were normalized in cpm. The human_barplot function was used 

to explore the contribution of individual species and genera to selected functions. Raw sequences 

can be found in the SRA database (project ID: PRJNA813705).  

Metagenomics sequencing – biostatistics on taxonomical data 

Taxa were filtered to select for 320 taxa with a mean average abundance above 0.01% and a mean 

prevalence of 25% in at least one group of samples. PCA were computed from CLR-transformed 

data30 followed by Permutational Multivariate Analysis of Variance (PERMANOVA) using the 

adonis function in the vegan R package37. Different variables were tested, including AML, BMI, 

sex, muscle strength, haemoglobin and age. The PERMANOVA allowed to evaluate the 

explanatory power of each factor individually. Significantly affected taxa were identified using a 

Mann-Whitney U-test with BH correction. A q-value < 0.1 was considered significant.  

As multiple differential abundance methods help to ensure robust biological interpretation38, we 

also used alternative differential abundance methods, namely a Mann-Whitney U-test with BH 

correction applied on CLR-transformed data and ALDEx239. The R scripts used to perform 

differential abundance analyses are available on GitHub at the following address: 

https://github.com/laurebindels/MicroAML. Similar results were found using these methods. A list 

of bacteria of putative interest was gathered for data integration with metabolomics datasets as well 

as clinical and biochemical data, by selecting bacterial taxa present in the top 20 of each approach. 

When parent taxa were present in this list and identical/highly similar in terms of abundance values, 

the lowest taxonomical level was conserved. This approach allowed the selection of a list of 21 

taxa referred in the manuscript as “top altered bacteria” and are presented in Table S2. 

Bacterial features were estimated as previously described40. For each sample, the cumulative 

relative abundance of taxa that were associated with an obligate anaerobic metabolism or an oral 

habitat was determined. The level of oral bacteria was computed based on an aggregation at the 

https://github.com/laurebindels/MicroAML
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species level and the expanded Human oral microbiome database V341. The level of obligate 

anaerobe bacteria was computed based on an aggregation at the genus level and the oxygen class 

indicated in the List of Prokaryotes according to their Aerotolerant or Obligate Anaerobic 

Metabolism (OXYTOL 1.3, Mediterranean institute of infection in Marseille). 

The Random Forest algorithm was used to model the bacterial taxonomic signature of the AML 

status. The AUC or “area under the receiver-operator curve” measures the accuracy of trained 

forests. The AUC is a widely used estimator of true positive and false positive prediction rates. For 

this analysis, outcomes were AML or no AML and the dataset, namely the relative abundance of 

taxa identified in the top altered bacteria, was randomly split in a training and a testing set with a 

ratio of 0.666 (20 patients in the training dataset and 10 patients in the testing dataset) using the 

caTools R package42. Using the randomForest43 and ROCR44 R packages, we trained 300 forests, 

containing 1001 trees each, with the training dataset, and we selected the model with the highest 

AUC. The accuracy of this model was predicted using the testing dataset. A trained forest produces 

a variable importance list based on mean decrease accuracy. For this analysis, the variable 

importance list is a list of taxa that contributed most to the correct group assignment of every 

sample and is presented in Figure S5.  

Metagenomics sequencing – biostatistics on functional data 

Functions were filtered to select for 1465 functions with a mean average abundance above 1 and a 

mean prevalence of 25% in at least one group of samples. PCA were computed from CLR-

transformed data30 followed by PERMANOVA using the adonis function in the vegan R package37. 

Twenty-two significantly affected functions were identified using MaAsLin236 (LM method, LOG 

transformation, no normalization). Model validation was achieved for the top 5 functions by visual 

inspection of the plot of the residuals against the fitted values. The LM method was preferred to 

the CPLM method based on the distribution of the residues of the models for these top 5 significant 

features. A q-value < 0.1 was considered significant. 

The Random Forest algorithm was used to model the bacterial functional signature of the AML 

status. For this analysis, outcomes were AML or no AML and the dataset, namely the relative 

abundance of altered bacterial functions, was randomly split in a training and a testing set with a 

ratio of 0.666 (20 patients in the training dataset and 10 patients in the testing dataset) using the 

caTools R package42. Using the randomForest43 and ROCR44 R packages, we trained 300 forests, 
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containing 1001 trees each, with the training dataset, and we selected the model with the highest 

AUC. The accuracy of this model was predicted using the testing dataset. A trained forest produces 

a variable importance list based on mean decrease accuracy. For this analysis, the variable 

importance list is a list of that contributed most to the correct group assignment of every sample 

and is presented in Figure S5.  

 

1H-NMR Metabolomics analyses  

Sample preparation 

Faecal samples were prepared as follow: 200 mg of faeces were diluted into 1000 μl NMR  buffer 

(H2O–D2O (1:1), pH = 7 (NaHPO4-NaH2PO4 0.2 M),  trimethylsilylpropanoic acid (TSP) 1 mM as 

standard) and homogenised in a TissueLyser (4 min, 25 Hz). The homogenate was centrifuged (10 

min 13 000 g 4°C). The supernatant was then transferred into a 1.5 ml Eppendorf tube for a second 

centrifugation (3 min 13 000 g 4°C). This last supernatant was transferred into 5 mm diameter 

NMR tubes. 

Plasma samples (Heparin tubes) were prepared as follow: AMICON ultra 0.5 ml – 10 kDa filters 

tubes were rinsed 5 times with 500 µl of distilled water followed by centrifugation (15 min 14 000 

g 4°C). 500 µl of plasma were then filtered (30 min 14 000 g 4°C) followed by 250 µl of phosphate 

buffer (30 min 14 000 g 4°C) (H2O–D2O (1:9), pH = 7 (NaHPO4-NaH2PO4 0.2 M). 150 µl of 

phosphate buffer (D2O, pH = 7 (NaHPO4-NaH2PO4 0.2 M), TSP 4 mM as standard) were directly 

added to the filtrate. After mixing (5 s vortex) 600 µl were transferred into 5 mm NMR tubes. 

Urine samples were prepared as follow: urine samples were thawed overnight at 4°C, mixed (5 s 

vortex) and centrifuged (5 min 3 500 g 4°C). 630 µl of the supernatant were then mixed (5 s vortex) 

with 70 µl of NMR buffer (D2O, pH = 7.1 (KHPO4-K2HPO4 1.5 M), TSP 2.9 mM, NaN3 0.2%) 

and then centrifuged (5 min 3 500 g 4°C). 600 µl were transferred into 5 mm NMR tubes. pH was 

measured to check that all samples ranged between 6.8 and 7.1. 

Note that samples were randomly allocated to four groups that were analysed on four consecutive 

days, so that each sample spectrum was acquired within 12 hours of its preparation. Quality controls 

were included in each set of samples (one per day) to ensure the reproducibility and homogeneity 

of the obtained data. For faeces and plasma analyses, quality controls consisted in extra aliquots of 
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faces/plasma of a volunteer. For urine analyses, quality controls consisted in an aliquot of a pool 

(four different individuals) of AML and CT urine extra samples.  

Data collection 

NMR data were acquired on a Bruker Avance 600 MHz NMR spectrometer equipped with a 

cryoprobe. During acquisition, sample temperature was maintained at 300 K. Spectra were 

collected with a 1D NOESY pulse sequence for the plasma and urine samples and with a 1D CPMG 

pulse sequence for faecal samples. The 1D NOESY pulse sequence covered 21 ppm. Spectra were 

digitized in 65K data points during a 2.6 s acquisition time. The mixing time was set to 10 ms, and 

the relaxation delay between scans was set to 4 s. The 1D CPMG pulse sequence covered 20 ppm. 

Spectra were digitized in 65K data points during a 2.7 s acquisition time. The relaxation delay 

between scans was set to 4 s. Spectra were acquired using 128 scans for faecal and urine samples 

and 256 scans for plasma samples. To confirm metabolite identification, 2D 1H-1H NMR spectra, 

such as J-RES and TOCSY, as well as 1H-13C HSQC, were acquired for selected samples. 

Data processing 

The data were processed using MestReNova (v14.2). The spectra were zero filled with a factor of 

two. They were submitted to apodization using a 0.3 Hz decaying exponential function and fast 

Fourier transformed. Automated phase correction and second-order polynomial baseline correction 

were applied to all samples. All spectra were aligned on TSP. Spectral quality control was 

performed and some spectra were re-run. After re-run, all spectra passed the quality control and 

were included in further analyses. Only the region from 0.12 to 10 ppm was conserved. Water 

signal was removed from all spectra before statistical analyses. Considering the contaminations 

due to the filtering step, regions 3.36-3.37, 3.55-3.58 and 3.64-3.68 ppm were excluded from the 

analyses for plasma samples. Probabilistic quotient normalisation was performed. Intelligent 

bucketing was realised using the Matlab software (v9.2)45. Metabolites were assigned using the 

Chenomx NMR Suite (v8.43), the Bruker B-BIOREFCODE database (Amix software v3.9.15), 

the HMDB46 and additional 2D NMR experiments on selected representative samples. The 

Chenomx NMR Suite was used to perform a relative quantification of the identified metabolite 

concentrations. TSP was used as a chemical shift and quantification reference for all spectra. 

Quantitative fitting of each spectrum was carried out in batch mode, followed by manual 

adjustment.  
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Statistical analyses 

The tables of metabolite concentrations for each compartment were analysed in R. When missing 

data did not exceed 40% in both groups (CT and AML), a left-censored missing data imputation 

method was applied using the impute.QRILC function implemented in the imputeLCMD R 

package47. This was possible for all metabolites presented in this paper except for 3-

phenylpropionate and maleate. For these two metabolites, no imputation was performed and the 

difference between both groups was tested by a Fisher's Exact Test in R. Significantly affected 

metabolites were identified by a Mann–Whitney U test since normality was not tested for each 

metabolite. The p-value was adjusted to control for the FDR. Q-values inferior to 0.1 were kept. 

The bubbleplot was generated using an in-house script including the tidyverse R package48. PCA 

with scaling to unit variance and partial least square discriminant analysis (PLS-DA) were 

respectively performed using the functions pca and plsda of the mixOmics R package31.  

Statistical analyses  

General statistical overview 

Normality was assessed using d’Agostino and Pearson omnibus normality test. If normality was 

not respected in one group, the nonparametric Mann–Whitney U test was used. Fisher’s exact test 

was used to check for variance equality between groups. Student’s t-test was used when variances 

were not statistically different. In case of variance inequality, Welch’s t-test was used. Coherently, 

normal variables are presented as mean with standard deviation (SD) whereas non-normal variables 

are presented as median with interquartile range (IQR). P < 0.05 was considered statistically 

significant. For all -omics data, normality was not assessed and Mann-Whitney U-tests were 

therefore used. When needed, a correction for FDR was applied33. In this case, a q-value < 0.1 was 

considered significant. Statistical analyses were performed using GraphPad Prism 8.0 and R.  

Integration analyses 

Correlations between the top altered bacteria and (i) faecal, blood and urine metabolites and (ii) 

clinical, dietary, inflammatory, and metabolic parameters were performed in R using Spearman 

correlations. When adjusting for potential covariates such as age, partial Spearman rank-based 

correlations were computed using the pcor function (http://www.yilab.gatech.edu/pcor). FDR 

correction was applied. Metabolites/parameters with at least one correlation with one of the bacteria 

with a p-value < 0.05 were kept for inclusion in the heatmap. P-value < 0.05 were marked with a 

http://www.yilab.gatech.edu/pcor
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‘+’ and q-value < 0.1 were marked with a ‘*’. The same method was applied for the correlations 

between the top bacterial functions and faecal, blood and urine metabolites.  
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Supplementary Results and Discussion  

AML patients with hyperinsulinemia or hyperglycaemia display specific GM alterations 

When looking at the glycaemia, insulin and HOMA-IR2 results presented in Figure 2C, it appears 

that some AML patients present much higher level of these parameters compared to the rest of the 

cohort. The four patients that are very different to the rest of the AML group for insulin levels and 

HOMA-IR2 are the same. Among those four patients, only one of them has also a higher glycaemia 

than the rest of the patients. The other two patients that have higher glycaemia levels do not have 

insulin levels and HOMA-IR2 that differ from the rest of the AML group.  

  

The analysis of the microbiota stratifying the individuals by insulinemia and glycaemia were 

performed separately. Individuals were stratified in three groups, namely CT_low, AML_low and 

AML_high.  For the analysis stratifying by insulinemia, the four patients with higher insulin levels 

than the rest of the cohort were allocated to the AML_high group, the rest of the AML patients 

were allocated to the AML_low group and the healthy individuals were included in the CT_low 

group. For the analysis stratifying by glycaemia, the three patients with high glycaemia levels 

(defined as glycaemia above 120mg/dl) were included in the AML_high group, the rest of the AML 

patients were allocated to the AML_low group and the healthy individuals were included in the 

CT_low group.  

  

PCA at the species level stratified by insulinemia did not show a clear clustering of the AML_high 

group (new Figure S7A) since all three groups were superimposed. Moreover, insulinemia class 

did not explain a significant part of the variance in the dataset according to the PERMANOVA 

analysis. Interestingly, four species were significantly different between individuals with low 

versus high insulin levels (p-value < 0.05, q-value ns) (Figure S7B). Phascolarctobacterium 

faecium, Bacteroides caccae and Bacteroides fragilis were more abundant in the AML_high group 

whereas Eubacterium eligens was decreased in AML_high individuals. Similarly, PCA at the 

species level stratified by glycaemia did not show a clear clustering of the AML_high group (Figure 

S8A) and the PERMANOVA analysis was not significant either. However, six species were 

significantly different between individuals with low versus high glycaemia (p-value < 0.05, q-value 

ns) (Figure S8B). Intestinibacter bartlettii, Bacteroides ovatus and Fusicatenibacter 
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saccharivorans were decreased in the AML_high group whereas Clostridium sp CAG 242, 

Firmicutes bacterium CAG 94 and Streptococcus oralis were decreased in those same individuals 

compared to the rest of the cohort. 

 

Different databases, namely Disbiome49, gutMDisorder50, and Pubmed, were screened to 

investigate whether these bacteria of interest were previously associated with diseases or 

syndromes characterized by high blood levels of insulin and glucose, such as type I and II diabetes, 

obesity and metabolic syndrome. A compilation of the results is presented in Table S5. 

 

The increase of Phascolarctobacterium faecium, Bacteroides caccae and Streptococcus oralis 

found in the AML_high group is in line with its increased abundance in individuals with type I or 

II diabetes. In the same manner, the decrease of Eubacterium eligens and Intestinibacter bartlettii 

is in accordance with its decreased abundance in individuals with type I diabetes among other 

diseases. Interestingly, Intestinibacter bartlettii was found to be correlated with markers for insulin 

resistance in 53 postmenopausal women with obesity51. In contrast, the increase of Bacteroides 

fragilis and Bacteroides ovatus observed in the AML_high group is in line with the results found 

in some studies but not others. Bacteroides fragilis was found to be increased in children with type 

I diabetes in one study52 and in children with obesity in another study53. However, Bacteroides 

fragilis was also found to be decreased in a study with children with type I diabetes54. The results 

found concerning Bacteroides ovatus were also contradictory. In our study, Bacteroides ovatus was 

significantly decreased in AML patients with higher glycaemia levels, such as in children with 

obesity55. However, B. ovatus was increased in two studies of children with type I diabetes52, 54. 

Unfortunately, no information was found concerning the abundance of Fusicatenibacter 

saccharivorans, Clostridium sp CAG 242 and Firmicutes bacterium CAG 94 in diseases and 

syndromes characterized by high insulinemia and glycaemia.  

  

To conclude, although the results presented above should be interpreted with caution given the 

very limited number of patients in the AML patients with high insulinemia/glycaemia, hence the 

lack of significance after correction for multiple testing, the bacterial species that vary significantly 

appear to be consistent with the information present in the literature.  
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Blood glutamine levels correlate with skeletal muscle mass and function 

The plasma metabolomic signature of AML patients revealed signs of purine nucleotide 

metabolism deficiency and metabolic stress (e.g., increased hypoxanthine, reduction in TCA cycle 

intermediates, decreased glutamine alongside increased glutamate). Whether this stress may 

contribute to muscle alterations was explored through an additional set of correlations (Figure S22). 

Among these metabolites, only glutamine significantly correlated with lean mass, lean weight, and 

muscle strength (Figure S22). This correlation could reflect a deleterious impact of glutamine 

depletion driven by AML cells on the muscle as the skeletal muscle is the main storage site and 

endogenous source for glutamine. 

 

Additional discussion on the potential of FMT in AML treatment and cachexia 

Patients with AML usually receive induction chemotherapy coupled with antibiotic treatment. 

Those patients experience an alteration of the gut microbiota56, 57 that remains after the end of the 

treatment58, 59.  

 

Fecal microbiota transplant represents an actionable measure to counteract the effect of treatment 

on the microbiota and cachexia. As stated in the introduction, Malard and colleagues60 investigated 

the safety and diversity-enhancing ability of autologous fecal microbiota transfer (FMT) in patients 

with AML receiving intensive chemotherapy and antibiotics. Fecal material collected at the time 

of diagnosis was used for fecal microbiota transfer. This transfer appeared to be safe and could 

restore microbial richness and diversity based on α-diversity indices. However, autologous FMT 

with an intact microbiota is not always possible since patients have often already received antibiotic 

treatment by the time of diagnosis. Third-party FMT are thus an alternative. A randomized double-

blind placebo-controlled trial on allogeneic hematopoietic cell transplantation recipients and 

patients with AML evaluated the ability of third-party oral FMT to decrease infection rates61. 

Third-party FMT did not reduce infection rates but was safe and ameliorated intestinal dysbiosis 

by restoring α-diversity index (and even exceeding baseline values), by restoring commensal 

bacteria (such as Collinsella) and by reducing the abundance of pathobionts (such as Enterococcus 

and Dialister). Therefore, both autologous and third-party FMT seem to be safe for AML patients 

undergoing chemotherapy. In this context, even when a fecal collection at diagnosis before any 
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antibiotics consumption is possible, the microbial quality of such sample that would be used for 

autologous FMT remains questionable. Indeed, our work reveals important alterations in the gut 

microbiota composition and function of AML patients already at diagnosis, which can be linked to 

metabolic and inflammatory dysregulations in those patients. Our findings call therefore for caution 

when using autologous fecal material transfer during the therapeutic care of AML patients and goes 

in favor of heterologous transfer to increase the gut microbiota diversity and richness in these 

patients.  

 

To our knowledge, no study has been made on FMT and cachexia in AML patients. De Clercq and 

colleagues62 performed a double-blind randomized placebo-controlled trial on 24 cachectic patients 

with metastatic HER2-negative gastroesophageal cancer which received autologous FMT or third-

party FMT from a healthy obese donor. Allogenic FMT did not improve any of the cachexia 

outcomes (such as satiety and caloric intake) but increased disease control rate and showed a 

tendency of increased overall survival median and progression-free survival. Further research 

evaluating the impact of FMT on cachexia and its efficacy to tackle it has still to be performed. 
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Figure S1. AML patients do not display transit alterations compared to CT subjects.
A) CTCAE constipation scores. B) CTCAE diarrhea scores. C) Bristol stool scale (BSS) scores for 12 matched
AML and CT subjects. AML in orange vs. CT in grey.
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Figure S2. Alterations in the gut microbiota composition in CT subjects and AML patients (results of 16S
rRNA gene sequencing).
A) Principal component analysis (PCA) at the genus level. PERMANOVA: R2 = 2.7% * B) Total bacteria levels
measured by qPCR. C) α-diversity indexes. Indexes that are normally distributed are expressed as mean
(standard deviation) and are tested using a Student t-test or a Welch’s t test. Indexes that are non-normally
distributed are expressed as median (interquartile range) and are tested by a Mann-Whitney U-test. D)
Significant changes at the lowest taxa level. Mann-Whitney U-tests with an FDR correction were applied. All
q-values < 0.1. n = 30. AML in orange vs. CT in grey. *: p-value < 0.05
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Figure S3. Alterations in the gut microbiota composition in CT subjects and AML patients (results of
metagenomics sequencing).
A) Principal component analysis (PCA) at the species level. PERMANOVA: R² = 3.2% **. B) Contribution of
disease, BMI, muscle strength, hemoglobin, age and sex to the variance in the PCA at the species level
(PERMANOVA results). **p-value < 0.01; *p-value < 0.05
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Figure S3. Bacterial contribution, per genera and per species, to the bacterial functions determined 

by metagenomics, that are significantly changed between CT (c) and AML (l). The relative abundance 

of each function is presented in Fig 1. Cpm, count per million. Plots were drawn using the 

human_barplot function in HUMAnN 3.00. 
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Figure S5. Bacterial taxa and functional signatures identified in AML patients.
A) RandomForest model ROC curve based on the top altered bacteria to predict AML status.
B) RandomForest model ROC curve based on altered EC enzyme functions to predict AML status.
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Figure S6. Confirmation of hemoglobin and white blood cell count alteration in AML patients.
Hemoglobin and WBCC (white blood cell count).
Variables are non-normally distributed and are expressed as median (interquartile range) and are tested by
a Mann-Whitney U-test. AML in orange vs. CT in grey.
*** : p-value < 0.001



Figure S7. Alterations in the gut microbiota composition in AML patients with high insulinemia (results of
metagenomics sequencing).
A) PCA analyses on CLR-transformed data at the species level, stratified by insulinemia and disease (CT
low/AML low/ AML high). Insulinemia class does not explain a significant part of the variance in the dataset
(PERMANOVA ns). B) 4 species were significantly different between individuals with low versus high
insulinemia levels (pvalue<0.05, qvalue ns).
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Figure S8. Alterations in the gut microbiota composition in AML patients with high glycaemia (results of
metagenomics sequencing).
A) PCA analyses on CLR-transformed data at the species level, stratified by glycaemia and disease (CT
low/AML low/ AML high). Glycaemia class does not explain a significant part of the variance in the dataset
(PERMANOVA ns). B) 6 species were significantly different between individuals with low versus high
glycemia levels (pvalue<0.05, qvalue ns).
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Figure S9. Multivariate analyses on faecal, blood and urine metabolites pinpoint differences between
AML and CT subjects.
Principal component analyses (PCA), partial least square discriminant analyses (PLS-DA) and first 25
loadings of the PLS-DA for faecal (A-C), blood (D-F) and urine (G-I) metabolites (first principal component).
A) PERMANOVA: R2 = 0.2% ns. D) PERMANOVA: R2 = 11.2% ** G) PERMANOVA R2 = 2.9% *. AML in orange
vs. CT in grey. *p-value < 0.05; **p-value < 0.01.
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Figure S10. Correlations between urine metabolites and the top altered bacteria.
Spearman correlations. Metabolites with at least one correlation with an altered taxon are present.
Microbial taxa are ordered by fold change. ‘+’ symbolizes a p-value < 0.05 and ‘*’ symbolizes an FDR-
corrected q-value < 0.1.
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Figure S11. Correlations between blood, faecal and urine metabolites and the top altered bacteria.
Spearman correlations (left) and partial Spearman rank-based correlations (pSRBC) adjusted for age (right)
for the whole cohort (AML group and CT group). Metabolites with at least one correlation with an altered
taxon are present. ‘+’ symbolizes a p-value < 0.05 and ‘*’ symbolizes an FDR-corrected q-value < 0.1. A)
Correlations between blood metabolites and top altered bacteria. B) Correlations between faecal
metabolites and top altered bacteria. C) Correlations between urine metabolites and top altered bacteria.
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Figure S12. Correlations between faecal metabolites and the top altered bacteria.
Spearman correlations. All identified metabolites are present. Microbial taxa are ordered by fold change in
the whole dataset. ‘+’ symbolizes a p-value < 0.05 and ‘*’ symbolizes an FDR-corrected q-value < 0.1. A)
Spearman correlations within the whole cohort, both acute myeloid leukaemia group (AML group) and the
healthy control group (CT group). B) Spearman correlations within the acute myeloid leukaemia group (AML
group). C) Spearman correlations within the healthy control group (CT group).
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Figure S13. Correlations between blood metabolites and the top altered bacteria.
Spearman correlations. All identified metabolites are present. Microbial taxa are ordered by fold change in
the whole dataset. ‘+’ symbolizes a p-value < 0.05 and ‘*’ symbolizes an FDR-corrected q-value < 0.1. A)
Spearman correlations within the whole cohort, both acute myeloid leukaemia group (AML group) and the
healthy control group (CT group). B) Spearman correlations within the acute myeloid leukaemia group (AML
group). C) Spearman correlations within the healthy control group (CT group).
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Figure S14. Correlations between urine metabolites and the top altered bacteria.
Spearman correlations. All identified metabolites are present. Microbial taxa are ordered by fold change in
the whole dataset. ‘+’ symbolizes a p-value < 0.05 and ‘*’ symbolizes an FDR-corrected q-value < 0.1. A)
Spearman correlations within the whole cohort, both acute myeloid leukaemia group (AML group) and the
healthy control group (CT group). B) Spearman correlations within the acute myeloid leukaemia group (AML
group). C) Spearman correlations within the healthy control group (CT group).
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Figure S15. Correlations between blood and faecal metabolites and altered EC enzyme functions. 
Spearman correlations. Metabolites with at least one correlation with an EC enzyme function are present. 
Microbial functions are ordered by fold change. ‘+’ symbolizes a p-value < 0.05 and ‘*’ symbolizes an FDR-
corrected q-value < 0.1.   
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Figure S16. Correlations between urine metabolites and altered EC enzyme functions.
Spearman correlations. Metabolites with at least one correlation with an EC enzyme function are present.
Microbial functions are ordered by fold change. ‘+’ symbolizes a p-value < 0.05 and ‘*’ symbolizes an FDR-
corrected q-value < 0.1.
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Figure S17. Correlations between clinical, dietary, inflammatory and metabolic parameters and the top
altered bacteria in AML patients exclusively.
Spearman correlations. Microbial taxa are ordered by fold change. ‘+’ symbolizes a p-value < 0.05 and ‘*’
symbolizes an FDR-corrected q-value < 0.1. Parameters with at least one correlation with an altered taxon
are present. BMI: body mass index; WBCC: white blood cell count; mGPS: modified Glasgow prognostic
score; HOMA-IR2: second homeostatic model assessment for insulin resistance; IL8: interleukin-8; IL10:
interleukin-10; MCP1: monocyte chemoattractant protein 1; TNFα: tumor necrosis factor alpha-1; TGFβ1:
transforming growth factor beta-1; GDF15: growth differentiation factor 15.

Increased in AMLDecreased in AML

Cl
in

ic
al

 p
ar

am
et

er
s

In
fla

m
m

at
or

y 
an

d 
m

et
ab

ol
ic

 
pa

ra
m

et
er

s
D

ie
ta

ry
 p

ar
am

et
er

s



Figure S18. Correlations between clinical, dietary, inflammatory and metabolic parameters and altered EC
enzyme functions in CT subjects and AML patients.
Spearman correlations. Microbial functions are ordered by fold change. ‘+’ symbolizes a p-value < 0.05 and
‘*’ symbolizes an FDR-corrected q-value < 0.1. Parameters with at least one correlation with an altered
taxon are present. BMI: body mass index; WBCC: white blood cell count; appetite (SNAQ score); CRP: C-
reactive protein; mGPS: modified Glasgow prognostic score; HOMA-IR2: second homeostatic model
assessment for insulin resistance; IL6: interleukin-6; IL8: interleukin-8; IL10: interleukin-10; MCP1:
monocyte chemoattractant protein 1; TNFα: tumor necrosis factor alpha-1; TGFβ1: transforming growth
factor beta-1; GDF15: growth differentiation factor 15; FGF21: fibroblast growth factor 21; LBP:
lipopolysaccharide binding protein.
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Figure S19. Correlations between clinical, dietary, inflammatory and metabolic parameters and altered
EC enzyme functions in AML patients exclusively.
Spearman correlations. Microbial functions are ordered by fold change. ‘+’ symbolizes a p-value < 0.05 and
‘*’ symbolizes an FDR-corrected q-value < 0.1. Parameters with at least one correlation with an altered
taxon are present. WBCC: white blood cell count; CRP: C-reactive protein; IL6: interleukin-6; IL10:
interleukin-10; MCP1: monocyte chemoattractant protein 1; TNFα: tumor necrosis factor alpha-1; TGFβ1:
transforming growth factor beta-1; GDF15: growth differentiation factor 15; FGF21: fibroblast growth factor
21.
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Adjusted for age

Figure S20. Correlations between clinical, dietary, inflammatory and metabolic parameters and the top
altered bacteria. Spearman correlations (left) and partial Spearman rank-based correlations (pSRBC)
adjusted for age (right) for the whole cohort (AML group and CT group). Metabolites with at least one
correlation with an altered taxon are present. ‘+’ symbolizes a p-value < 0.05 and ‘*’ symbolizes an FDR-
corrected q-value < 0.1.
BMI: body mass index; WBCC: white blood cell count; appetite (SNAQ score); CRP: C-reactive protein;
mGPS: modified Glasgow prognostic score; HOMA-IR2: second homeostatic model assessment for insulin
resistance; IL6: interleukin-6; IL8: interleukin-8; IL10: interleukin-10; MCP1: monocyte chemoattractant
protein 1; TNFα: tumor necrosis factor alpha-1; TGFβ1: transforming growth factor beta-1; GDF15: growth
differentiation factor 15; FGF21: fibroblast growth factor 21; LBP: lipopolysaccharide binding protein.



Figure S21. Enterobacteriaceae family levels are not different in AML patients compared to CT subjects.
A) Results obtained using shotgun metagenomics. B) Results obtained using 16S rRNA gene sequencing.
Mann-Whitney U-tests with an FDR correction were applied. AML in orange vs. CT in grey.
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Adjusted for age

Figure S22. Correlations between lean mass, lean weight, muscle strength and significantly changed
metabolites between AML and CT individuals involved in purine nucleotide metabolism and intense
metabolic stress.
Spearman correlations (left) and partial Spearman rank-based correlations (pSRBC) adjusted for age (right).
‘+’ symbolizes a p-value < 0.05 and ‘*’ symbolizes an FDR-corrected q-value < 0.1.



Table S1. Drugs and Food Supplements.
Drugs are grouped by category according to the Belgian classification (CBIP: Centre Belge
d’Information Pharmacothérapeutique). Only drug categories taken regularly by more than 3
patients in the whole cohort are listed. Less than 3 patients report to take supplementation of
amino acids, plants and probiotics. Significance was tested using Fisher’s exact test.

NB: Anti-Bacterial agents were taken by 2 CT subjects and 1 AML patient between day -30 and 
day -90 before inclusion. 



Table S2. Top altered bacteria in AML patients.
Top 21 bacteria selected based on top bacteria from untargeted metagenomics analyses. Bacteria were
selected based on p-values from Mann-Whitney U-test on raw data (MW), Mann-Whitney U-test on
centered log-ratio data (MW-CLR), and ALDEx2. Results of targeted metagenomics (16S rRNA gene
sequencing, Mann-Whitney U-test, MW) are also mentioned (p-value). IQR: interquartile range.

MW-CLR ALDEx2
CT AML CT AML p-value q-value p-value p-value p-value q-value

s__Parvimonas_micra 0.000 0.000 0.000 0.001 0.000 0.067 0.004 0.395 ND ND
s__Eubacterium_eligens 1.363 0.364 2.370 1.276 0.001 0.074 0.000 0.000 ND ND
g__Parabacteroides 1.235 2.137 1.011 1.716 0.002 0.075 0.061 0.020 0.006 0.112
g__Actinomyces 0.022 0.052 0.028 0.099 0.003 0.076 0.001 0.009 0.001 0.046
g__Blautia 1.918 3.144 1.602 1.772 0.004 0.094 0.063 0.032 0.723 0.952
s__Streptococcus_oralis 0.000 0.006 0.002 0.018 0.005 0.106 0.012 0.104 ND ND
s__Clostridium_spiroforme 0.000 0.008 0.003 0.085 0.005 0.106 0.007 0.045 ND ND
g__Prevotella 3.388 0.224 19.569 2.856 0.006 0.109 0.005 0.007 0.004 0.100
g__Coprococcus 2.371 1.223 2.598 1.796 0.006 0.109 0.000 0.001 0.001 0.046
s__Prevotella_copri 0.030 0.000 10.689 0.011 0.008 0.131 0.024 0.027 ND ND
s__Parabacteroides_merdae 0.340 0.700 0.659 0.937 0.010 0.163 0.010 0.011 ND ND
s__Eubacterium_hallii 1.461 0.955 1.295 1.387 0.015 0.186 0.013 0.011 ND ND
g__Lachnoclostridium 0.010 0.090 0.055 0.215 0.016 0.186 0.051 0.020 ND ND
f__Sutterellaceae 0.059 0.020 0.530 0.114 0.016 0.186 0.004 0.013 0.030 0.236
g__Eubacterium 6.290 4.124 6.168 2.901 0.019 0.201 0.027 0.032 ND ND
s__.Collinsella._massiliensis 0.000 0.005 0.001 0.041 0.019 0.201 0.008 0.069 ND ND
g__Erysipelatoclostridium 0.013 0.105 0.046 0.357 0.021 0.206 0.032 0.035 ND ND
g__Enorma 0.000 0.016 0.002 0.056 0.028 0.227 0.010 0.089 ND ND
s__Ruminococcus_bicirculans 0.416 0.041 1.780 0.392 0.033 0.227 0.026 0.034 ND ND
s__Bilophila_wadsworthia 0.053 0.024 0.071 0.064 0.036 0.227 0.007 0.056 ND ND
o__Burkholderiales 0.059 0.031 0.534 0.144 0.064 0.301 0.014 0.042 0.011 0.134

Shotgun metagenomics 16S rRNA gene sequencing
Median IQR MW MW 



EC function Full name Abbreviated name 
EC 1.14.13.39 Nitric-oxide synthase (NADPH) Nitric oxide synthase 
EC 1.7.7.1 Ferredoxin-nitrite reductase Ferredoxin nitrite reductase 
EC 6.1.1.13 D-alanine-poly(phosphoribitol) ligase D-alanine-activating enzyme 
EC 6.3.2.13 UDP-N-acetylmuramoyl-L-alanyl-D-glutamate-2,6-

diaminopimelate ligase  
UDP-MurNAc-tripeptide 
synthetase 

EC 3.5.1.18 Succinyl-diaminopimelate desuccinylase SDAP desuccinylase 
EC 3.6.4.13 RNA helicase  RNA helicase 
EC 4.2.1.30 Glycerol dehydratase Glycerol dehydratase 
EC 1.1.1.49 Glucose-6-phosphate dehydrogenase (NADP+) G6P dehydrogenase 
EC 3.1.1.31 6-Phosphogluconolactonase 6-Phosphogluconolactonase 
EC 1.1.1.44 Phosphogluconate dehydrogenase (NADP 

dependent, decarboxylating) 
6-Phosphogluconate 
dehydrogenase 

EC 1.3.98.1 Dihydroorotate dehydrogenase (fumarate) Dihydroorotate dehydrogenase 
EC 1.16.1.1 Mercury(II) reductase Mercury(II) reductase 
EC 2.7.8.6 Undecaprenyl-phosphate galactose 

phosphotransferase 
WbaP (phosphotransferase) 

EC 1.6.99.3 NADH dehydrogenase NADH dehydrogenase 
EC 4.6.1.1 Adenylate cyclase Adenylate cyclase 
EC 3.4.14.5 Dipeptidyl-peptidase IV Dipeptidyl-peptidase IV 
EC 2.7.7.63 Lipoate protein ligase Lipoate protein ligase 
EC 3.5.4.32 8-Oxoguanine deaminase 8-Oxoguanine deaminase 
EC 1.4.99.5 Glycine dehydrogenase (cyanide-forming)  Glycine dehydrogenase 
EC 1.12.1.3 Hydrogen dehydrogenase (NADP+) Hydrogen dehydrogenase 

(NADP+) 
EC 1.17.5.2 Caffeine dehydrogenase Caffeine dehydrogenase 
EC 2.3.1.189 Mycothiol synthase Mycothiol synthase 

 

Table S3. List of the 22 EC enzyme functions altered in AML patients compared to CT, as assessed using
MaAsLin2.
For sake of clarity, abbreviated names are used throughout the paper. Correspondence between EC
nomenclature, full function names and abbreviated names are included here.



Table S4. Median, interquartile range (IQR), p-value of Mann-Whitney U-test and q-value after false 
discovery rate correction for all metabolites in the three compartments. Imputation was not performed on 
maleate and 3-phenylpropionate due to more than 40% missing values in one group. For those metabolites, 
the differences between CT and AML was tested using a Fisher test. No q-value is therefore reported for 
those metabolites.
Metabolite

CT AML CT AML p-value q-value CT AML CT AML p-value q-value CT AML CT AML p-value q-value
Acetate 20.995 17.499 10.738 12.570 0.485 0.635 0.033 0.024 0.015 0.019 0.010 0.053 NA NA NA NA NA NA
Acetoacetate NA NA NA NA NA NA 0.020 0.021 0.024 0.023 0.294 0.438 0.185 0.241 0.195 0.536 0.449 0.625
Acetone 0.030 0.024 0.022 0.027 0.888 0.888 0.008 0.011 0.004 0.013 0.240 0.382 0.112 0.116 0.047 0.130 0.663 0.772
Alanine 0.273 0.192 0.130 0.166 0.181 0.382 0.258 0.208 0.076 0.094 0.010 0.053 0.929 0.822 0.965 0.961 0.467 0.636
Allantoin NA NA NA NA NA NA NA NA NA NA NA NA 0.400 0.369 0.339 0.383 0.631 0.772
Arabinose NA NA NA NA NA NA NA NA NA NA NA NA 1.147 1.230 0.869 1.107 0.260 0.545
Arginine NA NA NA NA NA NA 0.051 0.042 0.018 0.020 0.171 0.307 NA NA NA NA NA NA
Ascorbate NA NA NA NA NA NA 0.035 0.011 0.013 0.022 0.000 0.000 NA NA NA NA NA NA
Asparagine NA NA NA NA NA NA 0.029 0.024 0.004 0.012 0.029 0.089 NA NA NA NA NA NA
Aspartate 0.321 0.268 0.164 0.178 0.644 0.730 NA NA NA NA NA NA NA NA NA NA NA NA
Betaine NA NA NA NA NA NA 0.023 0.024 0.011 0.012 1.000 1.000 0.283 0.400 0.484 0.589 0.209 0.545
Butyrate 4.785 3.568 2.982 3.237 0.374 0.578 NA NA NA NA NA NA NA NA NA NA NA NA
Carnitine NA NA NA NA NA NA 0.027 0.025 0.008 0.012 0.395 0.507 0.138 0.477 0.491 0.656 0.003 0.069
Choline NA NA NA NA NA NA 0.005 0.005 0.002 0.003 0.668 0.730 0.165 0.210 0.138 0.168 0.301 0.545
cis-Aconitate NA NA NA NA NA NA NA NA NA NA NA NA 1.003 0.986 0.853 0.781 0.676 0.772
Citrate NA NA NA NA NA NA NA NA NA NA NA NA 11.271 10.451 9.905 10.020 0.423 0.616
Citrulline NA NA NA NA NA NA 0.020 0.016 0.008 0.006 0.019 0.073 NA NA NA NA NA NA
Creatine NA NA NA NA NA NA 0.017 0.018 0.012 0.017 0.464 0.571 0.647 0.269 1.829 0.519 0.248 0.545
Creatine phosphate NA NA NA NA NA NA NA NA NA NA NA NA 0.329 0.284 0.405 0.324 0.242 0.545
Creatinine NA NA NA NA NA NA 0.055 0.051 0.014 0.014 0.188 0.327 48.632 46.992 37.005 46.704 0.562 0.705
Cystine NA NA NA NA NA NA 0.044 0.031 0.017 0.028 0.044 0.117 NA NA NA NA NA NA
Dimethylglycine 0.005 0.004 0.005 0.013 0.183 0.382 0.002 0.002 0.001 0.001 0.141 0.267 0.206 0.196 0.146 0.232 0.654 0.772
Dimethyl sulfone NA NA NA NA NA NA 0.007 0.006 0.004 0.004 0.109 0.229 NA NA NA NA NA NA
Dimethylamine NA NA NA NA NA NA 0.001 0.001 0.000 0.001 0.027 0.088 2.409 2.207 1.556 3.111 0.350 0.596
Ethanol 0.146 0.032 0.081 0.094 0.011 0.098 0.002 0.003 0.001 0.004 0.006 0.038 NA NA NA NA NA NA
Ethanolamine NA NA NA NA NA NA NA NA NA NA NA NA 1.613 1.755 1.532 1.815 0.485 0.647
Formate 0.006 0.002 0.008 0.005 0.040 0.162 0.009 0.014 0.004 0.007 0.000 0.000 1.037 1.633 0.871 1.608 0.004 0.069
Fucose NA NA NA NA NA NA NA NA NA NA NA NA 0.578 0.622 0.540 0.547 0.382 0.596
Fumarate 0.035 0.023 0.035 0.031 0.363 0.578 0.000 0.000 0.000 0.000 0.034 0.101 0.015 0.023 0.028 0.021 0.404 0.615
Galactose 0.131 0.053 0.077 0.076 0.002 0.023 NA NA NA NA NA NA 0.630 0.824 0.698 0.598 0.889 0.903
Glucose 0.694 0.257 0.523 0.308 0.043 0.162 4.018 4.323 0.621 1.785 0.020 0.073 1.419 1.897 1.189 1.848 0.028 0.172
Glutamate 1.451 1.039 0.574 0.911 0.542 0.658 0.015 0.032 0.011 0.013 0.000 0.000 NA NA NA NA NA NA
Glutamine 0.264 0.223 0.163 0.193 0.485 0.635 0.355 0.318 0.052 0.090 0.022 0.075 NA NA NA NA NA NA
Glycerol 0.927 0.087 1.120 0.215 0.000 0.003 NA NA NA NA NA NA NA NA NA NA NA NA
Glycine 0.134 0.090 0.072 0.060 0.072 0.230 NA NA NA NA NA NA 4.035 5.712 4.188 5.537 0.307 0.545
Hippurate NA NA NA NA NA NA NA NA NA NA NA NA 14.958 7.931 13.200 10.889 0.011 0.112
Hypoxanthine NA NA NA NA NA NA NA NA NA NA NA NA 0.144 0.269 0.208 0.380 0.004 0.069
Isobutyrate 0.829 0.728 0.566 0.920 0.213 0.382 0.000 0.000 0.000 0.000 0.056 0.136 NA NA NA NA NA NA
Isoleucine 0.097 0.060 0.081 0.063 0.228 0.388 0.044 0.041 0.014 0.019 0.249 0.386 0.051 0.063 0.036 0.065 0.041 0.172
Isopropanol 0.029 0.014 0.033 0.021 0.756 0.829 0.000 0.001 0.000 0.001 0.085 0.186 0.033 0.035 0.030 0.036 0.701 0.787
Isovalerate 0.567 0.557 0.409 0.897 0.150 0.376 NA NA NA NA NA NA 0.034 0.030 0.032 0.037 0.929 0.929
Lactate NA NA NA NA NA NA 0.761 1.108 0.380 0.425 0.000 0.003 0.301 0.318 0.292 0.258 0.423 0.616
Leucine 0.132 0.101 0.092 0.083 0.802 0.852 0.080 0.081 0.021 0.038 0.918 0.933 0.088 0.115 0.053 0.130 0.041 0.172
Lysine 0.130 0.079 0.102 0.071 0.081 0.230 0.115 0.101 0.033 0.046 0.075 0.170 0.317 0.311 0.382 0.860 0.665 0.772
Maleate NA NA NA NA NA NA NA NA NA NA NA NA 0.020 0.025 0.016 0.023 0.000 NA
Malonate 0.155 0.135 0.090 0.166 0.155 0.376 NA NA NA NA NA NA NA NA NA NA NA NA
Mannitol NA NA NA NA NA NA NA NA NA NA NA NA 1.376 2.240 2.284 3.050 0.155 0.450
Mannose NA NA NA NA NA NA 0.043 0.059 0.012 0.036 0.012 0.053 NA NA NA NA NA NA
Methanol 0.218 0.068 0.124 0.067 0.000 0.003 NA NA NA NA NA NA 0.915 0.784 1.106 0.791 0.449 0.625
Methionine 0.067 0.062 0.039 0.056 0.595 0.697 0.018 0.016 0.005 0.006 0.018 0.073 NA NA NA NA NA NA
Methylamine 0.059 0.044 0.036 0.043 0.520 0.655 NA NA NA NA NA NA NA NA NA NA NA NA
Methylguanidine NA NA NA NA NA NA NA NA NA NA NA NA 0.153 0.102 0.265 0.163 0.300 0.545
Methylsuccinate NA NA NA NA NA NA NA NA NA NA NA NA 0.040 0.055 0.049 0.068 0.176 0.490
myo-Inositol NA NA NA NA NA NA 0.021 0.020 0.008 0.009 0.379 0.507 NA NA NA NA NA NA
N-Acetylglycine NA NA NA NA NA NA 0.001 0.002 0.001 0.002 0.158 0.290 NA NA NA NA NA NA
O-Acetylcarnitine NA NA NA NA NA NA 0.005 0.005 0.002 0.004 0.351 0.487 0.074 0.107 0.073 0.113 0.146 0.446
Ornithine NA NA NA NA NA NA 0.036 0.040 0.011 0.019 0.530 0.638 NA NA NA NA NA NA
Oxypurinol NA NA NA NA NA NA NA NA NA NA NA NA 1.043 2.105 2.184 29.182 0.286 0.545
Pantothenate NA NA NA NA NA NA NA NA NA NA NA NA 0.073 0.076 0.056 0.106 0.819 0.873
Phenylacetate 0.231 0.224 0.134 0.265 0.040 0.162 NA NA NA NA NA NA NA NA NA NA NA NA
Phenylalanine 0.060 0.034 0.044 0.038 0.020 0.135 0.036 0.042 0.009 0.013 0.057 0.136 NA NA NA NA NA NA
Proline NA NA NA NA NA NA 0.130 0.109 0.060 0.039 0.198 0.334 NA NA NA NA NA NA
Propionate 5.949 4.822 3.060 3.917 0.432 0.635 NA NA NA NA NA NA NA NA NA NA NA NA
Propylene glycol NA NA NA NA NA NA 0.001 0.001 0.002 0.002 0.387 0.507 0.108 0.095 0.158 0.118 0.854 0.882
Pseudouridine NA NA NA NA NA NA NA NA NA NA NA NA 0.683 0.847 0.471 0.934 0.037 0.172
Pyroglutamate NA NA NA NA NA NA NA NA NA NA NA NA 1.088 1.239 0.610 1.083 0.382 0.596
Pyruvate NA NA NA NA NA NA 0.056 0.060 0.029 0.020 0.343 0.487 0.080 0.096 0.075 0.155 0.530 0.678
Sarcosine NA NA NA NA NA NA 0.001 0.001 0.001 0.001 0.049 0.127 NA NA NA NA NA NA
Serine NA NA NA NA NA NA 0.079 0.083 0.016 0.028 0.762 0.803 NA NA NA NA NA NA
sn-Glycero-3-phosphocholineNA NA NA NA NA NA NA NA NA NA NA NA 0.219 0.237 0.177 0.237 0.286 0.545
Succinate NA NA NA NA NA NA 0.003 0.002 0.001 0.001 0.001 0.007 NA NA NA NA NA NA
Sumiki's acid NA NA NA NA NA NA NA NA NA NA NA NA 0.058 0.121 0.115 0.300 0.030 0.172
Taurine NA NA NA NA NA NA NA NA NA NA NA NA 1.479 5.266 3.995 8.152 0.001 0.037
Threonine 0.109 0.062 0.063 0.064 0.030 0.162 0.097 0.079 0.026 0.043 0.038 0.108 0.333 0.548 0.290 0.480 0.018 0.141
Trigonelline NA NA NA NA NA NA NA NA NA NA NA NA 1.309 0.692 2.321 1.814 0.014 0.125
Trimethylamine NA NA NA NA NA NA NA NA NA NA NA NA 0.078 0.069 0.096 0.073 0.523 0.678
Tryptophan NA NA NA NA NA NA 0.005 0.005 0.002 0.002 0.646 0.730 NA NA NA NA NA NA
Tyrosine 0.072 0.051 0.053 0.036 0.196 0.382 0.052 0.052 0.015 0.025 0.564 0.666 0.388 0.663 0.345 0.682 0.028 0.172
Uracil NA NA NA NA NA NA NA NA NA NA NA NA 0.205 0.136 0.186 0.136 0.034 0.172
Urea NA NA NA NA NA NA 0.772 0.637 0.349 0.209 0.011 0.053 40.891 35.550 17.906 16.420 0.119 0.382
Uridine NA NA NA NA NA NA 0.003 0.002 0.001 0.001 0.000 0.000 NA NA NA NA NA NA
Valerate 0.851 0.645 0.504 0.759 0.859 0.885 NA NA NA NA NA NA NA NA NA NA NA NA
Valine 0.164 0.104 0.101 0.064 0.076 0.230 0.163 0.165 0.032 0.055 0.728 0.781 0.133 0.164 0.122 0.252 0.095 0.337
1,5-Anhydrosorbitol NA NA NA NA NA NA 0.085 0.070 0.043 0.030 0.654 0.730 NA NA NA NA NA NA
1-Methylnicotinamide NA NA NA NA NA NA NA NA NA NA NA NA 0.187 0.141 0.174 0.185 0.236 0.545
2-Aminobutyrate NA NA NA NA NA NA 0.012 0.014 0.007 0.008 0.297 0.438 0.047 0.078 0.024 0.080 0.007 0.089
2-Furoylglycine NA NA NA NA NA NA NA NA NA NA NA NA 0.121 0.255 0.398 0.875 0.236 0.545
2-Hydroxybutyrate NA NA NA NA NA NA 0.023 0.030 0.010 0.020 0.001 0.007 NA NA NA NA NA NA
2-Hydroxyisobutyrate NA NA NA NA NA NA 0.001 0.001 0.000 0.001 0.462 0.571 0.200 0.226 0.174 0.151 0.243 0.545
2-Hydroxyisovalerate NA NA NA NA NA NA 0.005 0.006 0.002 0.006 0.214 0.351 0.023 0.025 0.026 0.038 0.363 0.596
2-Methylbutyrate 0.919 0.783 0.628 1.367 0.449 0.635 NA NA NA NA NA NA NA NA NA NA NA NA
2-Oxoglutarate NA NA NA NA NA NA 0.005 0.005 0.002 0.002 0.657 0.730 0.433 0.500 0.428 0.490 0.358 0.596
2-Oxoisocaproate NA NA NA NA NA NA 0.003 0.004 0.001 0.002 0.120 0.240 NA NA NA NA NA NA
3-Aminoisobutyrate NA NA NA NA NA NA NA NA NA NA NA NA 0.346 0.501 0.402 1.809 0.049 0.187
3-Hydroxybutyrate NA NA NA NA NA NA 0.028 0.027 0.039 0.039 0.859 0.889 NA NA NA NA NA NA
3-Hydroxyisobutyrate NA NA NA NA NA NA 0.012 0.009 0.004 0.005 0.122 0.240 0.301 0.328 0.321 0.382 0.307 0.545
3-Hydroxyisovalerate NA NA NA NA NA NA 0.001 0.001 0.000 0.001 0.006 0.038 0.229 0.275 0.199 0.310 0.107 0.361
3-Hydroxymandelate NA NA NA NA NA NA NA NA NA NA NA NA 0.324 0.285 0.320 0.634 0.741 0.818
3-Indoxylsulfate NA NA NA NA NA NA NA NA NA NA NA NA 0.995 0.937 1.212 1.173 0.854 0.882
3-Methyl-2-oxovalerate NA NA NA NA NA NA 0.003 0.003 0.001 0.001 0.355 0.487 NA NA NA NA NA NA
3-Methylxanthine NA NA NA NA NA NA NA NA NA NA NA NA 0.196 0.099 0.280 0.132 0.043 0.172
3-Phenylpropionate 0.090 0.061 0.060 0.036 0.007 NA NA NA NA NA NA NA NA NA NA NA NA NA
4-Hydroxyphenylacetate NA NA NA NA NA NA NA NA NA NA NA NA 0.484 0.538 0.406 0.478 0.786 0.853
5-Aminopentanoate 0.051 0.040 0.045 0.079 0.208 0.382 NA NA NA NA NA NA NA NA NA NA NA NA

IQR Mann-Whitney
Faeces Blood Urine

Median IQR Mann-Whitney Median IQR Mann-Whitney Median
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