Prognostic relevance of clonal hematopoiesis in myeloid neoplastic transformation in patients with follicular lymphoma treated with radioimmunotherapy

Zhuoer Xie,^{1,2} Terra Lasho,¹ Arushi Khurana,¹ Alejandro Ferrer,¹ Christy Finke,¹ Abhishek A. Mangaonkar,¹ Stephen Ansell,¹ Jenna Fernandez,¹ Mithun Vinod Shah,¹ Aref Al-Kali,¹ Naseema Gangat, Jithma Abeykoon, Thomas E. Witzig and Mrinal M. Patnaik

¹Mayo Clinic, Department of Internal Medicine, Hematology Division, Rochester, MN and ²Malignant Hematology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA

Correspondence: M. Patnaik Patnaik.Mrinal@mayo.edu

Received: June 13, 2023. Accepted: August 16, 2023. Early view: August 31, 2023.

https://doi.org/10.3324/haematol.2023.283727

©2024 Ferrata Storti Foundation Published under a CC BY-NC license

Supplemental information.

DNA sequencing method: briefly 200 ng of target DNA was fragmented using the Covaris LE220 plus sonicator. The ends were repaired using the Sureselect End-Repair-A-Tailing enzyme mix. Adapter ligated DNA fragments were size selected to enrich for 200 bp inserts (~320 bp total library size) using AMPURE XP bead purification. The size selected adapter-modified fragments were enriched, and specific indexes were added by 12 cycles of PCR using universal Index Primers.

The Custom Capture hybrid-target enrichment probes were designed using Agilent SureSelect design software (Agilent Technologies, Santa Clara, CA). The targeted gene panel was comprised of 62962 single probes with size 1.805Mbp, and covered the coding regions, UTRs, and overlapping intron/exon regions for 205 genes described and/or enriched for CHIP mutations. The custom capture was carried out using the Agilent Bravo liquid handler following Agilent's SureSelect XT Low. Purified capture products were then amplified using the SureSelect Post- Capture primer mix for 14 cycles. Libraries were validated and quantified on the Agilent Bioanalyzer. Samples were sequenced by 150 paired end reads, 21 samples to a Flow Cell, on an Illumina NovaSeqSP with an expected expected depth of ≥ 1,000X coverage (Illumina, SanDiego, CA).

Secondary bioinformatics analysis included quality assessment and alignment to the hg19 build reference genome using Novoalign (Novo- craft Technologies, Malaysia), followed by GATK based single nucleotide and small insertion/deletion variant calling, structural variation discovery, and annotation. The quality of sequencing chemistry was evaluated using FastQC.('FASTQC'). After alignment, PCR duplication rates and percent reads mapped on target were used to assess the quality of the sample preps. Realignment and recalibration steps were implemented in the GATK. Somatic single nucleotide variations (SNVs) were then genotyped using SomaticSniper, whereas insertions and deletions were called by GATK Somatic Indel Detector. Each variant in coding regions was Strand-Aware Variant Annotation Tool '), as well as ClinVar, dbNSFP, OMIM, and the Human Gene Annotation Database to predict biological effects. Interpretation for relevant alterations included absence in international normal variant allele databases (GnomAD, ExAC), deleterious effect on protein function by multiple phenotype prediction models, somatic and functional annotation in literature, consequence of variant (nonsense, truncating, etc.) and location proximal to important domains.

Supplementary Table 1. The CH panel used in the study covered 289 genes.

ANKRD26 ARID1A

ASXL1 ASXL2

 ATM

BCL10

BCL11B

BCL6

BCOR

BCORL1

BIRC3

BRAF

BRCC3

BTG1

BTG2

CALR

CARD11 CBL

CBLB

CCND3

CD58

CD70 CD79A

CD79B

CDKN2A

CDKN2B

CEBPA

CHD2 CNOT3

CREBBP

CRLF2

CSF1R

CHEK2

CSF3R

CTCF

CUX1

DDX3X

DDX41

DIS3 DNMT3A

DNMT3B

EBF1 EED

EP300

ETNK1 ETV6

EZH2

ELANE

ERCC6L2

EZR

FAM46C

FAS

FBXO11

FBXW7 FLT3

FOXP1

FYN

GATA1 GATA2

GATA3

GNA13 GNAS

GNB1

HIST1H1B HIST1H1C

HIST1H1D

HIST1H1E

HIST1H3B

HRAS

ID3 IDH1

IDH2 IDH3A

IKBKB

IKZF1

IKZF2

IKZF3

IL7R

INTS12 IRF4

IRF8

ITK

JAK1

JAK2

JAK3

JARID2

KDM6A

KDM5A

KDM5C

KIT

KLHL6

KMT2A

KMT2B KMT2C

KMT2D

KRAS

LEF1

LRBA

LRRK2

LTB

LUC7L2

MALT1

MAP2K1

MAP3K14 MAPK1

MED12

MEF2B

MPL

MXRA5

MYD88

MECOM

NF1

NOTCH1 NOTCH2

NPM1

NRAS

P2RY8

PAPD5 PAX5

PDS5B

PDSS2

PHF6

PHIP

PIK3CA PML

POT1

POU2AF1

POU2F2

PPM1D PRDM1

PRPF40B

PRPF8

PTEN PTPN1

PTPN11

RAD21

RBBP4

RHOA RIT1

RPL10

RPL5 RPS15

RPS2

RUNX1 SETBP1

SETD2 SETDB1

SF3A1 SF3B1

SGK1 SMC1A

SMC3

SOCS1

SPRY4 SRSF2

STAG1

STAG2

STAT3 STAT5A

STAT5B

STAT6

STK11

STK35

SUZ12

SWAP70

TBL1XR1

TCF3

TET1

TET2

TET3

TMEM30A

TNF

TNFAIP3

TNFRSF14

TP53

TRAF3

TYW1

U2AF1

U2AF2

UBR5

VPS13B

VPS13C

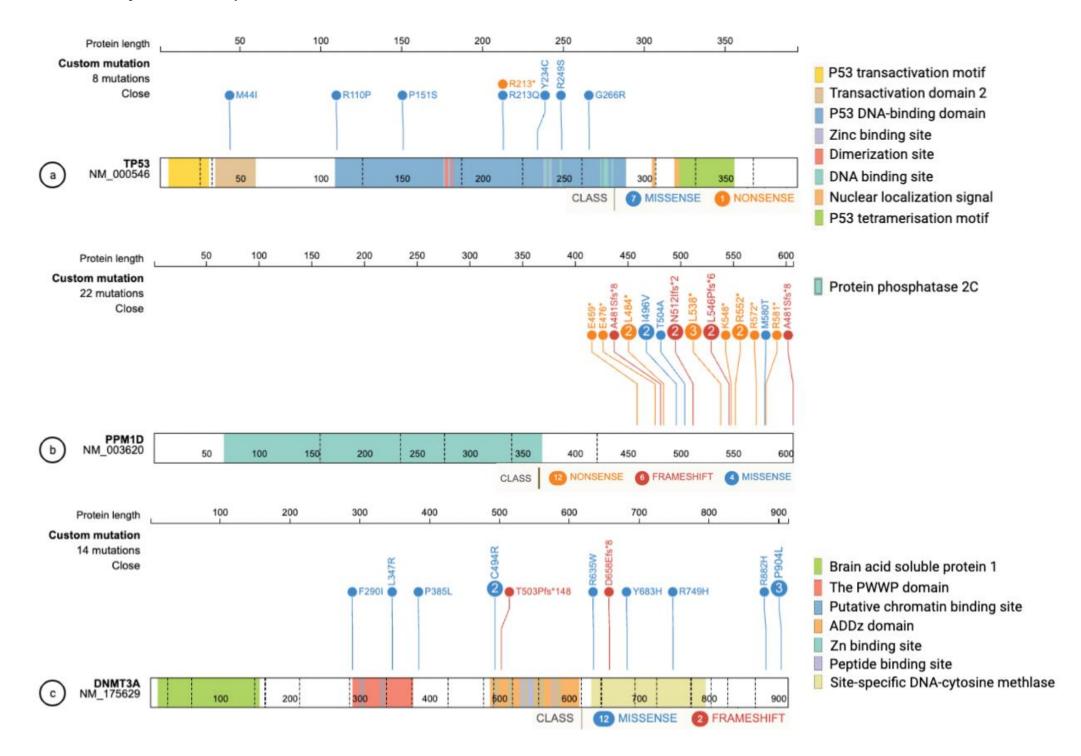
VWF

WT1

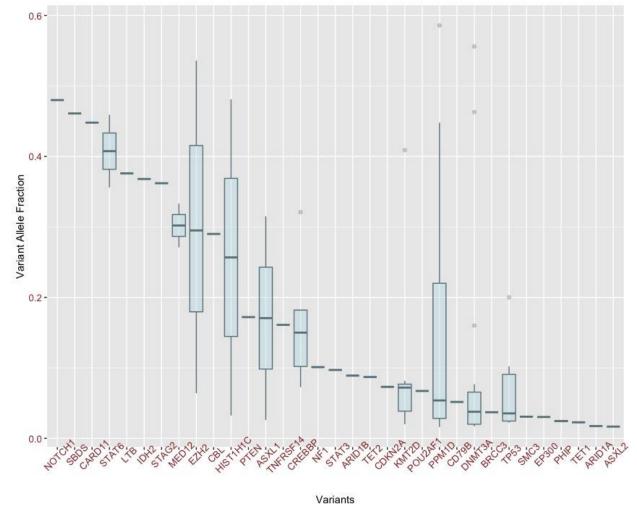
XBP1

XPO1 ZNF471

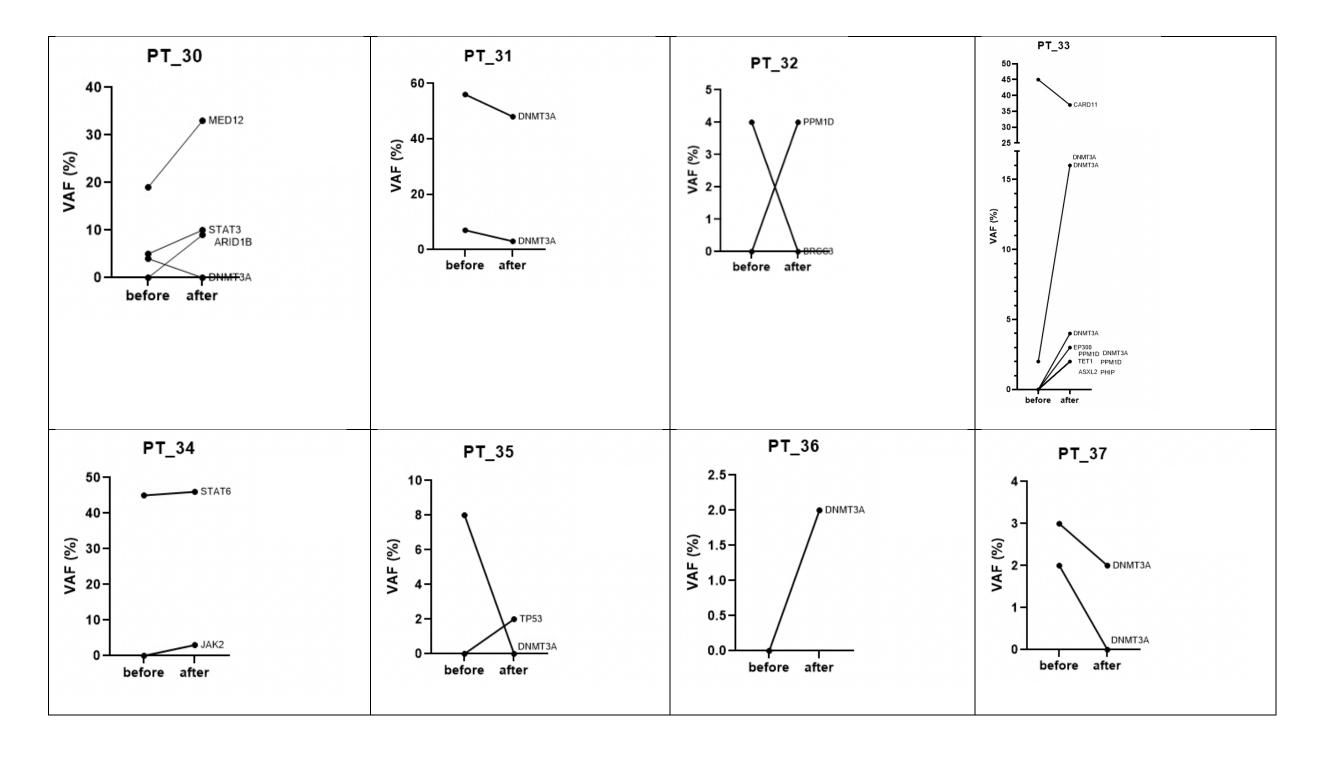
ZRSR2

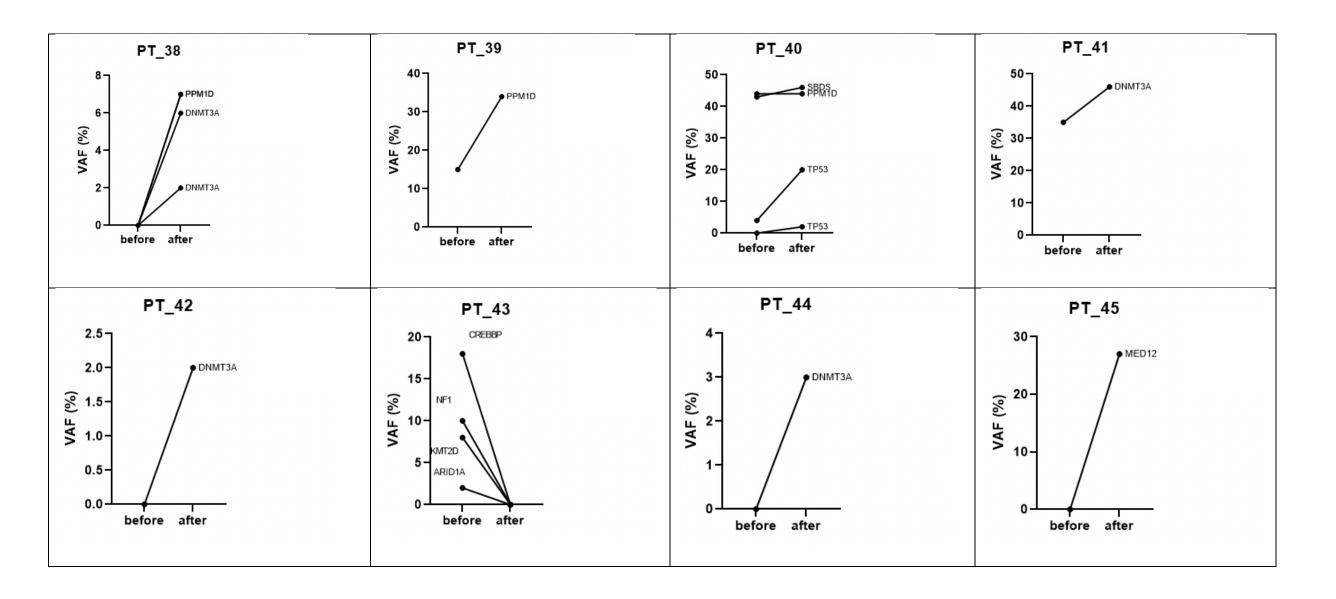

	Gene	Chromosome	Nucleotide change	Amino acid change	Mutation type	CH type
PT_17	JAK2	9	c.1711G>A	G571S	Missense	M-CH
	PPM1D	17	c.1654C>T	R552*	Nonsense	
	TP53	17	c.329G>C	R110P	Missense	
PT_18	ASXL1	20	c.4342C>T	Q1448*	Nonsense	LM-CH
	NOTCH1	9	c.1295C>T	T432M	Missense	
	PPM1D	17	c.1375G>T	E459*	Nonsense	
	PPM1D	17	c.1613T>G	L538*	Nonsense	
	SMC3	10	c.2000G>T	G667V	Missense	
PT_19	PPM1D	17	c.1535delA	N512Ifs*2	Frameshift	M-CH
	TP53	17	c.701A>G	Y234C	Missense	
PT_20	CBL	11	c.1247G>T	C416F	Missense	LM-CH
	CREBBP	16	c.1909G>T	E637*	Missense	
	KMT2D	12	c.11584C>T	Q3862*	Nonsense	
	LTB	6	c.199C>A	Q67K	Missense	
	STAT6	12	c.1256A>G	D419G	Missense	M CII
PT_21	PPM1D	17	c.1642A>T	K548*	Nonsense	M-CH
PT_22	EZH2	7	c.338G>A	W113*	Nonsense	LM-CH
	IDH2	15	c.515G>A	R172K	Missense	
	PPM1D	17	c.1440dupA	A481Sfs*8	Frameshift	
DT 55	STAG2	X	c.1664_1667dupCACA	Q556Hfs*5	Frameshift	1 (11
PT_23	KMT2D	12	c.8704C>T	Q2902*	Nonsense	L-CH
PT_24	DNMT3A	2	c.1974_1978del	D658Efs*8	Frameshift	M-CH
PT_25	DNMT3A	2	c.1480T>C	C494R	Missense	LM-CH
	KMT2D	12	c.11905C>T	Q3969*	Nonsense	
DT 20	KMT2D	12	c.8488C>T	R2830*	Nonsense	LM-CH
PT_26	CDKN2A	9	c.238C>T	R80*	Nonsense	LIVI-CH
	CREBBP	16	c.4336C>T	R1446C	Missense	
	DNMT3A	2	c.2711C>T	P904L	Missense	
	PPM1D	17	c.1741C>T	R581*	Nonsense	
	PPM1D	17	c.1654C>T	R552*	Nonsense	
	PPM1D	17	c.1714C>T	R572*	Nonsense	LNA CII
PT_27	HIST1H1C	6	c.280G>A	V94M	Missense	LM-CH
	PPM1D	17	c.1486A>G	1496V	Missense	
	PPM1D	17	c.1636dupC	L546Pfs*6	Frameshift	M-CH
PT_28	PPM1D	17	L538*	L538*	Nonsense	IVI-CH
	PPM1D	17	A481Sfs*8	A481Sfs*8	Frameshift	
	TET2	4	c.3804-2A>G	splice effect	Splice Effect	
PT_29	ASXL1	20	c.1782C>A	C594*	Nonsense	M-CH
	TP53	17	c.747G>T	R249S	Missense	
PT_30	ARID1B	6	c.662del	N221Tfs*42	Frameshift	LM-CH
	DNMT3A	2	c.1506del	T503Pfs*148	Frameshift	
	MED12	Х	c.6348_6359dupCCAGCAGCAACA	H2116_Q2119dup	Duplication	
	STAT3	17	c.1973A>G	K658R	Missense	
PT_31	DNMT3A	2	c.1040T>G	L347R	Missense	M-CH
	DNMT3A	2	c.2173+1G>A	splice effect	Splice	
PT_32	BRCC3	Х	c.721C>T	Q241*	Effect Nonsense	M-CH
1 1_34	PPM1D	17	c.1613T>G	L538*	Nonsense	011
PT_33	ASXL2	2	c.3715G>T	E1239*	Nonsense	LM-CH
55	CARD11	7	c.583G>C	V195L	Missense	
					Splice	
	DNMT3A	2	c.2173+1G>A	splice effect	Effect	
	DNMT3A	2	c.2645G>A	R882H	Missense	
	DNMT3A	2	c.2083-2A>G	splice effect	Splice Effect	
	EP300	22	c.784G>T	G262*	Nonsense	
	PHIP	6	c.2785G>T	E929*	Nonsense	
	PPM1D	17	c.1510A>G	T504A	Missense	
	PPM1D	17	c.1451T>A	L484*	Nonsense	
	TET1	10	c.2077G>T	E693*	Nonsense	
PT_34	JAK2	9	c.365G>A	R122H	Missense	LM-CH
	STAT6	12	c.3G>A	p.Met1?	Nonsense	
	DNMT3A	2	c.2711C>T	P904L	Missense	M-CH
PT_35	DIVIVITOR	l	c.451C>T	P151S	Missense	
PT_35	TP53	17		+	+	M-CH
		2	c.1903C>T	R635W	Missense	
PT_35 PT_36 PT_37	TP53	 	c.1903C>T c.2711C>T	R635W P904L	Missense	M-CH
PT_36	TP53 DNMT3A	2				M-CH
PT_36	TP53 DNMT3A DNMT3A	2 2	c.2711C>T	P904L	Missense	M-CH
PT_36 PT_37	TP53 DNMT3A DNMT3A DNMT3A	2 2 2	c.2711C>T c.868T>A	P904L F290I	Missense Missense	

	201440	47	4535444	NE4216-*2	F		
DT 20	PPM1D	17	c.1535delA	N512Ifs*2	Frameshift Nonsense	M-CH	
PT_39	PPM1D	17 17		c.1451T>G L484*		M-CH	
PT_40			c.1739T>C	M580T	Missense	IVI-CH	
	SBDS	7	c.127G>T	V43L	Missense		
	TP53	17	c.638G>A	R213Q	Missense		
	TP53	17	c.796G>A	G266R	Missense		
PT_41	DNMT3A	2	c.1154C>T	P385L	Missense	M-CH	
PT_42	DNMT3A	2	c.2047T>C	Y683H	Missense	M-CH	
PT_43	ARID1A	1	c.3036T>G	Y1012*	Nonsense	LM-CH	
	CREBBP	16	c.4297_4305del	Y1433_D1435del	Deletion		
	KMT2D	12	c.5104C>T	R1702*	Nonsense		
	NF1	17	c.3826C>T	R1276*	Nonsense		
PT_44	DNMT3A	2	c.2173+1G>A	splice effect	Splice Effect	M-CH	
PT_45	MED12	Х	c.6348_6359dupCCAGCAGCAACA	H2116_Q2119dup	Duplication	M-CH	
PT_53	_53 CD79B 17		c.586T>G	Y197D	Missense	LM-CH	
	CREBBP	16	c.4336C>T	R1446C	Missense		
	HIST1H1C	6	c.305C>T	S102F	Missense		
	KMT2D	12	c.15289C>T	R5097*	Nonsense		
	TP53	17	c.637C>T	R213*	Nonsense		
PT_54	PHIP	6	c.607G>T	D203Y	Missense	M-CH	
	PPM1D	17	c.1426G>T	E476*	Nonsense		
	TP53	17	c.132G>T	M44I	Missense		
	DNMT3A	2	c.1480T>C	C494R	Missense		
PT_55	PTEN	10	c.253+42C>T	splice effect	Splice Effect	M-CH	
PT_56	EZH2	7	c.1852-6C>T	splice effect	Splice Effect	L-CH	
PT_57	PPM1D	17	c.1486A>G	1496V	Missense	se M-CH	
PT_58	CREBBP	16	c.4424C>T	P1475L	Missense	LM-CH	
	EZH2	7	c.1937A>C	Y646S	Missense		
	KMT2D	12	c.13745_13764del	G4582Efs*17	Frameshift		
	KMT2D	12	c.14515+2T>G	splice effect	Splice Effect		
	POU2AF1	11	c.16+3A>T	splice effect	Splice Effect		
	TNFRSF14	1	c.169T>C	C57R	Missense		

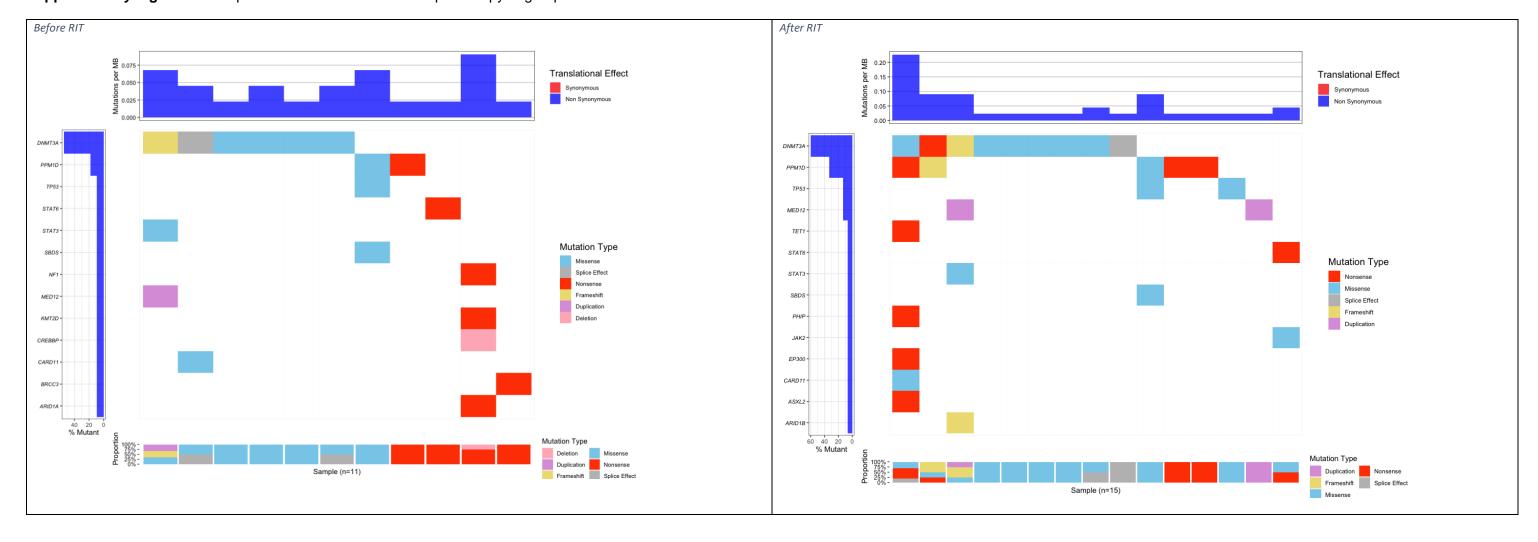

Supplementary Table 3. Detailed information for group 1, including the time differences between the paired samples.

	Age	Gender	Total number of mutations	Type of Mutation	Time to Zevalin (y)	Timing diff for the paired sample (y)	TMN	Zevalin To TMN	Zevalin to Last FU	Death	os
PT_9	79	М	0	-	1.86	1.01	Υ	9.60	10.00	Y	11.86
PT_10	38	F	0	-	0.83	0.24	N		6.91	N	7.74
PT_11	36	М	0	-	0.43	1.03	N		15.55	N	15.98
PT_12	43	М	0	-	2.27	0.72	N		14.45	N	16.73
PT_13	60	F	0	-	2.81	4.93	N		13.10	N	15.91
PT_14	42	F	0	-	7.30	1.14	N		10.82	Υ	18.12
PT_15	55	М	0	-	3.38	1.05	N		15.65	N	19.03
PT_16	63	F	0	-	9.13	1.05	N		15.27	N	24.40
PT_30	40	F	4	LM-CH	12.73	0.27	Υ	6.60	14.32	N	27.05
PT_31	50	М	2	M-CH	8.41	1.05	Υ	7.88	7.90	N	16.30
PT_32	67	F	2	M-CH	4.11	0.93	Y	9.81	12.01	Y	16.12
PT_33	45	М	10	LM-CH	1.30	5.20	N		16.98	N	18.28
PT_34	43	F	1	L-CH	7.12	1.13	N		16.80	N	23.92
PT_35	36	F	2	M-CH	32.42	1.02	N		5.39	N	37.82
PT_36	46	М	1	M-CH	19.64	1.01	N		16.21	N	35.85
PT_37	48	F	2	M-CH	10.16	1.17	N		16.63	N	26.79
PT_38	69	М	4	M-CH	4.99	0.52	N		16.93	N	21.92
PT_39	67	М	1	M-CH	5.02	1.07	N		14.85	Υ	19.87
PT_40	70	F	4	M-CH	3.61	0.52	N		12.21	Υ	15.82
PT_41	65	М	1	M-CH	3.40	0.99	N		16.50	N	19.90
PT_42	66	F	1	M-CH	10.35	1.01	N		7.18	Υ	17.53
PT_43	36	F	4	LM-CH	1.04	1.48	N		18.37	N	19.41
PT_44	49	F	1	M-CH	2.46	0.80	N		14.65	N	17.11
PT_45	28	F	1	M-CH	14.03	0.50	N		14.73	N	28.76


Supplementary Figure 1. Lollipop plot showing type and location along the protein sequence of *TP53* mutation, and *DNMT3A* mutation. The number of recurrently detected alterations is indicated by the text within each disc, as well as by disc size. Colors indicate the type of mutation: blue, missense; orange, nonsense; red, frameshift. Most of the *TP53* mutations were missense mutations and occurred in the DNA binding domain, while 82% of the *PPM1D* mutations were truncating mutations that occurred in the terminal exon. *DNMT3A* mutations were largely missense mutations and occurred throughout the genome, with 6 involving the catalytic methyltransferase domain, including 1 dominant negative R882 mutation that has been implicated commonly in MDS/AML

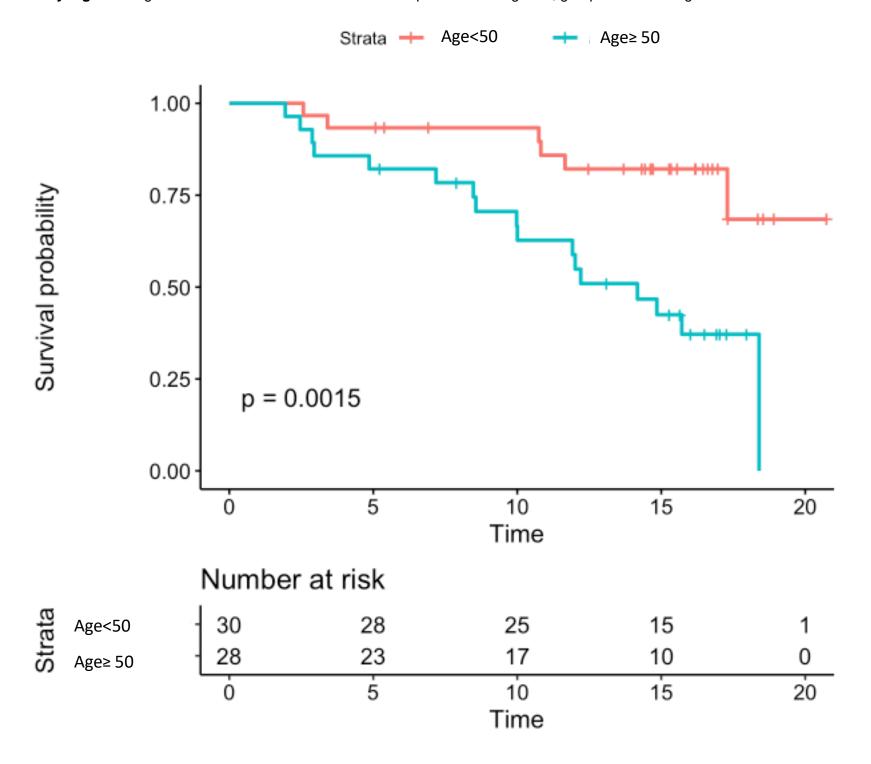


Supplemental figure 2. Variant allele fraction is sorted from the highest to the lowest.

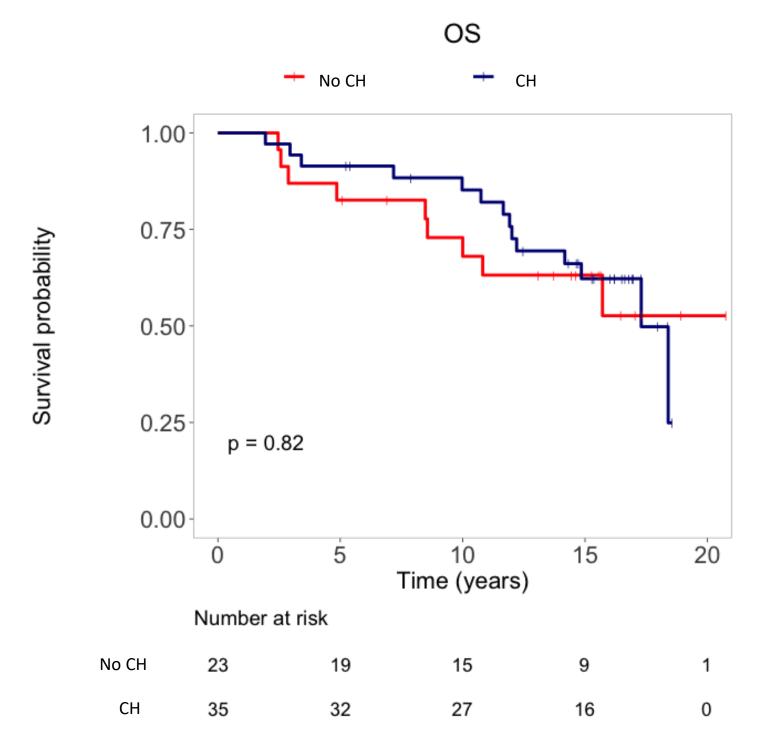


Supplemental figure 3. Clone evolution before and after radioisotope therapy in group 1.

Supplementary Figure 4. Oncoplot before and after radioisotope therapy in group 1.



Supplementary Figure 5. Forest plot for the variables on TMN development (univariable analysis);


	TMN	No-TMN			
Variable	(Yes)	(Yes)	HR	p value	
СН	9	5	1.7	0.36	-
DAT at anytime	3	11	0.49	0.29	-
Non-DAT at anytime	7	7	1.34	0.59	-
PPM1D	6	8	1.58	0.43	-
TP53	6	8	1.58	0.4	-
M-CH	2	12	1.7	0.53	-
L-CH	9	5	1.74	0.34	-
LM-CH	3	11	1.8	0.37	-
MT>2	3	11	1.8	0.37	-
Treatment line>4	8	6	1.3	0.69	-
	10	4	0.78	0.66	⊢ ■
DLBCL transformation	3	11	0.66	0.53	-
Topoisomerase inhibitor	8	6	0.93	0.9	-
Alkylating agents	12	2	0.7	0.65	-
Purine/Pyrimidine analog	10	4	0.53	0.3	-
Radiation therapy	6	8	1.6	0.4	-
					0.12 0.25 0.50 1.0 20 40 80

Abbreviation: DAT: DNMT3A, ASXL1, and TET2; AnytimeDAT: DAT mutations at any time points. AnytimeNonDAT: mutations other than DAT mutations at any time points. DDR: DNA damage response and repair; M-CH: myeloid CH; L-CH: lymphoid CH; LM-CH: lymphoid and myeloid CHIP; MT>2: more than 2 mutations.

Supplementary Figure 6. Age>50 is a risk factor for shorter OS. Group 0 indicates age<50, group 1 indicates age ≥ 50

Supplementary Figure 7. Overall survival stratified by CH status.

