
Haematologica | 109 June 2024

1741

- Acute Lymphoblastic LeukemiaARTICLE

MD-ALL: an integrative platform for molecular diagnosis 
of B-acute lymphoblastic leukemia

Zunsong Hu,1,2 Zhilian Jia,1,2 Jiangyue Liu,3,4 Allen Mao,5 Helen Han1,2 and Zhaohui Gu1,2

1Department of Computational and Quantitative Medicine, Beckman Research Institute of 

City of Hope; 2Department of Systems Biology, Beckman Research Institute of City of Hope; 
3Department of Hematology and Hematopoietic Cell Transplantation; 4Irell and Manella 

Graduate School of Biological Sciences of City of Hope and 5Research Informatics, City of 

Hope National Medical Center, Duarte, CA, USA

Abstract

B-acute lymphoblastic leukemia (B-ALL) consists of dozens of subtypes defined by distinct gene expression profiles (GEP) 
and various genetic lesions. With the application of transcriptome sequencing (RNA sequencing [RNA-seq]), multiple novel 
subtypes have been identified, which lead to an advanced B-ALL classification and risk-stratification system. However, the 
complexity of analyzing RNA-seq data for B-ALL classification hinders the implementation of the new B-ALL taxonomy. Here, 
we introduce Molecular Diagnosis of Acute Lymphoblastic Leukemia (MD-ALL), an integrative platform featuring sensitive and 
accurate B-ALL classification based on GEP and sentinel genetic alterations from RNA-seq data. In this study, we systemat-
ically analyzed 2,955 B-ALL RNA-seq samples and generated a reference dataset representing all the reported B-ALL subtypes. 
Using multiple machine learning algorithms, we identified the feature genes and then established highly sensitive and accu-
rate models for B-ALL classification using either bulk or single-cell RNA-seq data. Importantly, this platform integrates mul-
tiple aspects of key genetic lesions acquired from RNA-seq data, which include sequence mutations, large-scale copy num-
ber variations, and gene rearrangements, to perform comprehensive and definitive B-ALL classification. Through validation in 
a hold-out cohort of 974 samples, our models demonstrated superior performance for B-ALL classification compared with 
alternative tools. Moreover, to ensure accessibility and user-friendly navigation even for users with limited or no programming 
background, we developed an interactive graphical user interface for this MD-ALL platform, using the R Shiny package. In 
summary, MD-ALL is a user-friendly B-ALL classification platform designed to enable integrative, accurate, and comprehen-
sive B-ALL subtype classification. MD-ALL is available from https://github.com/gu-lab20/MD-ALL.
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SUPPLEMENTARY DATA 

Supplementary Methods 

RNA-seq datasets 

To establish the training and validation cohorts, we collected raw RNA-seq datasets of 3,005 non-

duplicate (according to sample ID) B-ALL samples from multiple published studies1-11. Additionally, 

we inferred the genetic relationship of the enrolled samples using the KING toolkit12 based on the 

genotype of variants called from RNA-seq. We identified twenty pairs of samples as potential 

duplicates or related, and then removed the ones with relatively lower sequencing coverage. From 

the remaining 2,985 samples, we further excluded samples with low coding region coverage 

(<15% at 30-fold) or low B-cell ratio (<30%; estimated by the CIBERSORTx13; see Methods 

below). Eventually, 2,955 B-ALL samples with high quality RNA-seq data were kept as the primary 

dataset for this study (Supplementary Table 1). 

RNA-seq data analysis 

The raw RNA-seq data were analyzed using a uniform analysis pipeline described in our previous 

work2, 4. In brief, the sequencing reads were aligned to human genome reference GRCh38 using 

the STAR package (v2.7.6a)14. Gene annotation downloaded from the Ensembl database (v102; 

see URLs) was used for STAR mapping and the following read count evaluation. Then the Picard 

(v2.26.11; see URLs) was used to mark duplicates and generate the final bam files. 

Gene expression level evaluation. Read count per gene was calculated by HTSeq15 and 

FeatureCount16, the two most popular tools for this purpose. Then gene expression level was 

normalized by the variance stabilizing transformation (VST) algorithm in the DESeq2 package17. 

With the VST gene expression data, R packages Rtsne and umap were used to map the samples 

to 2-dimential t-Distributed Stochastic Neighbor Embedding (t-SNE) and Uniform Manifold 

Approximation and Projection (UMAP) plots using the top variable genes (based on median 
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absolute deviation). The ComBat function in the sva R package18 was used to correct the batch 

effects introduced by different library preparation kits and sequencing lengths (Supplementary 

Figure 1). 

Digital deconvolution of bulk GEP data. To establish a GEP reference for annotating the 

primary blood cell types, we reanalyzed public single-cell RNA-seq (scRNA-seq) data of 166K 

cells obtained from eight healthy individuals used in the 1-Million Immune Cells Project (see 

URLs). Through stringent quality control, we established a GEP reference composed of over 10K 

cells representing 20 distinct cell types. To distinguish detailed differentiation stages of B cells, 

the annotation includes common lymphoid progenitors (CLP), pro-B1 (early pro-B), pro-B2 (late 

pro-B), pre-B1 (large pre-B), pre-B2 (small pre-B), immature B, mature B, and plasma cells. With 

the single-cell GEP reference, we used the CIBERSORTx13 to digitally deconvolute the bulk GEPs 

of B-ALL samples and delineate the composition of different cell types. The collective amount of 

B-lineage cells (pro-B1 to mature B) deconvoluted from the bulk samples were used to estimate 

leukemic cell ratios. 

Mutation detection from RNA-seq. The short sequence mutation including single nucleotide 

variants (SNVs) and insertions/deletions (Indels) were called from RNA-seq by following the best 

practice workflow from the GATK forum (see URLs) as we reported before2, 4. In brief, the bam 

files were processed by the SplitNCigarReads module of GATK (v4.2.2) to Splits reads that 

contain Ns in their cigar string. MuTect2 and HaplotypeCaller modules were used to call SNVs 

and Indels afterwards. The variants reported in the dbSNP (v152) and gnomAD (v3.1) databases 

as common single nucleotide polymorphisms (SNP; population minor allele frequency ≥ 1%) were 

removed. Then the remaining mutations were annotated to gene regions by VEP19 (v103). For B-

ALL subtyping, the analysis was focused on a few signature mutations such as PAX5 P80R and 

other PAX5 mutations, IKZF1 N159Y, and ZEB2 H1038R. To further assist B-ALL subtyping, 

other signature mutations in gene FLT3, IL7R, JAK1, JAK2, JAK3, KRAS, NRAS, PTPN11, NF1, 
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IKZF3, and TP53 recorded in the COSMIC somatic mutation database (see URLs) were also 

reported. 

Fusion calling from RNA-seq. CICERO20 (v0.3.0p2) and FusionCatcher21 (v1.33) were used as 

they can sensitively identify gene rearrangements involving highly repetitive regions such as the 

immunoglobulin heavy chain (IGH) locus. Since CICERO analysis may take a long time if the 

input bam files contain too many reads, we capped the bam files to 50 million reads for CICERO 

fusion calling. Normally, CICERO and FusionCatcher report dozens or even hundreds of fusions, 

but most of them are false positive. Therefore, we manually curated all the reported fusions to 

identify the reliable ones. Due to the complexity of DUX4 rearrangements, a few of them were 

rescued through manual inspection of aligned reads in the IGV browser22. Additionally, CICERO 

can identify the FLT3 ITD (Internal Tandem Duplication) from bulk RNA-seq both sensitively and 

accurately. 

Copy number variation (CNV) and iAMP21 calling from RNA-seq. With read counts and SNVs 

called from RNA-seq, the RNAseqCNV package23 was used to detect chromosomal level CNVs. 

The gender information of the samples was also inferred by RNAseqCNV. Besides standard CNV 

analysis, RNAseqCNV also provides visualization results that can be used to identify 

intrachromosomal amplification of chromosome 21 (iAMP21) genetic lesions. 

GEP-guided detection of genetic lesions. We detected and validated genetic lesions by using 

the expression level of specific genes or the overall GEPs. First, we compiled a list of candidate 

mutations and gene rearrangements that are signatures of different B-ALL subtypes. Then, we 

identified the genetic lesions that are consistent with the GEP features. For example, CRLF2 

rearrangements are associated with CRLF2 overexpression, while DUX4 rearrangements are 

expected in DUX4 subtype defined by GEP. Similarly, GEP-defined PAX5 P80R subtype indicates 

both PAX5 P80R mutations and secondary PAX5 alterations. 



4 
 

Ancestry inference from RNA-seq 

The ancestral background of enrolled samples was estimated using the iAdmix package24, with 

the genotype of SNPs from the 1000 Genomes Project populations, which include European, 

African, Native American, East Asian, and South Asian, used as the reference25. The genetic 

ancestral compositions of the test samples were quantified and then used to determine each 

ethnic group as described in previous reports26. 

Construct the GEP reference of B-ALL subtypes 

Through integrative analysis of driver genetic lesions and GEPs, the enrolled 2,955 B-ALL 

samples were classified into 26 molecular subtypes, with 19 having distinct GEP features 

(Supplementary Table 1). To construct a GEP reference for B-ALL classification, we performed 

iterative sample selection using the PhenoGraph clustering27 and k-nearest neighbor (KNN) 

analysis of two-dimensional UMAP to identify the samples with stable and correct GEP clusters. 

In addition, the major subtypes with highly distinct GEPs, such as ETV6::RUNX1, KMT2A, DUX4, 

TCF3::PBX1, and MEF2D, were further trimmed to keep the sample size of training vs. test cohort 

as around 2:1. 

GEP feature gene selection 

Since the GEP reference cohort is not evenly distributed across different B-ALL subtypes, generic 

feature selection algorithms may favor the features of the major subtypes. To overcome this, 

cohorts with same sample size per subtype were generated by subsampling major subtypes and 

artificially constructing additional samples for minor ones using the SMOTE algorithm28. Eight different 

samples sizes (n=10, 25, 50, 75, 100, 150, 200, and 250) per subtype were used to evaluate 

whether the feature genes can be stably identified. Then Boruta, a random-forest-based feature 

selection algorithm29, was used to identify the genes confirmed as contributing features for 
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distinguishing different subtypes. Furthermore, to accommodate both mRNA and total RNA-seq 

libraries, only the protein-coding genes were considered for feature selection. 

GEP-based B-ALL classification model 

Using the feature genes and reference cohort described above, two GEP-based B-ALL prediction 

models were constructed: 1. support vector machine (SVM) classification. Among multiple 

machine learning algorithms, we observed that SVM performed the best. The reference samples 

from the 19 distinct subtypes were analyzed by SVM to train a prediction model using different 

numbers of feature genes (ranging from 100 to 1,058 genes in 11 rounds, with 100 as the interval). 

SVM algorithm with linear, polynomial, and Radial Basis Function kernels was tested in the GEP-

based subtype prediction models and the accuracy for the 974 test samples was 96.1%, 95.1%, 

and 94.5%, respectively. Therefore, with the highest accuracy and faster training/predicting speed, 

the linear kernel of SMV was used for the final model. 2. PhenoGraph clustering27. PhenoGraph 

is a clustering algorithm originally developed to identify and partition cells into subpopulations 

using high-dimensional single-cell mass cytometry data. Here it was applied to cluster the test 

samples with the reference cohort using different numbers of feature genes as described above 

for B-ALL classification. Ten neighbors were used in PhenoGraph analysis considering the 

smallest sample size for B-ALL subtypes in our training cohort is around 10. Since SVM and 

PhenoGraph models do not provide confidence score for classification, MD-ALL applies the 11 

rounds of prediction using different numbers of genes to quantify the prediction reliability. A 

subtype is reported if the confidence score is above 0.5. 

Integration of genetic lesions and GEP features 

GEP-based subtype prediction and key genetic lesions identified from RNA-seq were integrated 

to assist definitive classification of B-ALL subtypes. For example, if the genetic lesions and GEP 

predictions point to the same subtypes, a highly reliable classification will be achieved. However, 

if GEP-based subtyping gives ambiguous prediction score or it is not consistent with the driver 
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genetic lesions, a knowledge-based decision-making is needed. For example, samples with both 

BCR::ABL1 fusion and hyperdiploid karyotype should be classified as Ph (BCR::ABL1) subtype, 

regardless of the GEP prediction. A detailed description of integrating GEP-based prediction and 

sentinel genetic lesions for B-ALL classification is summarized in Table 1. 

scRNA-seq analysis and B-ALL classification 

scRNA-seq reads were analyzed by the Cell Ranger (v6.0.1) pipeline using the human reference 

genome GRCh38. Genes expressed in at least 5 cells were retained, as were cells with a 

minimum of 200 expressed genes and less than 10% mitochondrial reads. Cells with gene counts 

exceeding the median plus 3 median absolute deviation of gene number were considered outliers 

and removed. Doublet cells identified by the DoubletFinder30 R package were also excluded. The 

Seurat31 (v4.0.5) was used for gene expression normalization and variable gene selection. With 

the GEP reference of blood cell types and B-ALL subtypes described above, the SingleR 

package32 was used to annotate the cell type and B-ALL subtype for each cell. 

URLs 

Ensembl, http://www.ensembl.org/; 

The best practice workflow for calling SNVs and Indels from RNA-seq data, 

https://gatk.broadinstitute.org/hc/en-us/articles/360035531192-RNAseq-short-variant-discovery-

SNPs-Indels-q;  

Picard, http://broadinstitute.github.io/picard; 

1-Million Immune Cells Project, https://data.humancellatlas.org; 

ScPCA, https://www.alexslemonade.org/childhood-cancer-data-lab/single-cell-pediatric-cancer-

atlas; 

gnomAD, https://gnomad.broadinstitute.org/; 



7 
 

COSMIC database, https://cancer.sanger.ac.uk/cosmic 
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Supplementary Figure 1. Correction of batch effects in different RNA-seq datasets. 
The t-SNE plots show the distribution of gene expression profiles (GEPs) for 2,955 B-ALL 

samples. This analysis is based on the top 1,000 most variably expressed genes with a perplexity 

parameter of 30 in t-SNE. In these plots, each point represents the GEP of one RNA-seq sample. 

These RNA-seq datasets, obtained from multiple sources, were generated using different library 

preparation kits and sequencing strategies. Therefore, substantial batch effects can be introduced, 

which are visible as distinct GEP clusters that appear to be driven by different RNA-seq batches 

(A and C). Once batch correction is applied (see Methods), the GEPs from different batches are 

seen to overlap evenly, indicating successful reduction of batch effects (B and D). Further 

investigation into different aspects of batch effects revealed that the mRNA vs. total RNA batches 

(E) introduces a greater batch effect compared to those from stranded vs. unstranded (F) and 

different sequencing lengths (G). 
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Supplementary Figure 2. Distribution of the demographic characteristics of the cohort. 
A. The study cohort has a relatively equal representation of male and female cases, with gender 

determined by RNAseqCNV. Out of 2,407 samples with gender information, 2,384 (99.04%) 

inferred genders were consistent with the clinical report. B. The cohort includes both childhood 

and adult samples, with around two-thirds of the samples from pediatric cases. C. The race and 

ethnicity information were inferred by iAdmix based on the genotype of SNPs identified from RNA-

seq. While the majority of the samples are of European descent, the cohort also includes 

individuals of Hispanic, East Asian, African, and other ethnic backgrounds, with a decent sample 

size. 
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Supplementary Figure 3. RNAseqCNV identifies iAMP21 genetic lesions. 
The RNAseqCNV R package (Barinka et al. Leukemia, 2022) was initially developed to identify 

large scale CNVs on chromosomal or arm levels. Nonetheless, it can also identify the iAMP21 

genetic lesions based on the unique gene expression and mutant allele frequency (MAF) patterns. 

The iAMP21 subtype is characterized by ≥ 5 RUNX1 copies per cell on a single abnormal 

chromosome 21 (Harrison et al., Br J Haematol. 2010), which exhibits elevated gene expression 

levels and a unique MAF density plot distribution compared with two or three copies of 

chromosome 21. 
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Supplementary Figure 4. Single-cell identification of multiple B-ALL subtypes 

A, B and C, UMAP plots of B-ALL samples with ETV6::RUNX1, Hyperdiploid, or Ph subtypes, 

following the strategy described in Fig. 5. ETV6::RUNX1 subtype with distinct GEP (based on 

bulk RNA-seq) also achieves high accuracy (100%) for subtype prediction. By contrast, the 

subtypes with less distinct GEPs, such as Hyperdiploid and Ph, are observed with relatively lower 

yet still reliable subtype predictions (91.8% for Hyperdiploid and 89.4% for Ph). Raw scRNA-seq 

data were obtained from two published studies (Witkowski et al. Cancer Cell. 2020; Caron et al., 

Sci. Rep., 2020), where subtypes were all confirmed. D. The box plot displays the percentage of 

correct B-cell blasts classification for nine B-ALL subtypes (69 samples) at the single-cell level. 

Single-cell gene expression data was obtained from the Single-Cell Pediatric Cancer Atlas 

(ScPCA, see URLs). Each box depicts the interquartile range, spanning the 25th to the 75th 

percentiles. The median is represented by a horizontal line in the box. Whiskers extend from the 

boxes, typically encompassing up to 1.5 times the IQR. Colored dots represent the percentages 

of individual single-cell samples. The number of samples per subtype is shown in parentheses. 
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