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Abstract

B-acute lymphoblastic leukemia (B-ALL) consists of dozens of subtypes defined by distinct gene expression profiles (GEP) 
and various genetic lesions. With the application of transcriptome sequencing (RNA sequencing [RNA-seq]), multiple novel 
subtypes have been identified, which lead to an advanced B-ALL classification and risk-stratification system. However, the 
complexity of analyzing RNA-seq data for B-ALL classification hinders the implementation of the new B-ALL taxonomy. Here, 
we introduce Molecular Diagnosis of Acute Lymphoblastic Leukemia (MD-ALL), an integrative platform featuring sensitive and 
accurate B-ALL classification based on GEP and sentinel genetic alterations from RNA-seq data. In this study, we systemat-
ically analyzed 2,955 B-ALL RNA-seq samples and generated a reference dataset representing all the reported B-ALL subtypes. 
Using multiple machine learning algorithms, we identified the feature genes and then established highly sensitive and accu-
rate models for B-ALL classification using either bulk or single-cell RNA-seq data. Importantly, this platform integrates mul-
tiple aspects of key genetic lesions acquired from RNA-seq data, which include sequence mutations, large-scale copy num-
ber variations, and gene rearrangements, to perform comprehensive and definitive B-ALL classification. Through validation in 
a hold-out cohort of 974 samples, our models demonstrated superior performance for B-ALL classification compared with 
alternative tools. Moreover, to ensure accessibility and user-friendly navigation even for users with limited or no programming 
background, we developed an interactive graphical user interface for this MD-ALL platform, using the R Shiny package. In 
summary, MD-ALL is a user-friendly B-ALL classification platform designed to enable integrative, accurate, and comprehen-
sive B-ALL subtype classification. MD-ALL is available from https://github.com/gu-lab20/MD-ALL.

Introduction

B-acute lymphoblastic leukemia (B-ALL) is a highly het-
erogeneous disease, which consists of dozens of sub-
types with distinct gene expression profiles (GEP) and 
constellations of genetic alterations.1 Through the ap-
plication of transcriptome sequencing (RNA sequencing 
[RNA-seq]), multiple novel B-ALL subtypes have been 
identified harboring recurrent genetic lesions and dis-
tinct GEP.2-4 The current World Health Classification (5th 
edition) of Hematolymphoid Tumors (WHO-HAEM5),5 
along with the International Consensus Classification of 
Myeloid Neoplasms and Acute Leukemia (ICC),6 recognize 
a total of 11 and 26 molecular subtypes of B-ALL, respec-
tively. Currently, clinical diagnosis and classification of 
B-ALL rely on a range of assays such as flow cytometry, 

fluorescence in situ hybridization (FISH), cytogenetic 
karyotyping, and panel-based sequencing assays.7,8 The 
data generation and analysis using these platforms are 
time-consuming, expensive, and error-prone. Further-
more, they are inadequate to identify specific subtypes 
defined by cryptic genetic lesions (e.g., DUX4 and MEF2D 
rearrangements) or the ones primarily defined by GEP 
(e.g., Ph-like and ETV6::RUNX1-like).
With rapid progress in discovering novel B-ALL subtypes, 
updating clinical test assays accordingly has become a 
challenging task. Alternatively, the application of RNA-
seq for clinical diagnosis of B-ALL subtypes has been 
investigated by multiple institutions and led to encour-
aging outcomes.9,10 With its easy-to-follow protocol and 
multiple layers of information, RNA-seq is poised to 
revolutionize the classification of B-ALL in both research 
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and clinical settings. However, bioinformatics analysis 
of RNA-seq data to extract both the sentinel genetic 
lesions and the GEP signatures for classification is still 
challenging. Although a few bioinformatics tools have 
been developed for this purpose,11-13 they solely rely on 
GEP for B-ALL subtyping. Here, we present Molecular 
Diagnosis of Acute Lymphoblastic Leukemia (MD-ALL), 
a user-friendly bioinformatics platform that integrates 
genetic and transcriptomic features from RNA-seq to 
provide integrative, accurate, and comprehensive B-ALL 
subtype classification.

Methods

RNA-sequencing datasets
Raw RNA-seq data of 3,005 B-ALL samples were collect-
ed from multiple published studies.1,4,14-22 After removing 
potential duplicates (inferred by KING23) and samples with 
low coverage, 2,955 samples were kept as the primary 
cohort for this study (Online Supplementary Table S1).

RNA-sequencing data analysis
The sequencing reads were aligned to the human genome 
reference (GRCh38) using STAR.24 Then Picard (see URL) 
was used to mark PCR duplicates.

Gene expression
Read counts were calculated by HTSeq25 and Feature-
Count,26 and then normalized by DESeq2.27 The ComBat 
function in the sva R package28 was used to correct 
potential batch effects introduced by different library 
preparation approaches (mRNA vs. total RNA and stranded 
vs. unstranded) and variable sequencing lengths (Online 
Supplementary Figure S1). t-distributed stochastic neigh-
bor embedding (tSNE) and uniform manifold approxima-
tion and projection (UMAP) were used for dimensionality 
reduction visualization.

Mutations
Single nucleotide variants (SNV) and insertions/deletions 
(Indel) were called by following the best practice pipe-
line from GATK (see Online Supplementary Methods).29

Deconvolution of bulk gene expression profiles
Single-cell RNA-seq (scRNA-seq) data from the 1-Mil-
lion Immune Cells Project (see Online Supplementary 
Methods) were reanalyzed to establish a GEP reference 
representing 20 primary blood cell types. Then, CIBER-
SORTx30 was used to deconvolute the bulk GEP of B-ALL 
to estimate their leukemic cell ratios and granular B-cell 
composition.

Fusion calling
CICERO31 and FusionCatcher32 were used as they can 

identify gene rearrangements involving highly repetitive 
regions such as the IgH locus.

Copy number variation calling
With read counts and SNV called from RNA-seq, the 
RNAseqCNV package33 was used to detect chromosom-
al-level copy number variation (CNV).

Ancestry inference
The samples’ ancestral background was estimated using 
iAdmix,34 with the genotype of SNP from the 1K-Genome 
Project used as the reference.35,36

Gene expression profile reference of B-acute 
lymphoblastic leukemia subtype
Through analyzing the RNA-seq data of the 2,955 B-ALL 
samples, 26 subtypes were identified, with 19 having dis-
tinct GEP features. In order to construct a GEP reference 
for B-ALL classification, PhenoGraph clustering37 and 
k-nearest neighbor analysis of two-dimensional UMAP 
were performed to identify the representative samples 
of each subtype.

Feature gene selection
Since the reference cohort is not evenly distributed 
across B-ALL subtypes, SMOTE algorithm38 was used to 
subsample or artificially construct additional samples, 
which resulted in cohorts with the same sample size per 
subtype. Then Boruta39 was used to identify the genes 
confirmed as contributing features for distinguishing 
different subtypes.

Gene expression profile-based B-acute lymphoblastic 
leukemia classification
Two GEP-based B-ALL prediction models were con-
structed: i) support vector machine (SVM) classification; 
among multiple tested machine learning algorithms, SVM 
performed the best; ii) PhenoGraph clustering;37 Pheno-
Graph is a clustering algorithm originally developed to 
identify and partition cells into subpopulations.

Integration of genetic lesions and gene expression 
profile features
GEP-based subtype prediction and key genetic lesions 
identified from RNA-seq were integrated for definitive 
B-ALL classification. A detailed description of integrating 
GEP-based prediction and sentinel genetic lesions for 
B-ALL classification is summarized in Table 1.

Single-cell RNA-sequencing analysis and B-acute 
lymphoblastic leukemia classification
scRNA-seq reads were mapped to the GRCh38 reference. 
After quality control, the Seurat package40 was used for 
gene expression normalization and variable gene se-
lection. With the GEP reference of blood cell types and 
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Genetic alteration GEP subtype GEP feature Subtype Note

BCL2, MYC or BCL6 
rearrangement BCL2/MYC Distinct BCL2/MYC

The rearrangements can 
involve genes adjacent to 

MYC
CDX2 overexpression & 
UBTF::ATXN7L3 fusion CDX2/UBTF Highly distinct CDX2/UBTF CDX2 overexpression

CRLF2 rearrangement Not Ph/Ph-like Non-distinct CRLF2(non-Ph-like) Less recognized subtype

DUX4 rearrangement DUX4 Highly distinct DUX4 DUX4 gene family 
overexpression

ETV6::RUNX1 fusion ETV6::RUNX1 Highly distinct ETV6::RUNX1 -

No ETV6::RUNX1 fusion ETV6::RUNX1 Highly distinct ETV6::RUNX1-like Commonly seen with ETV6 
or IKZF1 rearrangements

HLF rearrangement HLF Distinct HLF HLF overexpression

Chromosome number ≥51 Hyperdiploid Distinct Hyperdiploid -

iAMP21 iAMP21 Less distinct iAMP21 iAMP21 can be identified 
by RNAseqCNV

IKZF1 N159Y mutation IKZF1 N159Y Highly distinct IKZF1 N159Y -

KMT2A rearrangement KMT2A Distinct KMT2A -

No KMT2A rearrangement KMT2A Distinct KMT2A-like Minor subtype; reported 
with AFF1 fusion

Chromosome number 
47-50 Hyperdiploid Distinct Low hyperdiploid Less recognized subtype

Chromosome number 
31-39 Low hypodiploid Distinct Low hypodiploid Commonly seen with TP53 

mutations

MEF2D rearrangement MEF2D Highly distinct MEF2D
Commonly seen with 

chromothripsis around 
MEF2D

Chromosome number 
24-30 Hyperdiploid Non-distinct Near haploid Less frequently with GEP 

of Low hypodiploid
NUTM1 rearrangement NUTM1 Less distinct NUTM1 NUTM1 overexpression

PAX5 P80R mutation PAX5 P80R Highly distinct PAX5 P80R Abnormal MEGF10 isoform 
overexpression

PAX5::ETV6 PAX5::ETV6 Distinct PAX5::ETV6 Originally reported as 
PAX5alt

PAX5 alteration PAX5alt Distinct PAX5alt
Featured with PAX5 fusion, 

mutation, or iAmp,  
but not deletion

BCR::ABL1 fusion Ph/Ph-like Distinct Ph
At least two GEP 

subclusters observed 
 within Ph group

Non-Ph kinase-activating 
alteration* Ph/Ph-like Distinct Ph-like Commonly seen with 

kinase activating fusions

TCF3::PBX1 fusion TCF3::PBX1 Highly distinct TCF3::PBX1 Rare fusions with EWSR1 
have been reported

ZNF384 rearrangement ZNF384 Highly distinct ZNF384 Also observed in mixed 
phenotype acute leukemia

No ZNF384 rearrangement ZNF384 Highly distinct ZNF384-like Minor subtype; reported 
with ZNF362 fusion

ZEB2 H1038R mutation 
and/or CEBP fusion ZEB2/CEBP Distinct ZEB2/CEBP Minor subtype

Table 1. Integrative criteria for B-acute lymphoblastic leukemia classification by MD-ALL.

If genetic lesions do not agree with gene expression profile (GEP)-based prediction, genetic lesions determine the primary subtypes, while 
GEP guide the decision on the secondary subtypes. *Gene rearrangements involving ABL1, ABL2, CSF1R, PDGFRA, PDGFRB, LYN, CRLF2, JAK2, 
EPOR, TSLP, TYK2, IL2RB, NTRK3, PTK2B, FGFR1, FLT3, DGKH, BLNK, and CBL. MD-ALL: Molecular Diagnosis of Acute Lymphoblastic Leukemia; 
iAmp: intragenic amplification.
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B-ALL subtypes described above, SingleR41 was used to 
annotate cell types and B-ALL subtypes for each cell.

Results

Characteristics of the RNA-sequencing cohort
In total, 2,955 B-ALL samples with high-quality RNA-seq 
data were included in this study (Online Supplementary 
Table S1). This cohort comprises 67.8% pediatric and 28.4% 
adult cases from different racial/ethnic backgrounds, with 
a relative higher proportion of male patients (56.1%) (On-
line Supplementary Figure S2). Through manual curation 
of the genetic lesions, 3,304 gene rearrangements, 2,979 
sequence mutations, and 95 FLT3 internal tandem dupli-
cations (ITD) were identified (Online Supplementary Tables 
S2-4). Subsequently, sentinel gene fusions and mutations 
were compiled to facilitate B-ALL classification (Online 
Supplementary Tables S5 and S6). Through integration of 
genetic lesions and GEP-based predictions, the cohort 
was classified into 26 molecular subtypes (Figure 1A). In 
summary, this well-curated large cohort encompasses all 
the reported B-ALL subtypes across different age groups, 
sex, and racial/ethnical backgrounds, making it an excellent 
resource for constructing and evaluating B-ALL subtype 
prediction models, as well as advancing our understanding 
of the genetic and transcriptomic features of each B-ALL 
subtype.

High accuracy of gene expression profile-based B-acute 
lymphoblastic leukemia classification by MD-ALL
In order to generate a GEP reference for subtype prediction, 
1,821 samples confirmed by sentinel genetic lesions and 
stable GEP clusters were selected as the training cohort, 
representing 19 B-ALL subtypes with distinct GEP (Figure 
1B). Using this GEP reference cohort, 1,058 feature genes 
were consistently confirmed by the Boruta algorithm in 
eight SMOTE-resampled cohorts (Online Supplementary 
Table S7). Due to the substantial batch effect between mR-
NA-seq and total RNA-seq library preparation approaches 
(Online Supplementary Figure S1), only the protein-coding 
genes were considered for feature selection to accommo-
date both library types. Each feature gene was assigned an 
importance score by Boruta, which was used to rank their 
significance for distinguishing different subtypes. Based 
on the reference cohort and selected feature genes, MD-
ALL employs SVM and PhenoGraph algorithms to predict 
the subtypes of the test samples. Considering that the 
user-provided test RNA-seq data may use different library 
preparation strategies and the sample size may not be suf-
ficient for reliable batch effect correction, our prediction 
models were evaluated using the test samples’ GEP data 
without batch effect correction.
For the training cohort, 100% accuracy was achieved by 
both SVM and PhenoGraph algorithms as expected (Figure 
2A). For the test cohort, subtypes with non-distinct GEP, 
such as Near haploid, and less recognized subtypes, such 

Figure 1. Gene expression profiles of B-acute lymphoblastic leukemia subtypes. The t-distributed stochastic neighbor embedding 
(tSNE) plots display the gene expression profiles (GEP) distribution using 1,058 signature coding genes identified from reference 
B-acute lymphoblastic leukemia (B-ALL) subtypes (see Methods). GEP are derived from bulk RNA-sequencing data, with each 
dot representing an individual sample. A perplexity parameter of 10 was used in tSNE analysis to better visualize the minor sub-
types. B-ALL subtypes are color-coded and annotated, while less recognized ones such as CRLF2 (non-Ph-like), Low hyperdip-
loid, ZNF384-like, KMT2A-like, and unclassified are shown in grey. (A) tSNE plot of 2,955 B-ALL samples, which represents the 
total cohort of this study. (B) tSNE plot of reference samples (N=1,821) from 19 B-ALL subtypes with distinct GEP. For GEP-based 
classification, Ph and Ph-like are combined as one Ph/Ph-like group.
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as Low hyperdiploid and CRLF2 (non-Ph-like), as well as 
unclassified cases were excluded. In order to evaluate 
the performance across different tools, phenocopy sub-
types, including Ph-like, ETV6::RUNX1-like, KMT2A-like, 
and ZNF384-like, were merged with their canonical coun-
terparts to accommodate the different strategies used by 
different tools for identifying them. Moreover, PAX5alt and 
Ph-like subtypes are primarily defined by GEP, but their 
GEP features are less distinct compared with others. In 
order to avoid potential bias of evaluating different tools 
for these two subtypes, only the PAX5alt and Ph-like 
cases confirmed by sentinel genetic lesions (i.e., PAX5 
mutation, fusion, or intragenic amplification in PAX5alt, 
and rearrangements involving kinase activating genes in 
Ph-like; see Table 1) were kept in the test cohort.
Although this study enrolled a large number of samples, 
seven minor subtypes have fewer than 30 qualified sam-
ples, which include BCL2/MYC (N=29), PAX5::ETV6 (N=23), 
ZEB2/CEBP (N=19), NUTM1 (N=18), IKZF1 N159Y (N=14), HLF 
(N=11), and CDX2/UBTF (N=9). Following the training versus 
testing sample size ratio of 2:1 set for the major subtypes, 
fewer than ten samples would be left for testing. There-
fore, a leave-one-out validation was used to evaluate the 
prediction models for these minor subtypes, eventually 
resulting in a test cohort of 974 samples (Online Supple-
mentary Table S8).
Through GEP-based prediction, SVM and PhenoGraph 
successfully classified 971 and 972 samples into distinct 
subtypes, respectively, with high overall accuracy achieved 
in both models (SVM: 96.1%, N=936; PhenoGraph: 92.7%, 
N=903). Despite the high accuracy of both models, SVM 
surpassed PhenoGraph in discerning multiple subtypes 
such as intrachromosomal amplification of chromosome 
21 (iAMP21) and Ph/Ph-like, whereas PhenoGraph demon-
strated superior performance over SVM in identifying the 
ETV6::RUNX1/-like subtype (Figure 2B, C).
In summary, the GEP-based models in MD-ALL can achieve 
high classification rate as well as high accuracy for B-ALL 
classification.

MD-ALL classification is superior compared with 
alternative tools
Currently, there are three alternative tools providing the 
functionality of B-ALL classification, which are ALLSpice,11 
ALLSorts,12 and ALLCatchR.13 The subtype prediction by 
these tools is solely based on GEP; therefore, the com-
parison with them is restricted to the GEP prediction re-
sults of MD-ALL. Additionally, it should be noted that the 
holdout test cohort of this study partially overlaps with 
the training cohort of the other tools, since the majority of 
B-ALL RNA-seq data used in MD-ALL and these alternative 
tools are from our previous study, which comprises 1,988 
B-ALL samples.14 This overlap may lead to overestimated 
accuracy of the alternative tools. Additionally, the PAX-
5::ETV6 fusion, originally reported as one of the sentinel 

alterations of PAX5alt subtype,14 is still considered as PAX-
5alt by other tools. Therefore, the PAX5::ETV6 cases were 
annotated as PAX5alt when comparing the performance 
of different models.
In the same test cohort of 974 samples, a much higher 
number of samples remained unclassified by ALLCatchR 
(N=36), ALLSorts (N=142), and ALLSpice (N=327) when 
compared to MD-ALL. The overall accuracies were 91.3% 
(889/974), 81.2% (791/974), and 58.8% (573/974) for each 
method, respectively, which were significantly lower than 
those achieved by both models in MD-ALL. When con-
sidering only the samples with assigned subtypes, the 
accuracies of ALLCatchR, ALLSorts, and ALLSpice were 
94.8% (889/938), 95.1% (791/832), and 88.6% (573/647), 
respectively (Figure 2B). Therefore, the MD-ALL SVM pre-
diction surpassed all other models in terms of classifi-
cation rate and accuracy. For the MD-ALL PhenoGraph 
model, when evaluating solely the samples classified by 
other tools, the accuracies reached 93.7% (879/938 ALL-
CatchR-classified), 94.8% (789/832 ALLSorts-classified), 
and 97.1% (628/647 ALLSpice-classified), indicating that 
PhenoGraph is also a highly reliable prediction model for 
B-ALL subtyping (Online Supplementary Table S8). Among 
the prediction models, ALLSpice had the lowest number 
of correctly classified samples (N=573). Moreover, key 
B-ALL subtypes, such as Ph-like and ZEB2/CEBP, are not 
included in ALLSpice, significantly limiting its potential 
for clinical use. Therefore, ALLSpice will be excluded from 
further comparisons.
In terms of specificity, MD-ALL (SVM and PhenoGraph), 
ALLCatchR and ALLSorts demonstrated excellent per-
formance for most subtypes. However, differences were 
observed in certain subtypes: MD-ALL algorithms outper-
formed ALLCatchR and ALLSorts in Ph/Ph-like subtype, 
while ALLCatchR and ALLSorts excelled in Hyperdiploid 
subtype (Figure 2C). As for sensitivity, ALLSorts consistent-
ly underperformed compared with MD-ALL and ALLCatchR 
in most subtypes, particularly those with less distinct GEP 
clusters, such as iAMP21 (35.6%), Low hypodiploid (50.0%), 
PAX5alt (72.4%), and Hyperdiploid (70.6%). Of note, ALL-
CatchR performed very well in the test cohort; especially 
in the Ph/Ph-like group, ALLCatchR surpassed both MD-
ALL algorithms in sensitivity (97.2%) at the expense of 
reduced specificity (95.9%) compared to MD-ALL. As both 
MD-ALL SVM and ALLCatchR use the SVM algorithm, the 
high sensitivity levels achieved by these two models are 
anticipated. However, MD-ALL SVM surpassed ALLCatchR 
in terms of sensitivity for multiple major subtypes, such 
as iAMP21 (81.4% vs. 59.3%), PAX5alt (99.0% vs. 79.0%), 
Hyperdiploid (94.5% vs. 89.9%), ETV6::RUNX1/-like (96.0% 
vs. 91.3%), ZNF384 (100% vs. 97.1%), and Low hypodiploid 
(100% vs. 97.5%; Figure 2C)
In conclusion, the GEP-based models in MD-ALL demon-
strate superior performance over alternative tools in B-ALL 
classification, even for the challenging subtypes.
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Continued on following page.

Integrative RNA-sequencing analyses provide reliable 
and definitive B-acute lymphoblastic leukemia 
classification
Although GEP alone can provide highly accurate B-ALL 
classifications, sentinel genetic lesions may take prece-
dence when GEP results are ambiguous or conflict with 
the genetic lesions. Additionally, genetic lesions found in 

the same samples may also lead to different subtypes. For 
example, among the 202 Ph-positive cases in this study, 
22 (10.9%) carry more than 50 chromosomes, which fit the 
definition of Hyperdiploid subtype. Considering the asso-
ciated prognosis and potential benefit of using tyrosine 
kinase inhibitors, Ph subtype overrides Hyperdiploid when 
both sentinel genetic lesions are identified, even though 
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strong Hyperdiploid GEP was observed in eight cases (Online 
Supplementary Table S1). By integrating multiple aspects 
of information, a more well-rounded subtyping result can 
be achieved. For example, 43 Near haploid cases were 
identified based on the total chromosome number (≤30). 
These cases were predicted as Hyperdiploid (N=40) or Low 
hypodiploid (N=3) by our GEP models. Of the three cases 
with Low hypodiploid GEP, they all carry 28 chromosomes, 
which are on the boundary of defining Near haploid and 
Low hypodiploid subtypes. Furthermore, they all carry 
TP53 hotspot mutations with high mutant allele frequency 
(>90%), which resembles the features of Low hypodiploid.42 
Therefore, they should be categorized as Low hypodiploid 
subtype. This scenario highlights the importance of inte-
grating GEP predictions with signature genetic lesions to 
accurately determine the subtypes (Online Supplementary 
Table S1).
In MD-ALL, users can provide raw translocations and se-
quence mutations for integrative B-ALL classification. 
Upon re-analysis of 2,955 RNA-seq samples, 96 sentinel 
gene rearrangements and 587 mutations were identified 
(Online Supplementary Tables S5 and S6). By integrating 
GEP and mutation information, MD-ALL calls RNAseqCNV 
to identify aneuploid subtypes, such as Hyperdiploid, Low 
hypodiploid, Near haploid, and even iAMP21. Our previous 
work on RNAseqCNV33 demonstrated 100% accuracy in 
determining aneuploid subtypes, though iAMP21 detection 
was not mentioned. In this study, we observed high ac-

curacy (35/36) of detecting iAMP21 in B-ALL samples with 
confirmed iAMP21 status (by SNP array), further broadening 
the utility of RNA-seq for defining B-ALL subtypes (Online 
Supplementary Figure S3; Online Supplementary Table S9).
In addition, MD-ALL provides visualization of subtyping re-
sults for test sample in SVM and PhenoGraph models using 
different numbers of genes (Figure 3A). This visualization 
aids in assessing the stability of the subtyping results. Fur-
thermore, a UMAP plot of the test sample mapped to the 
reference cohort using all the feature genes (N=1,058) offers 
an insightful overview of the sample’s relationship to the 
reference (Figure 3B). As certain gene rearrangements are 
strongly associated with specific gene expressions, such as 
CRLF2 overexpression commonly seen in CRLF2-rearranged 
cases, MD-ALL can display a gene’s expression across all 
B-ALL subtypes to verify the reliability of specific fusions or 
subtypes (Figure 3C). The JAK2 p.R683 hotspot mutations, 
known for their high concurrence in CRLF2-rearranged cas-
es,43 further confirm the reliability of the IGH::CRLF2 fusion. 
MD-ALL then compiles all input information to assist the 
final subtype classification. For instance, a sample with an 
IGH::CRLF2 fusion and GEP-based Ph/Ph-like prediction, 
but lacking BCR::ABL1 fusion, can be definitively classified 
as Ph-like (Figure 3D). In order to facilitate definitive B-ALL 
classification for all subtypes, MD-ALL incorporates a 
knowledge-based subtyping guideline that integrates both 
genetic lesions and GEP features (Table 1).
With the technical, biological, and clinical considerations 

Figure 2. High accuracy of B-acute lymphoblastic leukemia subtyping with MD-ALL. (A) A heatmap showing the study cohort 
(N=2,955) highlights B-ALL subtypes and metadata. Each column represents a sample. Two gene expression profile (GEP)-based 
subtype prediction models, support vector machine (SVM) and PhenoGraph, were established within Molecular Diagnosis of Acute 
Lymphoblastic Leukemia (MD-ALL). *Phenocopy subtypes are identified by their similar GEP to their corresponding canonical 
subtypes and are thus annotated with the same colors. For the training/testing annotation, leave-one-out validation was used 
to evaluate the prediction for minor subtypes, which made samples in these subtypes as both training and testing data. Sex 
information was inferred using the package (see Methods), while race/ethnicity information was determined by the iAdmix pack-
age (see Methods). (B) A confusion matrix compares subtype predictions made by MD-ALL and alternative tools. The ground-truth 
subtypes of the 974-sample test cohort are displayed on the left side of each matrix, while prediction results from different 
models are shown at the bottom. The phenocopy subtypes and their corresponding canonical subtypes are merged for evaluation. 
MD-ALL, comprising SVM and PhenoGraph models, is compared with ALLCatchR, ALLSorts, and ALLSpice, with ALLSpice show-
ing the largest number of unclassified samples. (C) Sensitivity and specificity of GEP-based B-ALL classification. The same test 
cohort (N=974) described above was used to evaluate all different models. The ZEB2/CEBP and CDX2 (CDX2/UBTF) subtypes are 
not available in the ALLSorts model. Detailed sensitivity and specificity values are labeled for conditions where they are not 100%. 
The evaluated sample sizes per subtype are annotated in parentheses.

D
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applied in the MD-ALL platform, we developed a deci-
sion-tree-based pipeline to integrate multiple aspects 
of information acquired from RNA-seq to accurately de-
termine B-ALL subtypes and the associated confidence 
score (Figure 4). Basically, a step-by-step process is taken 
for each sample to determine the subtype based on the 
GEP and signature genetic lesions, and then assigns the 
confidence score.
Of the total cohort comprising 2,955 samples, 2,689 (91.0%) 

were classified with high confidence. Among these, 2,682 
(99.7%) were consistent with the manually curated subtypes 
(Online Supplementary Table S10). In the seven samples 
with discrepancies:
• Two curated B-other cases without detectable iAMP21 
alteration were predicted as iAMP21, based on GEP and 
chr21 gain.
• In contrast, two curated iAMP21 cases were defined 
as Hyperdiploid (by GEP and 52 chromosomes) and PAX5alt 

Figure 3. Integrative summary of B-acute lymphoblastic leukemia classification by MD-ALL. (A) Gene expression profile (GEP) 
-based subtype prediction by support vector machine (SVM) and PhenoGraph models. Different numbers of feature genes are 
used in the prediction models to evaluate classification robustness. The test sample was consistently predicted as the Ph sub-
type. (B) The test sample is mapped to a predefined uniform manifold approximation and projection (UMAP) space for visualizing 
GEP-based classification. The UMAP uses 1,058 features genes. The test sample clusters with the Ph/Ph-like group, which agrees 
with the SVM and PhenoGraph prediction. (C) Expression of a specific gene across different B-acute lymphoblastic leukemia 
(B-ALL) subtypes. Ph-like (CRLF2) is shown as a separate group here for confirming CRLF2 rearrangements. Users can specify a 
gene to examine its expression for validating genetic lesions (e.g., overexpression of CRLF2 in CRLF2-rearranged cases) or poten-
tial subtypes. (D) Summary of Molecular Diagnosis of Acute Lymphoblastic Leukemia (MD-ALL) to assist B-ALL classification. The 
genetic lesions, which include fusions, mutations, large-scale copy number variation (CNV), are integrated with GEP-based pre-
diction by PhenoGraph and SVM to assist the classification of the test sample’s B-ALL subtype.
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(by GEP) by MD-ALL, respectively.
• One curated KMT2A-like case was predicted as KMT2A 
subtype, based on GEP and a KMT2A::BIRC3 rearrangement. 
Due to the low confidence in the KMT2A rearrangement, 
which was supported by only four reads, the sample was 
eventually classified as KMT2A-like after manual curation.
• One curated Ph case was classified as Low hypo-
diploid based on GEP and a TP53 mutation. However, this 
classification was overridden and labeled as Ph subtype 
due to the detected BCR::ABL1 fusion.
• One curated ETV6::RUNX1 case with a predicted Ph-
like subtype, because of a strong Ph GEP signature, was 
eventually classified as ETV6::RUNX1 subtype based on an 
ETV6::RUNX1 fusion.
Of the samples with low confidence scores (N=266), 53.0% 
(N=141) are concordant with the manually curated results. 
Approximately half of the 266 samples (N=130) are classified 
as aneuploid or iAMP21 subtypes, which can be easily con-
firmed by manually checking the RNAseqCNV or available 
karyotype information. In the remaining 136 samples, the 
subtypes can be distinguished by checking the GEP-based 
predictions and the signature genetic alterations provided 
by MD-ALL.
In summary, MD-ALL integrates multiple aspects of in-
formation derived from RNA-seq data to provide highly 

accurate and definitive B-ALL classification.

Distinct B-cell differentiation patterns of B-acute 
lymphoblastic leukemia subtypes
Using high-quality scRNA-seq data, we compiled a GEP 
reference consisting of over 10K cells that represent 20 
major blood cell types (see Methods; Figure 5A). Subse-
quently, we used the single-cell GEP reference to decon-
volute the bulk RNA-seq GEP of different B-ALL subtypes 
(Online Supplementary Table S11). Our analysis revealed 
that the PAX5 P80R and KMT2A subtypes carry a strong 
Pro B1 (pre-pro B stage) signature, indicating that they are 
at the very early stage of B-cell development. By contrast, 
the BCL2/MYC subtype exhibits a strong enrichment of 
pre B2 and even immature B-cell signatures (Figure 5B). 
This suggests that the leukemic B cells are more mature, 
which is consistent with the observation that BCL2 and 
MYC rearrangements are more commonly seen in B-cell 
lymphomas,44 a malignancy transformed from more mature 
B lymphocytes. These conclusions agree with clinically 
reported immunophenotypic features of B-ALL subtypes18 
as well as other digital deconvolution reports.45

In order to validate the digital deconvolution results, we 
compared the clinically reported B-cell blast ratio from 70 
B-ALL samples and their inferred B-cell ratio by CIBER-

Figure 4. Integrative B-acute lymphoblastic leukemia classification pipeline. The integrative B-ALL classification pipeline imple-
mented in Molecular Diagnosis of Acute Lymphoblastic Leukemia (MD-ALL) consists of  3 steps: Step 1. Define. In this step, MD-ALL 
integrates gene expression profiles (GEP), signature (sig.) gene expression (expr.), fusions, mutations, and aneuploidies to define 
different B-ALL subtypes. The sequence in which subtypes are defined in this step is carefully orchestrated, primarily following the 
order from the most distinct subtypes, such as the ones in Group A, to less distinct ones, such as the aneuploid and phenocopy 
subtypes. Step 2. Override. Due to the potential overlap of some subtypes, 5 additional rules were implemented to override the 
subtypes defined in Step 1, which include, Ph-like, NUTM1, Low hypodiploid, and Ph. Step 3. Define high confidence score. With the 
subtypes defined in Step 1 and 2, a high confidence score will be assigned if they meet specific criteria, which are developed based 
on the GEP prediction scores and signature genetic alterations. For the less recognized subtypes such as Low hyperdiploid and 
CRLF2 (non-Ph-like), a low confidence is assigned. Hyper.: Hyperdiploid; hypo.: hypodiploid; GEP1 to GEP4 are defined based on the 
GEP prediction by PhenoGraph (PG) and SVM shown in a table. In Step 3, Phenocopy* subtypes include Ph-like, ETV6::RUNX1-like, 
KMT2A-like, and ZNF384-like, and Aneuploidy* subtypes include Near haploid, Hyperdiploid, and Low hypodiploid.
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SORTx, and a high correlation was observed (correla-
tion=0.85; 95% confidence interval [CI]: 0.76-0.9; Figure 
5C; Online Supplementary Table S12). Therefore, digital 
deconvolution can be used to assess the potential nor-
mal cell contamination in bulk samples. In addition, we 
observed that samples without classified subtypes were 
enriched with low B-cell ratio (35.9% of 64 samples have 
<50% B-cell ratio) compared to those with defined sub-
types (3.1% of 2,718 samples have <50% B-cell ratio). This 
finding indicates that contamination of normal cells can 
interfere with classification of B-ALL subtypes.

High sensitivity B-acute lymphoblastic leukemia 
subtyping at a single-cell level
In bulk RNA-seq, it is critical to obtain pure leukemic cells 
prior to RNA-seq assay to ensure that the GEP represents 
the disease. However, in clinical settings, patient sam-
ples often contain a low proportion of leukemic cells. As 
a result, B-cell blasts require proper enrichment prior to 
analysis. Even with B-cell enrichment, samples may still 
be contaminated by normal B-cell blasts, or contain an 
inadequate number of enriched cells for bulk RNA-seq.
In order to address these challenges, we explored the po-
tential of using single-cell GEP to identify B-cell blasts (pro- 
to pre-B cells) using the GEP reference representing major 
blood cell types (Figure 5A). After identifying the blast cells, 

we annotated them to different B-ALL subtypes using the 
GEP reference compiled from bulk RNA-seq (Figure 1B). By 
using public scRNA-seq datasets,46,47 we can reliably (>50% 
of the B-cell blasts are correctly predicted) identify mul-
tiple B-ALL subtypes, such as KMT2A, ETV6::RUNX1/-like, 
Hyperdiploid, Ph, DUX4, MEF2D, PAX5alt, TCF3::PBX1, and 
ZNF384 (Figure 6; Online Supplementary Figure S4), even 
in samples with blast percentages below 20% (Figure 
6B). Furthermore, a cluster of B cells was observed with 
a mixture of different B-ALL subtypes in the KTM2A case 
(Figure 6A), indicating that they are normal B-cell blasts.
In summary, our study highlights the potential of single-cell 
analysis in the sensitive and accurate detection of leuke-
mic cells and their B-ALL subtypes. With the advent of 
more cost-effective scRNA-seq platforms and the con-
tinual decrease in sequencing costs, single-cell analysis 
is expected to revolutionize clinical diagnosis of granular 
disease subtypes.

MD-ALL: an integrative platform for B-acute 
lymphoblastic leukemia classification
MD-ALL integrates both GEP and signature genetic lesions 
to provide a one-stop solution for B-ALL classification. This 
is especially important to distinguish the canonical subtypes 
(e.g., Ph and ETV6::RUNX1) from their phenocopy counter-
parts (e.g., Ph-like, and ETV6::RUNX1-like, respectively). In 

Figure 5. Deconvolution of bulk gene expression profile of B-acute lymphoblastic leukemia subtypes. (A) Uniform manifold ap-
proximation and projection (UMAP) of single-cell gene expression reference of the primary blood cell types. Over 10K cells rep-
resenting 20 primary blood cell types were selected from the 1-Million Immune Cells project (see Online Supplementary Methods). 
(B) Cells are classified into granular B cell differentiation stages, including common lymphoid progenitor (CLP), pro-B1 (early 
pro-B), pro-B2 (late pro-B), pre-B1 (large pre-B), and pre-B2 (small pre-B). HSC: hematopoietic stem cell; LMPP: lymphoid-primed 
multipotential progenitor; DC: dendritic cell; Mye: myelocytes; Pro-mye: promyelocytes; GMP: granulocyte-monocyte progenitor; 
MEP: megakaryocyte-erythrocyte progenitor; NK cell: natural killer cell. (B) Heatmap of different B-acute lymphoblastic leukemia 
(B-ALL) subtypes and their inferred B-cell differentiation stages. For each subtype, the median value of each B-cell stage is cal-
culated and presented in the heatmap. The Euclidean distance and Ward’s minimum variance clustering method were used to 
generate the clusters. (C) Correlation of digitally inferred and clinically reported blast percentage (blast%). The inferred blast% 
is estimated by combining B-lineage cells from pro B1 to mature B stages (see Methods). Seventy samples from a cohort pro-
vided by the ALLSorts package were used in this analysis.
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addition, an interactive graphical interface was provided 
within MD-ALL, making the tool accessible to users with 
limited or no computational background. The minimum 
required input is the raw read count from RNA-seq data. 
The test samples will be normalized against an internal 
reference cohort, which consists of 234 samples repre-
senting all reported subtypes (Online Supplementary Table 
S13). This reference cohort was sequenced using various 
library preparation kits, sequencing lengths, and strand-
ness. Therefore, normalization against this reference helps 

minimize potential batch effects. Users may also provide 
raw output of gene rearrangements and mutations to MD-
ALL to perform automatic filtering and genetic alteration 
identification based on the signature lesions identified in 
the large B-ALL cohort. Subsequently, MD-ALL will inte-
grate the information of genetic alterations and GEP for 
robust B-ALL classification (Figure 7A). Furthermore, MD-
ALL also provides the functionality for single-cell B-ALL 
classification, requiring only the raw read count output 
from standard scRNA-seq analysis (Figure 7B).

Figure 6. B-acute lymphoblastic leukemia subtype classification at a single-cell level. (A). Single-cell RNA sequencing (scRNA-
seq) of a B-acute lymphoblastic leukemia (B-ALL) sample at diagnosis shown in a UMAP plot. The abnormally enriched B-cell 
blasts (pro- to pre-B cells) represent the leukemic cells. With the gene expression profile (GEP) reference of the B-ALL subtypes, 
the majority of the B-cell blasts are reliably predicted as KMT2A subtype, which is consistent with the reported subtype. A small 
cluster (highlighted in a red rectangle) observed with a mixture of different B-ALL subtypes indicates that they are normal B-cell 
blasts. (B) A bar graph shows the distribution of different cell types. Less than 20% of the test sample are B-cell blasts, which 
could be challenging to be accurately identified as KMT2A subtype based on bulk GEP prediction. (C) Heatmap of subtype pre-
diction score shows that over 90% of the B-cell blasts exhibit highly reliable KMT2A GEP signature. Low hypo.: Low hypodiploid; 
CLP: common lymphoid progenitor; HSC: hematopoietic stem cell; LMPP: lymphoid-primed multipotential progenitor; DC: den-
dritic cell; Mye: myelocytes; Pro-mye: promyelocytes; GMP: granulocyte-monocyte progenitor; MEP: megakaryocyte-erythrocyte 
progenitor; NK cell: natural killer cell.
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Thus, with minimal bioinformatics assistance to generate 
the raw information of GEP and genetic lesions, users can 
manage the subsequent analysis using MD-ALL to achieve 
integrative B-ALL classification.

Discussion

In this study, we present the first RNA-seq analysis plat-
form capable of integrating both genetic lesions and GEP 
features for B-ALL classification. For more than 90% of 
the study cohort, the integrative analysis led to highly 
accurate B-ALL classification based on multiple layers of 
information. Additionally, the platform supplies detailed 
information for users to review and adjust the results as 
necessary.

This study is based on one of the largest B-ALL RNA-seq 
cohorts to establish a GEP reference representing all report-
ed B-ALL subtypes, achieving high accuracy and sensitivity 
compared with alternative tools. By integrating genetic le-
sions, which other tools lack, subtypes can be determined 
more accurately, making this approach more feasible for 
future translational application in clinical settings.
Using the GEP reference compiled from bulk RNA-seq, we 
also explored the B-cell differentiation stages of different 
B-ALL subtypes. Our observations confirmed that certain 
B-ALL subtypes are blocked at early B-cell progenitor stag-
es, while others progress to more mature stages. Moreover, 
some subtypes have been observed to have overlapping 
GEP features, such as iAMP21, PAX5alt, and Ph/Ph-like. 
Incorporating distinct B-cell differentiation patterns of dif-
ferent subtypes might be beneficial for better separation 

Figure 7. Summary of integrative B-acute lymphoblastic leukemia classification by MD-ALL. Molecular Diagnosis of Acute Lym-
phoblastic Leukemia (MD-ALL) accepts both bulk and single-cell (sc) RNA-sequencing (RNA-seq) data for B-acute lymphoblastic 
leukemia (B-ALL) classification. (A) Bulk analysis is the main function of MD-ALL, which accepts 3 types of standard output from 
bulk RNA-seq data: translocations (optional; raw output from FusionCatcher and/or CICERO), gene expression read count (re-
quired; called by HTSeq or FeatureCount), and sequence mutations (optional; Variant Call Format [VCF] files called by GATK). 
Based on the input data, four aspects of information will be identified: i) the input translocations are compared with an internal 
reference to identify signature fusion genes; ii) the gene expression data normalized from raw read count are analyzed by support 
vector machine (SVM) and PhenoGraph to predict the subtype and shown in a uniform manifold approximation and projection 
(UMAP) plot; iii) the variants in the provided VCF files are annotated to identify the signature gene mutations; and iv) the gene 
expression and mutation information are integrated by the RNAseqCNV package (see Methods) to identify chromosomal CNV, 
which will assist the identification of aneuploid and intrachromosomal amplification of chromosome 21 (iAMP21) subtypes. Then, 
a comprehensive subtype summary from the 4 aspects of information will be integrated to determine the subtypes of the test 
samples. (B) For scRNA-seq-based B-ALL classification, the input data is a count matrix with genes in rows and cells in columns. 
This read count matrix can be generated from either 3’ or 5’ scRNA-seq libraries using standard analysis pipelines. A basic qual-
ity control analysis is then performed to remove cells or genes with low sequencing coverage (see Online Supplementary Appen-
dix). With the cell type gene expression profile reference, each test cell is annotated and only the B-lineage blast cells, which 
are pro- and pre-B cells, are retained for subsequent B-ALL subtyping, with results summarized in the report.
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of these subtypes.
As genomic analysis advances towards single-cell res-
olution, we have demonstrated the feasibility of using 
GEP reference derived from bulk RNA-seq for accurate 
single-cell B-ALL classification in multiple subtypes. Cur-
rently, generating comparable samples size of single-cell 
data remains challenging due to technological and cost 
limitations. Moreover, scRNA-seq is unable to provide as 
comprehensive transcript abundance as bulk RNA-seq, 
and different scRNA-seq library preparation kits have been 
reported with larger batch effects compared with bulk 
RNA-seq. As a result, bulk RNA-seq remains the optimal 
platform for generating bona fide GEP signatures for each 
B-ALL subtype.
The classification of B-ALL subtypes using RNA-seq is rev-
olutionizing clinical practice. Moreover, genomic data such 
as whole-genome sequencing can provide a more compre-
hensive understanding of genetic alterations. These results 
can further confirm the subtypes identified by RNA-seq. 
Importantly, genetic alterations can further differentiate 
patients within the same subtypes into more granular 
prognosis subgroups, making them critical complementary 
assays for B-ALL classification.48,49

In conclusion, we introduce MD-ALL, a highly reliable and 
accurate bioinformatics platform that serves the research 
and clinical fields for integrative B-ALL classification based 
on bulk or single-cell RNA-seq.
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