Ultra-deep mutational landscape in chronic lymphocytic leukemia uncovers dynamics of resistance to targeted therapies David W. Woolston, 1* Nathan D. Lee, 2* Mazyar Shadman, 1.2* Elena Latorre-Esteves, 2 Xin Ray Tee,² Jeanne Fredrickson,² Brendan F. Kohrn,² Chaitra Ujjani,^{1,2} Ashley Eckel,² Brian Till,^{1,2} Min Fang,^{1,2} Jerald Radich,^{1,2} Ivana Bozic,^{1,2#} Rosa Ana Risques^{2#} and Cecilia C.S. Yeung^{1,2#} ¹Fred Hutchinson Cancer Center and ²University of Washington, Seattle, WA, USA *DWW, NDL, and MS contributed equally as first authors. *IB, RAR, and CCSY contributed equally as senior authors. Correspondence: C. Yeung cyeung@fredhutch.org Received: April 19, 2023. Accepted: September 4, 2023. Early view: September 14, 2023. https://doi.org/10.3324/haematol.2023.283372 ©2024 Ferrata Storti Foundation Published under a CC BY-NC license #### SUPPLEMENTAL METHODS #### **DNA Duplex-seq library preparation** Given the small panel size (4843 bp), two rounds of hybridization capture were performed to increase efficiency.¹ #### **Duplex-seq analysis** Sequencing reads were analyzed using pipeline v2.1.2 available at https://github.com/Kennedy-Lab-UW/Duplex-Seq-Pipeline. First, raw reads were demultiplexed and grouped using the double stranded molecular tag included in the duplex adapters. Reads sharing the same tag were used to produce consensus Single-Strand Consensus Sequence (SSCS) reads. Then, SSCS reads with complementary tags were compared to produce a single, highly accurate Duplex Consensus Sequence (DCS) or "duplex read". Duplex reads were aligned to the human genome reference hg38 (GRCh38), end-trimmed (15 bp at 5', 5 bp at 3'), and overlap-trimmed. Samples with higher-than-average depth were subsampled using Samtools so that the mean depth per sample was similar across all samples from a particular patient. Variants were called using VarDict Java, and output VCF files were converted to MAF files using the Vcf2Maf script (https://github.com/mskcc/vcf2maf) with VEP version 104 and gene transcripts as indicated in Supplemental Table S3.2 Masking was performed for TP53 areas prone to sequencing artifacts. For each sample, total number of sequenced raw reads, mean coding duplex depth, and total number of coding nucleotides were calculated (Supplemental Table S7). In Duplex-seq, the sensitivity of the assay is determined by the duplex depth, which is directly proportional to the input amount of DNA assuming sufficient raw sequencing reads are allocated to build consensus sequences for most molecules.³ Given the size of our library (4843 bp), for 500ng of DNA, we allocated ~15M raw reads per sample to achieve a target duplex depth of ~10,000x. Sequencing data matched expectations except of one sample (R001-D) that had less sequencing raw reads and proportionally lower depth (Supplementary Table S7). This sample was a replicate and was only used for validation analyses. #### **Mutational analysis** R scripts were used to process MAF files using R version 4.2.1 including the Tidyverse library.^{4,5} Variants were discarded if they had depth < 50 reads or were in masked areas. Variants were annotated based on their classification in the MAF file as missense, nonsense, silent, indel, splice, UTR or intronic. Intronic mutations, mutations in UTRs, and mutations in intronic splice regions were considered non-coding. All other mutations were considered coding. Variant allele frequencies (VAF) were calculated by dividing the number of mutant duplex reads (alternative counts) by the duplex depth at the mutated position. Variants that were present in all the samples from a given patient at VAF > 0.9 (homozygous) or VAF between 0.4 and 0.6 (heterozygous) and had a dbSNP identifier were considered single nucleotide polymorphisms (SNP)s (Supplemental Tables S5 and S6). Variants that had a dbSNP identifier, were present in all samples, and had a difference in VAF across samples (maximum minus minimum VAF) >0.2, were considered SNP-loss-of-heterozygosity (SNP-LOH). All variants that were not SNP or SNP-LOH and had depth > 1000 were considered mutations. For each sample, mutation frequency (MF) was calculated as the number of mutant positions in coding regions divided by the total number of duplex nucleotides sequenced in coding regions. #### Calculation of cancer cell fraction (CCF) for variants To study clonal evolution of CLL under therapy, we converted the VAF of each mutation to its CCF (i.e., the fraction of cancer cells containing the mutation), which incorporates the tumor purity of the sample and the ploidy at the genomic location. In Duplex-seq, every duplex read corresponds to an original DNA molecule. While mutations in a single molecule are reliably detected, they are intrinsically subject to higher sampling error given the rarity of the event. Thus, we only focused on mutations detected in two or more molecules in a given sample to increase precision in CCF calculations. In patient R001, we analyzed clonal evolution using the four PB samples (A, B, C, and F) but not the two BMA samples (D, E) because they were technical replicates and collected only nine days after the third PB sample. In patient R002, sample R002-B was determined to have <1% tumor purity and therefore was excluded from clonal evolution analyses, resulting in a total of four samples available for this patient: one PB (E) and three BMA samples (A, C, and D). #### Calculation of variant CCF of heterozygous mutations in a diploid scenario Let r be the total number of duplex reads for mutation i occurring in a diploid region of the genome, with v being the number of variant duplex reads. Then $VAF_i = v/r$. The population of cells in the sample will be a mixture of normal cells and cancer cells. The tumor purity (or the percent disease), p, of a sample is the fraction of cancer cells in the sample. Thus, r(1-p) reads are expected to correspond to normal cells, and rp reads are expected to come from cancer cells. Furthermore, a somatic mutation in a diploid region is typically expected to be present in only one allele of a gene in question. In other words, the fraction of cancer cells containing mutation i is given by: $$CCF_i = \frac{2v}{pr} = \frac{2VAF_i}{p}$$ An exception to this formula was BAX mutation p.E41Gfs*33 in patient R002, which reached a CCF of 100%. BAX is in an autosome (chr. 19). Thus, such high VAF indicates either the mutation occurred independently in both alleles or that the second allele was lost by LOH in most cells. Therefore, for this mutation we use the formula $\frac{VAF_i}{n}$. # Calculation of variant CCF of heterozygous mutations located on X chromosome for male patients Of the genes included in the sequencing panel for this study, all are autosomal, except for BTK which is located on the X chromosome. Since there is only one allele of BTK for male patients, the CCF of BTK mutations is calculated as $\frac{VAF_i}{p}$. This formula is applied for the BTK mutations detected for the male patient R002. #### **Calculation of CCF for LOH** LOH is another type of genetic alteration relatively frequent in CLL. Our panel was not specifically designed to detect LOH, but several heterozygous SNPs were captured and indicated LOH for *TP53* in patient R001. As explained above, the availability of multiple samples allowed determination of LOH based on the comparison of the VAF of heterozygous SNPs across samples. As described in Methods, variants that had a dbSNP identifier, were present in all samples, and had a difference in VAF across samples (maximum minus minimum VAF) > 0.2 were considered SNP-loss of heterozygosity (SNP-LOH). The VAF of these SNPs was used to infer the frequency of cells with SNP-LOH in the sample. To describe the methods in more detail, we consider the case of two SNPs on the two alleles of the same gene, SNPa and SNPb. There is a SNP-LOH in an unknown fraction of cells, x, in the sample, resulting in the loss of the allele containing SNPa. Since SNPa is only present in cells without SNP-LOH, it follows: $$VAF_a = \frac{1-x}{2(1-x)+x} = \frac{1-x}{2-x}$$ The denominator takes into consideration that the total coverage at the locus is 2 in cells without SNP-LOH (frequency = 1 - x) and 1 in cells with SNP LOH (frequency = x), so total average coverage is 2(1 - x) + x. Note that $VAF_a < 0.5$ in this scenario, indicating that SNP_a is affected by LOH. Since SNP_b is present in all cells, we have: $$VAF_b = \frac{1}{2-x}$$. Similarly, $VAF_b > 0.5$, indicating that SNPb is not affected by LOH. The <u>fraction of cells</u> with SNP-LOH in the sample, x, can be calculated from any of the two equations above. To produce a single value of x, we combine the equations for VAF_a and VAF_b , yielding $$x = 1 - \frac{VAF_a}{VAF_b}.$$ To calculate the <u>fraction of cancer cells</u> with SNP-LOH (LOH CCF), we note that SNP-LOH should only be present in the cancer cell population. Thus, the fraction of cancer cells with SNP-LOH is x/p, where p is the tumor purity. To validate our estimates of the *fraction of cells* with SNP-LOH, we cross referenced with clinical cytogenetic data from a combination of karyotype, FISH, and chromosomal genomic array testing (CGAT) on the same samples used for duplex sequencing (Supplemental Table S10). LOH was only observed for *TP53* in patient R001, with estimates very similar to CGAT data. For this patient we then calculated TP53 LOH CCF based on TP53 SNP-LOH (Supplemental Table S10) and tumor purity. *TP53* LOH/deletion was present at CCFs of 80-100% in all the samples (Supplemental Table S11). #### Calculation of variant CCF in the presence of LOH Here we calculate the CCF of a variant located in a gene affected by LOH. In this situation, one allele is mutated, and the other allele is lost. This situation only applied to the *TP53* mutations for patient
R001. We first need to determine x, the fraction of cells with LOH in the sample, using the methodology described in the previous section. Let p be the tumor purity of the sample. If mutation j is present in a fraction f of cancer cells with LOH and in a fraction g of cancer cells without LOH, then $$VAF_i = (fx + g(p - x))/(2 - x)$$ and $CCF_i = (fx + g(p - x))/p$. Combining the two equations, it follows that $$CCF_j = \frac{VAF_j(2-x)}{p}.$$ #### **Digital PCR** Digital polymerase chain reaction (dPCR) was performed using the kits, instrument, and software suite of the QIAcuityTM dPCR system. Custom dPCR LNA® Assays were used to screen for regions and variants of interest. Reaction setups and thermocycling conditions were modified from the QIAcuityTM Probe PCR Kit product insert's protocol; the volume of primer-probe mix was doubled, and the annealing/extension step of the thermocycling conditions was increased to 60 seconds. Wild-type and mutant targets were assayed in a single multiplex reaction, and reactions were performed on a 24-well nanoplate. The PCR template input was 50ng of DNA, which was measured to ensure each positive partition only contained a singlet positive reaction and no doublet positives. Experimental reactions were represented by six replicates. For analysis, the results for the six replicate wells were consolidated into a 6-well hyperwell to achieve screening by 144,000 partitions to augment sensitivity for measurable residual disease. #### SUPPLEMENTAL TABLES Supplemental Table S1. Patient R001 clinical results of peripheral blood and bone marrow. | Not sequenced 0.0 Not sequenced 1.6 Not sequenced 2.4 Not sequenced 2.9 R001-A 4.4 Not sequenced 4.5 Not sequenced 4.6 Not sequenced 4.6 Not sequenced 4.6 Not sequenced 4.6 Not sequenced 4.5 Not sequenced 4.6 Not sequenced 4.5 Not sequenced 5.4 | -1695 -1402 -1232 -687 -660 | -1695 BN
-1402 BN
-1232 BN
-687 P | A 93.9 A 7.2 A 69.5 6 62.0 | NA NA NA NA | NA 46, XX, add(6)(p21.3), der(7)t(7;11)(q22q32), -10, del(11)(q21q23), add(17)(p 11.2), +mar1 [5] / 45, s1, dic(9;18) (p13;q21.3) [3] / 46, s1, add(19)(p13.3), -mar1, +mar2 [8] / 46, XX [4] NA NA 46, XX, add(6)(p21.3), der(7)t(7;11)(q22;q32), -10, del(11)(q21q23), add(12)(p13), add(15(q22), add(17)(p11.2), del(20)(q11.2q13.3), -22, add(22)(q13), +1~2mar[cp14] / 46, XX [6] 46, XX, add(6)(p21.3), der(7)t(7;11)(q22;q21), -10, | NA ish add(6)(MYB+), der(7)(ATM+), del(11)(ATM-), mar1(TPS3+) [2] / add(6)(MYB+), der(7)(ATM+), del(11)(ATM-) mar2(TPS3+) [1]. nuc ish (MYB,ATM,TPS3) x2 [800], (CCND1,IGH) x2 [500], (D12Z3x2) [800], (D13S319-D13S25,163C9) x2 [800] NA NA NA nuc ish (MYBx2, ATMx2, TPS3x1) [128/200] | NA NA NA NA CNAs: 9p21- (2.3 Mb), 10pterq21+ (58 Mb), 10p11- (6.4 Mb), and 17p- in ~60% of cells; Normal for 11q, 12, and | |--|--------------------------------|--|-------------------------------|---|---|---|---| | Not sequenced 2.4 Not sequenced 2.9 R001-A 4.4 Not sequenced 4.5 Not sequenced 4.6 Not sequenced 4.7 | -1402
-1232
-687
-660 | -1402 BN
-1232 BN
-687 P | A 7.2
A 69.5
6 62.0 | NA
NA | del(11)(q21q23), add(17)(p 11.2), +mar1 [5] / 45, s1, dic(9;18) (p13;q21.3) [3] / 46, s1, add(19)(p13.3), -mar1, +mar2 [8] / 46, XX [4] NA NA 46, XX, add(6)(p21.3), der(7)t(7;11)(q22;q32), -10, del(11)(q21q23), add(12)(p13), add(15(q22), add(17)(p11.2), del(20)(q11.2q13.3), -22, add(22)(q13), +1~2mar[cp14] / 46, XX [6] | mar1(TP53+) [2] / add(6)(MYB+), der(7)(ATM+),
del(11)(ATM-) mar2(TP53+) [1]. nuc ish
(MYB,ATM,TP53) x2 [800], (CCND1,IGH) x2 [500],
(D12Z3x2) [800], (D13S319-D13S25,163C9) x2 [800]
NA | NA NA CNAs: 9p21- (2.3 Mb), 10pterq21+ (58 Mb), 10p11- (6.4 Mb), and 17p- in ~60% of cells; Normal for 11q, 12, and | | Not sequenced 2.9 R001-A 4.4 Not sequenced 4.5 Not sequenced 4.6 Not sequenced 4.6 Not sequenced 4.6 Not sequenced 4.7 | -1232
-687
-660 | -1232 BN | A 69.5
6 62.0 | NA | NA 46, XX, add(6)(p21.3), der(7)t(7;11)(q22;q32), -10, del(11)(q21q23), add(12)(p13), add(15(q22), add(17)(p11.2), del(20)(q11.2q13.3), -22, add(22)(q13), +1~2mar[cp14] / 46, XX [6] | NA | NA CNAs: 9p21- (2.3 Mb), 10pterq21+ (58 Mb), 10p11- (6.4 Mb), and 17p- in ~60% of cells; Normal for 11q, 12, and | | R001-A 4.4 Not sequenced 4.5 Not sequenced 4.6 Not sequenced 4.6 Not sequenced 4.6 Not sequenced 4.7 | -687
-660
-636 | -687 P | 62.0 | | 46, XX, add(6)(p21.3), der(7)t(7;11)(q22;q32), -10, del(11)(q21q23), add(12)(p13), add(15(q22), add(17)(p11.2), del(20)(q11.2q13.3), -22, add(22)(q13), +1~2mar[cp14] / 46, XX [6] | | CNAs: 9p21- (2.3 Mb), 10pterq21+ (58
Mb), 10p11- (6.4 Mb), and 17p- in
~60% of cells; Normal for 11q, 12, and | | Not sequenced 4.4 Not sequenced 4.5 Not sequenced 4.6 Not sequenced 4.6 Not sequenced 4.7 | -660
-636 | | | NA | del(11)(q21q23), add(12)(p13), add(15(q22),
add(17)(p11.2), del(20)(q11.2q13.3), -22,
add(22)(q13), +1~2mar[cp14] / 46, XX [6] | nuc ish (MYBx2, ATMx2, TP53x1) [128/200] | Mb), 10p11- (6.4 Mb), and 17p- in ~60% of cells; Normal for 11q, 12, and | | Not sequenced 4.5 Not sequenced 4.6 Not sequenced 4.6 Not sequenced 4.6 Not sequenced 4.7 | -636 | -660 BN | A 78.1 | | | | | | Not sequenced 4.6 Not sequenced 4.6 Not sequenced 4.6 Not sequenced 4.7 | | | | NA | del(11)(q21q23), add(12)(p13), add(14)(q32),
add(17)(p11.2), del(20)(q11.2q13.3), +mar[cp18] /
46, XX [2] | NA | NA | | Not sequenced 4.6 Not sequenced 4.6 Not sequenced 4.7 | | -636 BN | A 33.1 | NA | NA | NA | NA | | Not sequenced 4.6 Not sequenced 4.7 | -617 | -617 P | 0.0 | NA | NA | NA | NA | | Not sequenced 4.7 | -616 | -616 BN | A < 1.0 | NA | 46,XX[21] | NA | NA | | | -591 | -591 P | 0.1 | NA | NA | NA | NA | | R001-B 5.4 | -560 | -560 P | 15.3 | NA | NA | NA | NA | | | -294 | -294 P | 56.0 | NA | 46, X, t(X;18)(p22.1;q21.1), add(1)(q25), add(2)(q33),
add(6)(p21.3), der(7)t(7;11)(q22;q21), -
10,del(11)(q21q23), add(12)(p13), add(17)(p11.2),
del(20)(q11.2q13.3), +mar[cp14] / 46, XX [6] | nuc ish (MYBx2, ATMx2, TP53x1) [153/200] | New aberrations: 1q-, 2q-, and 12q- in
~20% of cells; Persistent aberrations:
9p-, 10p+/-, 10q+, and -17p in ~60% of
cells; Normal for 11q and 13q | | R001-C 6.2 | -15 | -15 P | 70.0† | NA | NA | NA | NA | | R001-D/E* 6.2 | -6 | -6 BN | A 82.7 | TP53 (p.H178D, NM_000546.5:c.532 C>G, VAF 18%) BTK (p.C481S, NM_000061.3:c.144 2G>C, VAF 10%) CARD11 (p.L341M, NM_032415.7:c.102 1C>A, VAF 15%) | 46, XX, add(1)(q25), add(2)(q33), add(6)(p21.3),
der(7)t(7;11)(q22;q21), -10,de1(11)(q21q23),
add(17)(p11.2), +mar[11] / 46, XX [9] | nuc ish (MYBx2, ATMx2, TP53x1) [154/200] | Persistent CNAs: 1 q-, 2q-, 9p-, 10p+,
10p-, 10q+, 12q-, and -17p in ~20-80%
of cells; (specifically -17p = 80%);
Normal for 11q and 13q | | R001-F 6.7 | | 161 P | 95.0† | NA | NA | NA | NA | Abbreviations: Bone marrow aspirate (BMA); Peripheral blood (PB); Variant allele frequency (VAF); Fluorescence *in situ* hybridization (FISH); Chromosomal genomic array testing (CGAT); Copy number alterations (CNAs). ^{*} Samples R001D and R001E are technical replicates from the same bone marrow aspiration procedure (independent specimen processing, DNA extraction and library preparation) [†] No flow-cytometry or ClonoSeq data were available for these specimens. Tumor burden was inferred from CBC WBC counts on the samples' collection dates. Supplemental Table S2. Patient R002 clinical results of peripheral blood and bone marrow. | Experimental sample # | Years post-
diagnosis | Days post-
pirtobrutinib | Tissue | Percent
disease (%) | Hotspot mutation testing variant | Karyotype | FISH | CGAT | |-----------------------|--------------------------|-----------------------------|--------|------------------------|---|--|---|---| | Not sequenced | 12.2 | -797 | ВМА | 9.8 | NA | NA | NA | NA | | Not sequenced | 12.7
| -615 | ВМА | 2.7 | NA | NA | NA | NA | | Not sequenced | 13.1 | -489 | ВМА | 91.0 | NA | NA | NA | NA | | Not sequenced | 13.3 | -428 | РВ | 2.2 | NA | 46, XY, der(1)t(1;8)(q41;q13),
der(7)t(3;7)(q26.1;p21) [9] /
46, XY [11] | Whole blood: nuc ish(MYB,ATM,TP53) x2 [500],
(MYCx3) [29/200], (CDKN2Ax0,D9Z3x2) [12/500],
(D13S319-D13S25,163C9)x2[500]. Enriched abnormal
B-cells: nuc ish (D12Z3x2) [300] | CNAs: 1q41qter- (32 Mb), 3q26qter+ (36 Mb), 7pterp21-
(12 Mb), 8q13qter+ (76 Mb), and 9p21 (1.4 Mb,
CDKN2A); Copy-neutral LOH (cnLOH) of 9pterp13 (35 Mb);
Normal for 11q, 12, 13q, and 17p | | R002-A | 13.5 | -331 | ВМА | 12.9 | NA | 46, XY, der(1)t(1;8)(q41;q13),
der(7)t(3;7)(q26.1;p21) [6] /
46, XY [14] | NA | NA | | R002-B | 13.6 | -294 | ВМА | < 1.0 | NA | 46, XY [20] | NA | NA | | Not sequenced | 13.6 | -288 | ВМА | 75.3 | NA | NA | NA | NA | | R002-C | 14.4 | -6 | вма | 95.0 | MAP2K1 (p.K57N,
NM_002755.3:c.171
G>C, VAF 48%) | 46, XY, der(1)t(1;8)(q41;q13),
der(7)t(3;7)(q26.1;p21) [16] /
46, XY [4] | nuc ish (MYBx2, ATMx3, TP53x2) [18/500] | CNAs: 1q41qter- (29 Mb), 3q26qter+ (35 Mb), 7pterp21- (12 Mb), 8q13qter+ (76 Mb), and 9p21 (1.4 Mb, CDKN2A) in >80% of cells; Copy-neutral LOH (cnLOH) of 9pterp13 (36 Mb) in >80% of cells; Normal for 11q, 12, 13q, and | | Not sequenced | 14.6 | 70 | PB | 88.0 | NA | NA | NA | NA | | R002-D | 14.7 | 82 | вма | 91.0 | TP53 (normal) MAP2K1 (p.K57N, NM_002755.3:c.171 G>C, VAF 43%) SF3B1 (p.E622V, NM_012433.3:c.186 5A>T, VAF 37%) BTK (p.T474I, NM_000061.3:c.142 | NA | nuc ish (MYBx2, ATMx3, TP53x2) [16/500], (D12Z3x2)
[500], (D13S319-D13S25,163C9)x2 [500] | NA | | R002-E | 14.8 | 127 | PB | 95.0* | 1C>T, VAF 6%)
NA | NA | NA NA | NA NA | Abbreviations: Bone marrow aspirate (BMA); Peripheral blood (PB); Variant allele frequency (VAF); Fluorescence *in situ* hybridization (FISH); Chromosomal genomic array testing (CGAT) Copy number alterations (CNAs); Loss of heterozygosity (LOH). ^{*} No flow-cytometry or ClonoSeq data was available for this specimen. Tumor burden was inferred from CBC WBC counts on the sample's collection date. #### Supplemental Table S3. Duplex sequencing gene targets. | Gene | Gene NM | Transcript | Chromosome | Targeted area | Sequenced Exons | Source of Probes | |-------|-------------|-----------------|------------|----------------|-----------------|---| | BAX | NM_004324.4 | ENST00000293288 | 19 | hotspot codons | 3,5 | Integrated DNA Technologies | | BCL2 | NM_000633.3 | ENST00000333681 | 18 | hotspot codons | 1 | Integrated DNA Technologies | | BTK | NM_000061.3 | ENST00000308731 | X | hotspot codons | 10,14,15 | Integrated DNA Technologies | | PLCG2 | NM_002661.5 | ENST00000564138 | 16 | hotspot codons | 18,19,23,26 | Integrated DNA Technologies | | TP53 | NM_000546.6 | ENST00000269305 | 17 | coding | 2-11* | TwinStrand Biosciences Cat. Number 06-1004-XX | ^{*} Probes also covered alternative exons that were considered non-coding for analysis. #### Supplemental Table S4. Custom probes for hotspots. | Gene | Probe ID | Codina
Exon | Coordinates of Probe (hg38) | Probe Sequence | |-------|------------------------------------|----------------|-----------------------------|--| | BCL2 | 693383_32637003_BCL2(596)_1a_12 | 1 | chr18: 60985589-60985709 | ACCCGGTCGCCAGGACCTCGCCGCTGCAGACCCCGGCTGCCCCCGGCGCCGCCGCCGCGGGGCCTCAGCCCGGTGCCACCTGTGGTCCACCTGACCCTCCGCCAGGCCGACGACT | | | 693383_32637003_BCL2(596)_1a_13 | | chr18: 60985529-60985649 | CTGCGCTCAGCCCGGTGCCACCTGTGGTCCACCTGACCCTCCGCCAGGCCGGCGACGACTTCTCCCGCCGCCGCCGCCGCCGACTTCGCCGAGATGTCCAGCCAG | | BAX | 693383_32636999_BAX(581)_3_2 | 3 | chr19: 49458927-49459047 | TCCATCCCCACTCTAGTTTCATCCAGGATCGAGCAGGGCGAATGGGGGGGG | | | 693383_32636999_BAX(581)_3_3 | | chr19: 49458987-49459107 | AGCTGGCCCTGGACCCGGTGCCTCAGGATGCGTCCACCAAGAAGCTGAGCGAGTGTCTCAAGCGCATCGGGGACGAACTGGACAGTAACATGGAGCTGCAGAGGTGTGGGCCCCTGAGGA | | | 693383_32637001_BAX(581)_6.1_4 | 5 | chr19: 49464171-49464291 | GTGAGACTCCTCAAGCCTCCTCACCCCCACCACCGCCCCTCACCACCGCCCCTGCCCCCGCCCCCCGCCCACTCCTCTGGGACCCTTCTGGAGCAGGTCACAGTGG | | | 693383_32637001_BAX(581)_6.1_5 | | chr19: 49464231-49464351 | CCGTCCCTGCCCCCCCCCCCCCCCTCTCTGGGACCCTGGGCCTTCTGGAGCAGGTCACAGTGGTGCCCTCTCCCCCATCTTCAGATCATCAGATGTGGTCTATAATGCGTTTTCCTTACGTGTC | | ВТК | 693383_32637018_BTK(695)_15a_2 | 15 | chrX: 100611148-100611268 | CCTTTCCTGTAGGAATCTTTCCCATGAGAAGCTGGTGCAGTTGTATGGCGTCTGCACCAAGCAGCGCCCCATCTTCATCATCACTGAGTACATGGCCAATGGCTGCCTCCTGAACTACCT | | | 693383_32637018_BTK(695)_15a_3 | | chrX: 100611088-100611208 | GCAGCGCCCCATCTTCATCATCACTGAGTACATGGCCAATGGCTGCCTCCTGAACTACCTGAGGGAGATGCGCCACCGCTTCCAGACTCAGCAGCTGCTAGAGATGTGCAAGGATGTCTG | | | 693383_32637019_BTK(695)_16a_1 | 16 | chrX: 100609650-100609770 | TGGCTTCATTCTACTGGTCAGCAGAAGCTTTGTGCCCTTTAACCTCTGTGCTGGGGACGGAGTCTCACTGGTCTCTGTTTGCACTACAGGCAGCTCGAAACTGTTTGGTAAACGATCAAGG | | | 693383_32637019_BTK(695)_16a_2 | | chrX: 100609590-100609710 | GTCTCACTGGTCTCTGTTTGCACTACAGGCAGCTCGAAACTGTTTGGTAAACGATCAAGGAGTTGTTAAAGTATCTGATTTCGGCCTGTCCAGGTGAGTGTGGCTTTTTCACTTTTCCCT | | | 693383_32637014_BTK(695)_11a_2 | 11 | chrX: 100613584-100613704 | CTTCTTTTTCGTTGTTTCAGGGGAAAGAAGAAGAGGTTTCATTGTCAGAGACTCCAGCAAAGCTGGCAAATATACAGTGTCTGTGTTTGCTAAATCCACAGGGTGAGTGCTACTATTCCAAG | | | 693383_32637014_BTK(695)_11a_3 | | chrX: 100613524-100613644 | CTGGCAAATATACAGTGTCTGTGTTTGCTAAATCCACAGGGTGAGTGCTACTATTCCAAGGCCCTGAGGACAAAGAACAGGGGTACCCTCCTAATAGCTCCTTGATGCTGTGCCCGTCCC | | PLCG2 | 693383_32637040_PLCG2(5336)_19_2 | 19 | chr16: 81946171-81946291 | CTGGTCGTTTTCCCTGGCCCTGTGCCGCAGGTGGTACTATGACAGCCTGAGCCGCGGAGAGGCAGAGGCATGCTGATGAGGATTCCCCGGGACGGGGCCTTCCTGATCCGGAAGCGAGA | | | 693383_32637040_PLCG2(5336)_19_3 | | chr16: 81946231-81946351 | GGCAGAGGACATGCTGATGAGGATTCCCCGGGACGGGGCCTTCCTGATCCGGAAGCGAGAGGGGAGCGACTCCTATGCCATCACCTTCAGGTGGGTG | | | 693383_32637041_PLCG2(5336)_20.1_2 | 20 | chr16: 81953054-81953174 | TTGGCATGTCAACCCTGTGTTCTTCCTGCTCCAGGGCTAGGGGCAAGGTAAAGCATTGTCGCATCAACCGGGACGGCCGGC | | | 693383_32637041_PLCG2(5336)_20.1_3 | | chr16: 81953113-81953233 | CGCATCAACCGGGACGGCCGGCACTTTGTGCTGGGGACCTCCGCCTATTTTGAGAGTCTGGTGGAGCTCGTCAGTTACTACGAGAAGCATTCACTCTACCGAAAGATGAGACTGCGCTAC | | | 693383_32637041_PLCG2(5336)_20.1_4 | ļ. | chr16: 81953172-81953292 | GGTGGAGCTCGTCAGTTACTACGAGAAGCATTCACTCTACCGAAAGATGAGACTGCGCTACCCCGTGACCCCCGAGCTCCTGGAGCGCTACAATATGGTAGGTGGTGGACTCCCTTGTGA | | | 693383_32637045_PLCG2(5336)_24_1 | 24 | chr16: 81962076-81962196 | TCTGCTAAACGGTGTGCTTTGGAAACGGGTTTTCTTTTTATTATTCCCGTTACAACTAACGTGAGTTATGTCTTGTTTCTTCACAGATTATTGAAGACAATCCCTTAGGGTCTCTTTGCA | | | 693383_32637045_PLCG2(5336)_24_2 | | chr16: 81962136-81962256 | GTGAGTTATGTCTTGTTTCTTCACAGATTATTGAAGACAATCCCTTAGGGTCTCTTTGCAGAGGAATATTGGACCTCAATACCTATAACGTCGGTACGTGCACACATCATCTTAGCCTGG | | | 693383_32637049_PLCG2(5336)_28_3 | 27 | chr16: 81969818-81969938 | CTGACAGCATCATCAGACAGAAGCCCGTCGACCTCCTGAAGTACAATCAAAAGGGCCTGACCCGCGTCTACCCCAAAGGGACAAAGAGTTGACTCTTCAAACTACGACCCCTTCCGCCTCT | | | 693383_32637049_PLCG2(5336)_28_4 | | chr16: 81969878-81969998 | CCCGCGTCTACCCAAAGGGACAAAGAGTTGACTCTTCAAACTACGACCCCTTCCGCCTCTGGCTGTCGCGGTTCTCAGATGGTGGCACTCAATTTCCAGACGGCAGGTAAAGGCCGACTGA | Supplemental Table S5. Patient R001 duplex sequencing SNP data. | Chromosome | C | Position | HGVSc | HGVSp | 7i. | LOH | R001-A | R001-B | R001-C | R001-D | R001-E | R001-F | R001-A duplex | R001-B duplex | R001-C duplex | R001-D duplex | R001-E duplex | R001-F duplex | R001-A duplex | R001-B duplex | R001-C duplex | R001-D duplex | R001-E duplex | R001-F duplex | |------------|-------|-----------|---------------|--------|----------------|---------|--------|--------|--------|--------|--------|--------|---------------|---------------|---------------|---------------|---------------|---------------|------------------|------------------|------------------|------------------|------------------|------------------| | Chromosome | Gene | Position | nuvsc | Short | Zygosity | LUH | VAF | VAF | VAF | VAF | VAF | VAF | depth | depth | depth | depth | depth | depth | mutant molecules | | chr16 | PLCG2 | 81912361 | c.1935-236C>T | NA | Heterozygous | no | 0.5071 | 0.5005 | 0.4946 | 0.5027 | 0.5000 | 0.4875 | 1485 | 1882 | 1486 | 1098 | 1394 | 1887 | 753 | 942 | 735 | 552 | 697 | 920 | | chr16 | PLCG2 | 81912818 | c.2054+102C>T | NA. | Heterozygous | no | 0.4946 | 0.5041 | 0.5079 | 0.5060 | 0.5085 | 0.5099 | 7528 | 7437 | 7871 | 4844 | 7292 | 7403 | 3723 | 3749 | 3998 | 2451 | 3708 | 3775 | | chr16 | PLCG2 | 81912866 | c.2054+150G>T | NA. | Heterozygous | no | 0.5031 | 0.5134 | 0.5138 | 0.5052 | 0.5082 | 0.5069 | 4798 | 4866 | 4994 | 3078 | 4658 | 4841 | 2414 | 2498 | 2566 | 1555 | 2367 | 2454 | | chr16 | PLCG2 | 81912881 | c.2054+165G>A | NA. | Heterozygous | no | 0.5012 | 0.5085 | 0.5032 | 0.5023 | 0.5063 | 0.5042 | 4068 | 4240 | 4187 | 2580 | 3893 | 4159 | 2039 | 2156 | 2107 | 1296 | 1971 | 2097 | | chr16 | PLCG2 | 81913109 | c.2054+393T>C | NA | Heterozygous | no | 0.4821 | 0.4831 | 0.4891 | 0.4972 | 0.4444 | 0.4801 | 195 | 296 | 184 | 181 | 117 | 377 | 94 | 143 | 90 | 90 | 52 | 181 | | chr16 | PLCG2 | 81919162 | c.2055-322C>G | NA | Heterozygous | no | 0.4945 | 0.5154 | 0.4810 | 0.4938 | 0.5114 | 0.4851 | 457 | 586 | 447 | 563 | 352 | 1142 | 226 | 302 | 215 | 278 | 180 | 554 | | chr16 | PLCG2 | 81919476 | c.2055-8T>C | NA | Homozygous | NA | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 1.0000 | 12705 | 12418 | 14084 | 10028 | 13263 | 15278 | 12705 | 12418 | 14084 | 10028 | 13262 | 15278 | | chr16 | PLCG2 | 81919763 | c.2235+99A>G | NA | Homozygous | NA | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 5651 | 6058 | 6218 | 4157 | 5820 | 6894 | 5651 | 6058 | 6218 | 4157 | 5820 | 6894 | | chr16 | PLCG2 | 81936242 | c.2916C>T | p.V972 | = Heterozygous | no | 0.4954 | 0.4858 | 0.4872 | 0.4856 | 0.4867 | 0.4919 | 12273 | 12045 | 13394 | 9028 | 13043 | 13958 |
6080 | 5851 | 6526 | 4384 | 6348 | 6866 | | chr16 | PLCG2 | 81936583 | c.3052+205C>G | NA. | Homozygous | NA | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1716 | 2001 | 1709 | 1200 | 1607 | 2647 | 1716 | 2001 | 1709 | 1200 | 1607 | 2647 | | chr17 | TP53 | 7670065 | c.1101-375G>A | NA. | Heterozygous | SNP-LOH | 0.3411 | 0.2966 | 0.3095 | 0.1489 | 0.1074 | 0.0815 | 214 | 263 | 168 | 188 | 121 | 466 | 73 | 78 | 52 | 28 | 13 | 38 | | chr17 | TP53 | 7674797 | c.672+62A>G | NA | Homozygous | NA | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 10438 | 10545 | 10873 | 6588 | 9298 | 8806 | 10438 | 10545 | 10873 | 6588 | 9298 | 8806 | | chr17 | TP53 | 7675327 | c.376-91G>A | NA | Homozygous | NA | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 6273 | 6241 | 6708 | 3982 | 5542 | 5575 | 6273 | 6241 | 6708 | 3982 | 5542 | 5575 | | chr17 | TP53 | 7675519 | c.376-283T>C | NA | Homozygous | NA | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1935 | 2354 | 2007 | 1212 | 1501 | 2065 | 1935 | 2354 | 2007 | 1212 | 1501 | 2065 | | chr17 | TP53 | 7676154 | c.215C>G | p.P72F | R Homozygous | NA | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 11609 | 11461 | 12576 | 8478 | 10425 | 9927 | 11609 | 11461 | 12576 | 8478 | 10425 | 9927 | | chr17 | TP53 | 7676278 | c.97-6C>T | NA | Heterozygous | SNP-LOH | 0.6998 | 0.6943 | 0.7055 | 0.8191 | 0.8300 | 0.9120 | 10636 | 10400 | 11231 | 7993 | 9500 | 9263 | 7443 | 7221 | 7924 | 6547 | 7885 | 8448 | | chr19 | BAX | 48955313 | c.35-235T>C | NA | Heterozygous | no | 0.5243 | 0.5025 | 0.4384 | 0.5422 | 0.4762 | 0.4938 | 103 | 197 | 73 | 83 | 63 | 162 | 54 | 99 | 32 | 45 | 30 | 80 | | chr19 | BAX | 48955847 | c.233+14A>G | NA | Heterozygous | no | 0.5014 | 0.4904 | 0.4985 | 0.4909 | 0.4913 | 0.4992 | 11637 | 11512 | 12704 | 6851 | 11967 | 10932 | 5835 | 5646 | 6333 | 3363 | 5879 | 5457 | | chr19 | BAX | 48955955 | c.233+122A>G | NA | Homozygous | NA | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 5001 | 5221 | 5483 | 3209 | 5156 | 5504 | 5001 | 5221 | 5483 | 3209 | 5156 | 5504 | | chrX | BTK | 101354559 | c.1631+71C>T | NA | Homozygous | NA | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 8105 | 8008 | 8306 | 6877 | 8858 | 10500 | 8105 | 8008 | 8306 | 6877 | 8858 | 10500 | | chrX | BTK | 101356297 | c.1350-29A>G | NA | Heterozygous | no | 0.5157 | 0.5304 | 0.5071 | 0.5113 | 0.5206 | 0.4931 | 9096 | 9214 | 9378 | 6703 | 10062 | 10073 | 4691 | 4887 | 4756 | 3427 | 5238 | 4967 | Abbreviations: Single nucleotide polymorphisms (SNP); Human Genome Variation Society nomenclature (HGVSc); Loss of heterozygosity (LOH); Variant allele frequency (VAF); Not applicable (NA). * SNP-LOH were SNPs present in all samples with difference in VAF across samples (maximum minus minimum VAF) > 0.2. Supplemental Table S6. Patient R002 duplex sequencing SNP data. | | | | | HGVSp | | - | B003 A | DOO2 D | B003 C | D003 F |) DOO2 E | DOO2 A duploy | DOO'S P duploy | POOR Calumbay | R002-D duplex | DOO2 Edunlar | R002-A duplex | R002-B duplex | R002-C duplex | R002-D duplex | R002-E duplex | |------------|-------|-----------|-----------------|--------|--------------|-------|--------|--------|--------|--------|----------|---------------|----------------|---------------|---------------|--------------|---------------|---------------|------------------|---------------|---------------| | Chromosome | Gene | Position | HGVSc | | Zygosity | LOH | | | | | | | • | | | • | • | | | | | | | | | | Short | | | VAF | VAF | VAF | VAF | | depth | depth | depth | depth | depth | | | mutant molecules | | | | chr16 | PLCG2 | 81912818 | c.2054+102C>T | NA | Homozygous | NA | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 6432 | 5829 | 6165 | 6038 | 5442 | 6432 | 5829 | 6165 | 6038 | 5442 | | chr16 | PLCG2 | 81912866 | c.2054+150G>T | NA | Homozygous | NA | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 4108 | 3779 | 4014 | 3791 | 3353 | 4108 | 3779 | 4014 | 3791 | 3353 | | chr16 | PLCG2 | 81919162 | c.2055-322C>G | i NA | Homozygous | NA | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 749 | 702 | 655 | 625 | 191 | 749 | 702 | 655 | 625 | 191 | | chr16 | PLCG2 | 81919219 | c.2055-265T>C | NA | Homozygous | NA | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1222 | 1282 | 1137 | 1110 | 488 | 1222 | 1282 | 1137 | 1110 | 488 | | chr16 | PLCG2 | 81919431 | 2055-50_2055-47 | 7c NA | Heterozygous | no no | 0.4925 | 0.4859 | 0.4827 | 0.4920 | 0.4974 | 9664 | 9655 | 9409 | 9642 | 8385 | 4760 | 4691 | 4542 | 4744 | 4171 | | chr16 | PLCG2 | 81919476 | c.2055-8T>C | NA | Homozygous | NA | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 12439 | 12144 | 11890 | 12126 | 11396 | 12439 | 12144 | 11890 | 12126 | 11396 | | chr16 | PLCG2 | 81919763 | c.2235+99A>G | NA | Homozygous | NA | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 5453 | 5637 | 5264 | 5510 | 3749 | 5453 | 5637 | 5264 | 5510 | 3749 | | chr16 | PLCG2 | 81928268 | c.2515-290G>T | NA. | Homozygous | NA | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1306 | 1337 | 1077 | 1238 | 248 | 1306 | 1337 | 1077 | 1238 | 248 | | chr16 | PLCG2 | 81928466 | c.2515-92A>C | NA | Homozygous | NA | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 8418 | 8682 | 8358 | 8557 | 5809 | 8418 | 8682 | 8358 | 8557 | 5809 | | chr17 | TP53 | 7674797 | c.672+62A>G | NA | Homozygous | NA | 0.9998 | 1.0 | 1.0 | 1.0 | 1.0 | 12033 | 11623 | 12568 | 12077 | 10325 | 12031 | 11623 | 12568 | 12077 | 10325 | | chr17 | TP53 | 7675327 | c.376-91G>A | NA | Homozygous | NA | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 7923 | 7630 | 7927 | 7700 | 6646 | 7923 | 7630 | 7927 | 7700 | 6646 | | chr17 | TP53 | 7675519 | c.376-283T>C | NA | Homozygous | NA | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 2510 | 2373 | 2368 | 2236 | 844 | 2510 | 2373 | 2368 | 2236 | 844 | | chr17 | TP53 | 7676154 | c.215C>G | p.P72R | Homozygous | NA | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 13461 | 12771 | 13976 | 13424 | 14830 | 13461 | 12771 | 13976 | 13424 | 14830 | | chr18 | BCL2 | 63318646 | c.21A>G | p.T7= | Homozygous | NA | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1294 | 938 | 1029 | 745 | 1039 | 1294 | 938 | 1029 | 745 | 1039 | | chr19 | BAX | 48955513 | c.35-35A>C | NA | Heterozygous | no no | 0.4864 | 0.5027 | 0.4846 | 0.5096 | 0.4809 | 1583 | 1647 | 1525 | 1513 | 863 | 770 | 828 | 739 | 771 | 415 | | chr19 | BAX | 48955847 | c.233+14A>G | NA | Homozygous | NA | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 10047 | 9811 | 9559 | 9889 | 9058 | 10047 | 9811 | 9559 | 9889 | 9057 | | chr19 | BAX | 48955955 | c.233+122A>G | NA | Homozygous | NA | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 4539 | 4417 | 4317 | 4265 | 3256 | 4539 | 4417 | 4317 | 4265 | 3256 | | chrX | BTK | 101354559 | c.1631+71C>T | NA | Homozygous | NA | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 5128 | 4992 | 5147 | 4975 | 3812 | 5128 | 4992 | 5147 | 4975 | 3812 | Abbreviations: Single nucleotide polymorphisms (SNP); Human Genome Variation Society nomenclature (HGVSc); Loss of heterozygosity (LOH); Variant allele frequency (VAF); Not applicable (NA). Supplemental Table S7. Duplex sequencing summary by sample. | Patient/
Sample
Code | Sample
type | Age at collection date | Days post-
pirtobrutinib | Percent
disease
(%) | Raw reads
(paired end) | Mean coding duplex depth | Coding nucleotides | Coding mutations | Coding
MF | Included for clonal evolution analysis | |----------------------------|----------------|------------------------|-----------------------------|---------------------------|---------------------------|--------------------------|--------------------|------------------|--------------|--| | R001-A | РВ | 65.4 | -687 | 62.0 | 15,073,850 | 10227 | 32152379 | 27 | 8.40E-07 | yes | | R001-B | РВ | 66.5 | -294 | 56.0 | 15,956,920 | 10185 | 32021158 | 25 | 7.80E-07 | yes | | R001-C | РВ | 67.3 | -15 | 70.0 | 15,708,831 | 11170 | 35120001 | 41 | 1.20E-06 | yes | | R001-D* | ВМА | 67.3 | -6 | 82.7 | 9,925,204 | 7812 | 24404287 | 32 | 1.30E-06 | no | | R001-E* | ВМА | 67.3 | -6 | 82.7 | 15,019,519 | 10236 | 32152220 | 37 | 1.20E-06 | no | | R001-F | РВ | 67.8 | 161 | 95.0 | 19,197,071 | 10510 | 33042090 | 67 | 2.00E-06 | yes | | R002-A | ВМА | 72.2 | -331 | 12.9 | 16,354,256 | 9192 | 28643615 | 31 | 1.10E-06 | yes | | R002-B | ВМА | 72.3 | -294 | < 1.0 | 18,129,500 | 9190 | 28314575 | 20 | 7.10E-07 | no | | R002-C | ВМА | 73.1 | -6 | 95.0 | 16,470,890 | 9347 | 29042549 | 31 | 1.10E-06 | yes | | R002-D | ВМА | 73.3 | 82 | 91.0 | 17,769,765 | 9320 | 28548364 | 46 | 1.60E-06 | yes | | R002-E | РВ | 73.4 | 127 | 95.0 | 15,884,332 | 9605 | 29639794 | 65 | 2.20E-06 | yes | Abbreviations: Peripheral blood (PB); Bone marrow aspirate (BMA); Mutation frequency (MF). * Samples R001D and R001E are technical replicates of the same specimen. **Supplemental Table S8. List of coding mutations detected in samples from patient R001.** The asterisks in the column "HGVSp Short" are standard Human Genome Variation Society nomenclature and do not represent footnotes. VAF > 0.01 are color coded in red/pink. Abbreviations: Human Genome Variation Society nomenclature (HGVSc); Variant allele frequency (VAF). ^{*} BTKi resistance mutations and codons according to Kittai et al.⁶ [†] Samples R001-D and R001-E are technical replicates of the same specimen. **Supplemental Table S9. List of coding mutations detected in samples from patient R002.** The asterisks in the column "HGVSp Short" are standard nomenclature for amino acid variants and do not represent footnotes. VAF > 0.01 are color coded in red/pink. | Chromosom | e Gene | Start
Position | HGVSc | HGVSp
Short | BTKi
resistance | resistance | Number of
samples wit | h>1 | | | 002-D R002-E
VAF VAF | R002-A
duplex | R002-B
duplex | R002-C
duplex | R002-D
duplex | R002-E
duplex | R002-A duplex
mutant | R002-B duplex
mutant | R002-C duplex
mutant | mutant | mutant | |-------------------------|--------------|-------------------------------------|--------------------------------------|--------------------------------------|-----------------------|-----------------|--------------------------|----------------------------|------------------
----------|---|----------------------|----------------------|----------------------|----------------------|----------------------|-------------------------|-------------------------|-------------------------|------------------------|------------------------| | chr19
chr19 | BAX | 48955709
48955713 | c.109C>T
c.121dup | p.R37*
p.E41Gfs*33 | mutation*
NA
NA | NA
NA | mutant mole | 0.0118 | 0.0003 | 0.0010 0 | 0.0003 0.0003
0.8253 0.9947 | 9706
9814 | 9822
9858 | 8385
8460 | 8739
8817 | 7802
7859 | molecules
116 | molecules
3 | molecules
8
7474 | molecules
3
7349 | molecules
2
7909 | | chr19 | BAX | 48955713
48955714 | c.121dup
c.120_121dup
c.121del | p.E41Gfs*20
p.E41Rfs*19 | NA
NA | NA
NA | 3 | 0.0018 | | 0.0020 0 | 0.0025 0.0024
0.0002 0.0001 | 9814
9814
9750 | 9858
9822 | 8460
8456 | 8817
8802 | 7859
7859
7873 | 2 | | 17
5 | 22 2 | 19 | | chr19 | BAX | 48955780
48955579 | c.180C>T
c.66_67del | p.541RIS 19
p.560=
p.A24Pfs*49 | NA
NA | NA
NA | 2 | 0.0002 | 0.0010 | | 0.0001 | 9971
3168 | 9983
3211 | 9418
3122 | 9581
3204 | 9571
2378 | 2 | 10 | 1 | 2 | 1 | | chr19 | BAX | 48955583
48955596 | c.70G>T
c.86+1dup | p.A24S
NA | NA
NA | NA
NA | 0 | 0.0003 | | 0.0003 | 0.0004 | 3466
4172 | 3485
4191 | 3392
3991 | 3463
4110 | 2637
3257 | | | 1 | | 1 | | chr19 | BAX | 48955597
48955775 | c.84G>T
c.175C>G | p.Q28H
p.L59V | NA
NA | NA
NA | 0 | | 0.0001 | | 0.0003 | 4234
9942 | 4259
9981 | 4062
9388 | 4172
9557 | 3314
9515 | | | | | 1 | | chr19 | BAX | 48955785 | c.185_192del | p.C62Sfs*9 | NA | NA | 0 | 0.0001 | 0.0001 | | | 9838 | 9879 | 9378 | 9534 | 9498 | 1 | 1 | | | | | chr19 | BAX | 48955799
48960824 | c.199G>A
c.385del | p.G67R
p.V129Cfs*4 | NA
NA | NA
NA | 0 | 0.0001
0.0002
0.0002 | | | | 10001
4569 | 9978
4249 | 9711
4431 | 9839
4242 | 9776
4121 | 1 | | | | | | chr19
chr19 | BAX | 48960873
48960915 | c.433C>T
c.475G>A | p.R145W
p.V159M | NA
NA | NA
NA | 0 | 0.0001 | | | | 5894
6671 | 5465
6151 | 5655
6344 | 5594
6430 | 5895
7007 | 1 | | | | | | chr19
chr19 | BAX | 48960968
48960982
48960983 | c.528T>A
c.542T>A | p.P176=
p.L181Q | NA
NA | NA
NA | 0 | | 0.0001 | | .0001 | 7510
8217 | 6972
7707 | 7213
7964 | 7181
7858 | 7973
8587
8553 | | 1 | | 1 | | | chr19
chr19 | BAX | 48961076 | c.549dup
c.636T>A | p.A184Rfs*29
p.N212K | NA | NA
NA | 0 | | | 0.0001 | 0.0001 | 8171
8290 | 7679
8072 | 7912
8139 | 7822
8247 | 8059 | | | 1 | | 1 | | chr19
chr18
chr18 | BCL2
BCL2 | 48961080
63318259
63318358 | c.640T>C
c.408G>T
c.309C>T | p.F214L
p.E136D
p.D103= | NA
NA
NA | NA
NA
NA | 0 | | | | 0.0001
0.0002 | 8041
5171
6947 | 7846
5298
7064 | 7926
5132
6785 | 8040
4867
6112 | 7782
5555
8963 | | | | 1 | | | chr18
chr18 | BCL2
BCL2 | 63318411 | c.256C>T | p.L86F | NA
NA | NA | 0 | | | | 0.0001 | 7213 | 7095
7075 | 6759
6748 | 6203
6284 | 9250
9115 | | | | | 1 | | chr18
chr18 | BCL2
BCL2 | 63318426
63318438
63318560 | c.241G>A
c.229G>T
c.107G>T | p.A81T
p.A77S | NA
NA | NA
NA
NA | 0 | | | | 0.0001 | 7138
6897
4190 | 6785
3526 | 6517
3471 | 6150
2765 | 8682
4472 | | | | | 1 | | chr18
chr18 | BCL2 | | c.10/G>T
c.67C>T
c.1450A>G | p.G36V
p.L23=
p.N484D | NA
NA | NA
NA
NA | 0 | | | | 0.0002
1.0007 | 4190
2438
6436 | 1965
6573 | 3471
1968
6904 | 1500
6776 | 2355
6542 | | | 60 | 1 20 | 4 | | chrX | BTK | 101356168
101356177
101356197 | c.1450A>6
c.1441T>C
c.1421C>T | p.C481R | YES
NO | YES
YES | 3 | | | 0.0023 0 | 0.0030 0.0006
0.0092 0.0031
0.0386 0.0203 | 6386
6376 | 6554
6532 | 6865
6816 | 6764
6796 | 6543
6606 | | | 16
2 | 62
262 | 20
134 | | chrX | BTK | 101358689 | c.902A>G | p.T474I
p.E301G | NA | NA | 3 | | | 0.0003 0 | .0005 0.0003 | 6009 | 5941 | 6157 | 6142 | 5915 | | | 2 | 3 | 2 2 | | chrX | BTK | 101356197 | | p.T474N
p.Q459P | NO
NA | YES
NA | 2 | | | 0 | .0010 0.0003
.0005 0.0003 | 6376
5849 | 6532
6057 | 6816
6362 | 6796
6438 | 6606
5859 | | | | 3 | 2 | | chrX | BTK | 101358645
101354679
101356176 | | p.T316A
p.L528V
p.C481S | NO
YES | YES | 1 | | | 0 | 0.0018 0.0022
0.0003
0.0001 0.0002 | 6430
7122
6363 | 6265
6905
6557 | 7415
6854 | 6505
6959
6753 | 6772
6851 | | | 2 | 12
2 | 15 | | chrX | BTK | 101356239
101356250 | | p.L460S | NA
NA | YES
NA
NA | 1 | | | 0.0003 0 | 0.0005 | 5954
5927 | 6140
6066 | 6446
6389 | 6550
6495 | 6516
5940
5801 | | | 2 | 3 | | | chrX
chrX
chrX | BTK | 101354640
101354645 | c.1621G>A
c.1616A>G | p.K456N
p.G541S
p.D539G | NA
NA | NA
NA | 0 | | | 0 | 0.0005 | 7525
7516 | 7305
7277 | 7698
7720 | 7370
7340 | 6661
6726 | | | | 1 | | | chrX | BTK | 101354645
101354678
101356123 | c.1583T>C | p.L528S | NO | YES
NA | 0 | | 0.0002 | | 0.0001 | 7136
5837 | 6920
6219 | 7420
6480 | 6982
6387 | 6846
5800 | | | | | 1 | | chrX
chrX
chrX | BTK | 101356209
101356210 | c.1495C>T
c.1409T>A
c.1408A>G | p.L499=
p.I470N
p.I470V | NA
NA
NA | NA
NA | 0 | | 0.0002 | | .0002 | 6185
6186 | 6335
6335 | 6602
6600 | 6610
6589 | 6315
6297 | | 1 | | 1 | | | chrX
chrX | BTK | 101356215 | c.1408A>G
c.1403G>A
c.1376A>G | p.1470V
p.R468H
p.Q459R | NA
NA | NA
NA
NA | 0 | | | 0.0002 | 0.0002 | 6216 | 6359
6057 | 6618
6362 | 6608
6438 | 6297
6297
5859 | | | 1 | 1 | | | chr16 | PLCG2 | 101356242
81912605
81928576 | c.1943A>G | p.Y648C | NA | NA | 2 | | | | .0006 0.0009 | 5849
8437 | 9002 | 9037 | 8931 | 10575 | | | 1 | 5 | 9 | | chr16
chr16 | PLCG2 | 81919578 | c.2533T>G
c.2149G>A | p.L845V
p.V717I | NO
NA | YES
NA | 1 | | 0.0009 | | .0002 0.0004 | 12376
12214 | 12287
11711 | 11573
11452 | 12212
11914 | 9726
12506 | | 10 | | 2 | 4 | | chr16
chr16 | PLCG2 | 81919626
81912628 | c.2197T>G
c.1966G>C | p.Y733D
p.A656P | NA
NA | NA
NA | 0 | | | 0.0003 | | 11851
9039 | 11754
9353 | 11414
9482 | 11744
9363 | 11204
11287 | | | 1 | | | | chr16 | PLCG2 | 81912650
81912655 | c.1988T>A
c.1993C>T | p.1663N
p.R665W | NA
NA | NA
NA | 0 | | | 0.0001 0 | | 9650
9678 | 9775
9809 | 9935
9989 | 9832
9911 | 11988
12080 | | | 1 | 1 | 1 | | chr16
chr16 | PLCG2 | 81919503
81919521 | c.2074C>G
c.2092G>T | p.H692D
p.D698Y | NA
NA | NA
NA | 0 | | | | 0.0001 | 12200
12156 | 11692
11612 | 11536
11345 | 11769
11689 | 11747
11986 | | | | | 1 | | chr16
chr16 | PLCG2 | 81919548
81919549 | c.2119T>C
c.2120C>A | p.S707P
p.S707Y | NO
YES | YES
YES | 0 | | | | 0.0001 | 12749
12714 | 12098
12065 | 11921
11904 | 12360
12339 | 12867
12883 | | | | 1 | 1 | | chr16
chr16 | PLCG2 | 81919549
81919551 | c.2120C>T
c.2122G>A | p.5707F
p.A708T | NO
NA | YES
NA | 0 | | | | 0.0001
0.0001 0.0001 | 12714
12631 | 12065
12000 | 11904
11814 | 12339
12278 | 12883
12873 | | | 1 | 1 | 1 | | chr16
chr16 | PLCG2 | 81919554
81919575 | c.2125T>G
c.2146C>A | p.Y709D
p.L716I | NA
NA | NA
NA | 0 | | | | 0.0001
0.0001 | 12414
12197 | 11824
11702 | 11591
11457 | 12142
11943 | 12760
12488 | | | | | 1 | | chr16 | PLCG2 | 81919645
81928570 | c.2216T>C
c.2527A>G | p.L739P
p.N843D | NA
NA | NA
NA | 0 | | | 0 | 0.0001 | 11826
12433 | 11890
12352 | 11513
11694 | 11788
12266 | 10707
9853 | | | | 1 | 1 | | chr16
chr16 | PLCG2 | 81928572
81928574 | c.2529T>G
c.2531C>A | p.N843K
p.P844H | NA
NA | NA
NA | 0 | | | 0 | 0.0001 | 12487
12428 | 12399
12329 | 11705
11594 | 12329
12236 | 9848
9794 | | | | 1 | 1 | | chr16
chr16 | PLCG2 | 81928577
81928586 | c.2534T>C
c.2543T>G | p.L8455
p.L848R | NO
NA | YES
NA | 0 | | | | 0.0001 | 12393
12448 | 12335
12366 | 11593
11643 | 12231
12235 | 9760
9653 | | | | | 1 | | chr16
chr16 | PLCG2 | 81928588
81928615 | c.2545T>C
c.2572T>C | p.C849R
p.Y858H | NA
NA | NA
NA | 0 | | | | 0.0001 | 12260
11297 | 12171
11248 | 11474
10753 | 12096
11440 | 9509
8728 | | | | 1 | 1 | | chr16 | PLCG2 | 81936192
81936204 | c.2866C>T
c.2878G>T | p.R956C
p.E960* | NA
NA | NA
NA | 0 | | | 0.0001 | 0.0001 | 8819
9745 | 9027
9949 | 8925
9895 | 9403
10410 | 6804
7702 | | | 1 | | 1 | | chr16
chr16 | PLCG2 | 81936220
81936300 | c.2894G>A
c.2974G>A | p.S965N
p.V992I | NA
NA | NA
NA | 0 | 0.0001 | | 0 | .0001 | 10597
12089 | 10820
12284 | 10765
12193 | 11257
12495 | 8615
11063 | 1 | | | 1 | | | chr16
chr16 | PLCG2 | 81936302
81936303 | c.2976T>C
c.2977G>A | p.V992=
p.D993N | NA
NA | NA
NA | 0 | | | | 0.0001 | 12056
11992 | 12192
12163 | 12166
12139 | 12448
12421 | 11030
10988 | | | | 1 | 1 | | chr16
chr16 | PLCG2 | 81936304
81936317 | c.2978A>C
c.2991C>T | p.D993A
p.Y997= | NA
NA | NA
NA | 0 | 0.0001 | | | .0001 | 11939
11531 | 12125
11888 | 12079
11692 | 12356
12020 | 10968
10465 | 1 | | | 1 | | | chr16
chr17 | TP53 | 81936356
7674200 | c.3030G>C
c.763A>T | p.V1010=
p.I255F | NA
NA | NA
NA | 4 | | 0.0002 | 0.0012 0 | | 10858
12475 | 11508
12037 | 11183
12835 | 11594
12544 | 9257
12208 | 34 | 2 | 16 | 3 | | | chr17 | TP53
TP53 | 7674217
7674900 | c.746G>C
c.631A>G | p.R249T
p.T211A | NA
NA | NA
NA | 3 |
0.0003
0.0032 | 0.0027 | 0.0001 0 | .0003 0.0002
.0009 | 11802
10813 | 11436
10886 | 12360
11803 | 11894
11402 | 11660
12025 | 4
35 | 29 | 1 | 3
10 | 2 | | chr17
chr17 | TP53
TP53 | 7675205
7675238 | c.407A>T
c.376-2A>T | p.Q136L
p.X126_splice | NA
NA | NA
NA | 3 | | | | 0.0003 0.0001
0.0003 0.0002 | 11921
11984 | 11724
11615 | 12558
12283 | 12047
11765 | 13827
12618 | | | 3
5 | 4 | 2 2 | | chr17
chr17 | TP53
TP53 | 7673838
7674189 | c.783-1G>A
c.774A>C | p.X261_splice
p.E258D | NA | NA
NA | 1 | 0.0002 | | 0.0001 | 0.0003 | 12278
12545 | 12325
12074 | 12960
12919 | 12621
12598 | 13154
12236 | 2 | | 1 | | 4 | | chr17
chr17 | TP53
TP53 | 7674220
7675184 | c.743G>A
c.428T>C | p.R248Q
p.V143A | NA
NA | NA
NA | 1 | 0.0003 | | 0 | .0001 0.0001 | 11727
12343 | 11378
12028 | 12297
12843 | 11831
12392 | 11548
14362 | 3
6 | | | 1 | 1 | | chr17
chr17 | TP53
TP53 | 7675218
7676552 | c.394A>G
c.43A>G | p.K132E
p.S15G | NA
NA | NA
NA | 1 | 0.0002 | | | 0.0002 | 12168
9678 | 11859
9729 | 12613
10558 | 12133
9878 | 13577
10012 | 3 | | | | 2 | | chr17
chr17 | TP53
TP53 | 7669637
7669692 | c.1154T>G
c.1101-2A>G | p.F385C
p.X367_splice | NA
NA | NA
NA | 0 | 0.0001 | | 0.0001 | | 10373
11569 | 10500
11763 | 10851
12024 | 10701
11995 | 8891
9568 | 1 | | 1 | | | | chr17
chr17 | TP53
TP53 | 7670620
7670652 | c.1089G>T
c.1057G>A | p.R363S
p.A353T | NA
NA | NA
NA | 0 | | | | 0.0001
0.0001 | 12015
12001 | 12035
12108 | 12336
12590 | 12539
12519 | 10551
10871 | | | | | 1 | | chr17
chr17 | TP53
TP53 | 7670572
7670706 | c.1037A>G
c.1003C>T | p.E346G
p.R335C | NA
NA | NA
NA | 0 | | | 0.0001 | 0.0001 | 11462
10397 | 11709
11020 | 12150
11215 | 12098
11293 | 10417
9210 | | | 1 | | 1 | | chr17
chr17 | TP53
TP53 | 7673581
7673595 | c.947C>A
c.933C>A | p.P316H
p.N311K | NA
NA | NA
NA | 0 | | | | 0.0001
0.0001 | 14858
14525 | 14400
14092 | 14883
14582 | 14673
14426 | 16512
16291 | | | | | 1 | | chr17
chr17 | TP53
TP53 | 7673728
7673755 | c.892G>T
c.865C>A | p.E298*
p.L289I | NA
NA | NA
NA | 0 | | | | 0.0001
0.0001 | 14356
13519 | 13556
12942 | 14541
13813 | 13976
13421 | 15792
14996 | | | | | 1 | | chr17
chr17 | TP53
TP53 | 7673765
7673782 | c.855G>T
c.838A>G | p.E285D
p.R280G | NA
NA | NA
NA | 0 | 0.0001 | | 0.0001 | | 13010
12809 | 12623
12516 | 13496
13355 | 13051
12986 | 14499
14268 | 1 | | 1 | | | | chr17
chr17 | TP53
TP53 | 7673784
7673790 | c.836G>A
c.830G>T | p.G279E
p.C277F | NA
NA | NA
NA | 0 | 0.0001 | 0.0001 | | | 12943
12886 | 12652
12685 | 13491
13508 | 13098
13200 | 14409
14453 | 1 | 1 | | | | | chr17
chr17 | TP53
TP53 | 7673803
7673837 | c.817C>T
c.783T>C | p.R273C
p.S261= | NA
NA | NA
NA | 0 | | | 0.0001 | 0.0001 | 12924
12303 | 12846
12356 | 13588
12996 | 13321
12633 | 14310
13198 | | | 1 | | 1 | | chr17 | TP53
TP53 | 7674180
7674182 | c.782+1G>A
c.781A>T | p.X261_splice
p.S261C | NA
NA | NA
NA | 0 | | | | 0.0001
0.0001 | 12718
12666 | 12139
12119 | 13074
13040 | 12775
12750 | 12275
12241 | | | | | 1 | | chr17
chr17 | TP53
TP53 | 7674199
7674221 | c.764T>C
c.742C>T | p.1255T
p.R248W | NA
NA | NA
NA | 0 | | 0.0001
0.0001 | | | 12565
11771 | 12119
11476 | 12940
12399 | 12665
11965 | 12270
11587 | | 1 | | | | | chr17
chr17 | TP53
TP53 | 7674223
7674233 | c.740A>C
c.730G>A | p.N247T
p.G244S | NA
NA | NA
NA | 0 | 0.0001 | 0.0001 | 0 | .0001 | 11633
11656 | 11326
11351 | 12223
12296 | 11807
11752 | 11501
11330 | 1 | 1 | | 1 | | | chr17
chr17 | TP53
TP53 | 7674246
7674250 | c.717C>A
c.713G>A | p.N239K
p.C238Y | NA
NA | NA
NA | 0 | 0.0001 | 0.0001 | | | 11139
11159 | 11051
11116 | 11860
11931 | 11424
11437 | 10751
10736 | 1 | 1 | | | | | chr17
chr17 | TP53
TP53 | 7674251
7674275 | c.712T>C
c.688A>G | p.C238R
p.T230A | NA
NA | NA
NA | 0 | | | 0.0001 | .0001 | 11011
9065 | 10981
8987 | 11791
9658 | 11354
9248 | 10597
8618 | | | 1 | 1 | | | chr17
chr17 | TP53
TP53 | 7674281
7674868 | c.682G>A
c.663G>T | p.D228N
p.E221D | NA
NA | NA
NA | 0 | | 0.0001 | | .0001 | 8525
11454 | 8468
11544 | 9130
12347 | 8710
11864 | 8068
11588 | | 1 | | 1 | | | chr17
chr17 | TP53
TP53 | 7674885
7674927 | c.646G>A
c.604C>T | p.V216M
p.R202C | NA
NA | NA
NA | 0 | 0.0001 | 0.0001 | 0 | .0001 | 11092
11263 | 11074
11335 | 12011
12203 | 11573
11827 | 11738
13140 | 1 | 1 | | 1 | | | chr17
chr17 | TP53
TP53 | 7674950 | c.585_594delins
c.581T>A | T p.R196_E198de
p.L194H | NA | NA
NA | 0 | 0.0001
0.0001 | | | | 11327
11604 | 11510
11573 | 12294
12510 | 11946
12095 | 13354
13840 | 1 | | | | | | chr17
chr17 | TP53
TP53 | 7674956
7674964 | c.575A>G
c.567C>A | p.Q192R
p.A189= | NA
NA | NA
NA | 0 | | | 0 | 0.0001 | 11802
12166 | 11823
12093 | 12735
13012 | 12333
12560 | 14214
14600 | | | | 1 | 1 | | chr17
chr17 | TP53
TP53 | 7675063
7675064 | c.549A>T
c.548C>G | p.5183=
p.5183* | NA
NA | NA
NA | 0 | 0.0001 | | | 0.0001 | 11622
11586 | 11711
11680 | 12612
12570 | 12080
12048 | 14808
14793 | 1 | | | | 1 | | chr17
chr17 | TP53
TP53 | 7675077
7675086 | c.535C>T
c.526T>C | p.H179Y
p.C176R | NA
NA | NA
NA | 0 | 0.0001 | | | 0.0001 | 11580
11576 | 11680
11577 | 12558
12338 | 12155
12067 | 14792
14766 | 1 | | | | 1 | | chr17
chr17 | TP53
TP53 | 7675089
7675098 | c.523C>T
c.514G>T | p.R175C
p.V172F | NA
NA | NA
NA | 0 | 0.0001 | | 0.0001 | | 11496
11393 | 11490
11374 | 12296
12170 | 12036
11943 | 14667
14554 | 1 | | 1 | | | | chr17
chr17 | TP53
TP53 | 7675108
7675126 | c.504C>A
c.486C>T | p.H168Q
p.H162= | NA
NA | NA
NA | 0 | | | | 0.0001 | 11356
10793 | 11445
10929 | 12236
11684 | 11969
11549 | 14656
14044 | | | | 1 | 1 | | chr17
chr17 | TP53
TP53 | 7675145
7675204 | c.467G>A
c.408A>G | p.R156H
p.Q136= | NA
NA | NA
NA | 0 | | 0.0001 | 0.0001 | | 10823
12036 | 10760
11827 | 11585
12676 | 11371
12174 | 13374
13995 | | 1 | 1 | | | | chr17
chr17 | TP53
TP53 | 7675208
7675993 | c.404G>A
c.375+1G>T | p.C135Y
p.X125_splice | NA
NA | NA
NA | 0 | 0.0001 | 0.0001 | | | 12032
12781 | 11823
12830 | 12599
13783 | 12068
13314 | 13781
13542 | 1 | 1 | | | | | chr17
chr17 | TP53
TP53 | 7676018
7676077 | c.351G>C
c.292C>A | p.G117=
p.P98T | NA
NA | NA
NA | 0 | | 0.0001 | | 0.0001 | 12429
12168 | 12513
12068 | 13360
13162 | 13091
12711 | 13572
13679 | | 1 | | | 1 | | chr17 | TP53
TP53 | 7676097
7676170 | c.272G>C
c.199C>T | p.W915
p.P67S | NA
NA | NA
NA | 0 | 0.0001 | 0.0001 | | | 13010
13453 | 12706
12802 | 13796
13881 | 13354
13431 | 14376
15097 | 1 | 1 | | | - | | A 1.1 | | | | II | (| ٦ | | X 7 | - 4 : | 1 | C: | - 4 | | . m a1. | | | 71/0 |). V. | | - 11 - 1 | . C | Abbreviations: Human Genome Variation Society nomenclature (HGVSc); Variant allele frequency (VAF). ^{*} BTKi resistance mutations and codons according to Kittai et al.⁶ Supplemental Table S10. Comparison of copy number alterations identified by chromosomal genomic array testing (CGAT) and duplex sequencing. | | ı | ВТК | E | BAX | Pi | LCG2 | В | CL2 | TP | 53 | |---------|----------|------------------------|----------|------------------------|----------|------------------------|----------|------------------------|---------------|------------------------| | Samples | CGAT (%) | Duplex SNP-
LOH (%) | | R001-A | 0 | no LOH | 0 | no LOH | 0 | no LOH | 0 | NA | del 17p, 60.0 | 51.3 | | R001-B | 0 | no LOH | 0 | no LOH | 0 | no LOH | 0 | NA | del 17p, 60.0 | 57.3 | | R001-C | NP | no LOH | NP | no LOH | NP | no LOH | NP | NA | NP | 56.1 | | R001-D | 0 | no LOH | 0 | no LOH | 0 | no LOH | 0 | NA | del 17p, 80.0 | 81.8 | | R001-E | 0 | no LOH | 0 | no LOH | 0 | no LOH | 0 | NA | del 17p, 80.0 | 87.1 | | R001-F | NP | no LOH | NP | no LOH | NP | no LOH | NP | NA | NP | 91.1 | | R002-A | NP | NA | NP | no LOH | NP | no LOH | NP | NA | NP | NA | | R002-B | NP | NA | NP | no LOH | NP | no LOH | NP | NA | NP | NA | | R002-C | 0 | NA | 0 | no LOH | 0 | no LOH | 0 | NA | 0% | NA | | R002-D | NP | NA | NP | no LOH | NP | no LOH | NP | NA | NP | NA | | R002-E | NP | NA | NP | no LOH | NP | no LOH | NP | NA | NP | NA | Abbreviations: Chromosomal Genomic Array Testing (CGAT); Single nucleotide polymorphisms (SNP); Loss of heterozygosity (LOH); Cancer cell fraction (CCF); Not available because no heterozygous SNPs were sequenced (NA); Not performed (NP). ### Supplemental Table S11. Patient R001 cancer cell fraction (CCF) for variants with two or more mutant molecules in at least one sample. | Patient | Sample | Gene | Chromosome | Position | Reference | | | HGVSp short | HGVSc | Duplex | Duplex | VAF | Variant CCF | | | | Percent disease (%) | |---------|--------|-------|------------|-----------|-----------|----------|----------|----------------|--------------|--------|--------------|--------|-------------|---------------|--------|------|---------------------| | | | | | | allele | allele | type | <u> </u> | | _ | mutant reads | | | pirtobrutinib | CCF | type | (Tumor purity) | | R001 | В | BAX | chr19 | 48955799 | G | Α | Missense | p.G67R | c.199G>A | 12179 | 24 | 0.0020 | 0.0070 | -294 | NA | PB | 56.0 | | R001 | С | BAX | chr19 | 48955799 | G | A | Missense | p.G67R |
c.199G>A | 13874 | 11 | 0.0008 | 0.0023 | -15 | NA | PB | 70.0 | | R001 | Α | BCL2 | chr18 | 63318200 | A | T | Missense | p.V156D | c.467T>A | 4095 | 12 | 0.0029 | 0.0095 | -687 | NA | PB | 62.0 | | R001 | Α | BCL2 | chr18 | 63318262 | С | T | Silent | p.E135= | c.405G>A | 7311 | 1 | 0.0001 | 0.0004 | -687 | NA | PB | 62.0 | | R001 | C | BCL2 | chr18 | 63318262 | C | T | Silent | p.E135= | c.405G>A | 8593 | 1 | 0.0001 | 0.0003 | -15 | NA | PB | 70.0 | | R001 | F | BCL2 | chr18 | 63318262 | С | Т | Silent | p.E135= | c.405G>A | 8310 | 2 | 0.0002 | 0.0005 | 161 | NA | PB | 95.0 | | R001 | Α | BCL2 | chr18 | 63318264 | | - | Indel | p.V133Rfs*8 | c.397_403del | | 2 | 0.0003 | 0.0009 | -687 | NA | PB | 62.0 | | R001 | Α | BCL2 | chr18 | 63318329 | G | С | Missense | p.A113G | c.338C>G | 9737 | 11 | 0.0011 | 0.0036 | -687 | NA | PB | 62.0 | | R001 | Α | BCL2 | chr18 | 63318329 | G | Α | Missense | p.A113V | c.338C>T | 9737 | 2 | 0.0002 | 0.0007 | -687 | NA | PB | 62.0 | | R001 | В | BCL2 | chr18 | 63318329 | G | C | Missense | p.A113G | c.338C>G | 11047 | 3 | 0.0003 | 0.0010 | -294 | NA | PB | 56.0 | | R001 | В | BCL2 | chr18 | 63318329 | G | A | Missense | p.A113V | c.338C>T | 11047 | 1 | 0.0001 | 0.0003 | -294 | NA | PB | 56.0 | | R001 | F | BCL2 | chr18 | 63318329 | G | С | Missense | p.A113G | c.338C>G | 11261 | 1 | 0.0001 | 0.0002 | 161 | NA | PB | 95.0 | | R001 | A | BCL2 | chr18 | 63318336 | | GGCGGTAG | | p.R107_R110dup | | | 38 | 0.0039 | 0.0125 | -687 | NA | PB | 62.0 | | R001 | В | BCL2 | chr18 | 63318336 | | GGCGGTAG | | p.R107_R110dup | | | 12 | 0.0011 | 0.0039 | -294 | NA | PB | 56.0 | | R001 | C | BCL2 | chr18 | 63318336 | | GGCGGTAG | | p.R107_R110dup | | | 12 | 0.0010 | 0.0029 | -15 | NA | PB | 70.0 | | R001 | F | BCL2 | chr18 | 63318411 | G | A | Missense | p.L86F | c.256C>T | 12137 | 2 | 0.0002 | 0.0003 | 161 | NA | PB | 95.0 | | R001 | F | BCL2 | chr18 | 63318531 | G | A | Missense | p.P46S | c.136C>T | 7666 | 2 | 0.0003 | 0.0005 | 161 | NA | PB | 95.0 | | R001 | F | BCL2 | chr18 | 63318601 | С | Т | Silent | p.K22= | c.66G>A | 3677 | 3 | 0.0008 | 0.0017 | 161 | NA | PB | 95.0 | | R001 | F | BTK | chrX | 101354652 | | Α | Missense | p.V537L | c.1609G>T | 16376 | 2 | 0.0001 | 0.0003 | 161 | NA | PB | 95.0 | | R001 | С | BTK | chrX | 101354678 | | С | Missense | p.L528W | c.1583T>G | 14459 | 1 | 0.0001 | 0.0002 | -15 | NA | PB | 70.0 | | R001 | F | BTK | chrX | 101354678 | | С | Missense | p.L528W | c.1583T>G | 16022 | 2687 | 0.1677 | 0.3531 | 161 | NA | PB | 95.0 | | R001 | С | BTK | chrX | 101356176 | | G | Missense | p.C481S | c.1442G>C | 15308 | 247 | 0.0161 | 0.0461 | -15 | NA | PB | 70.0 | | R001 | F | BTK | chrX | 101356176 | | G | Missense | p.C481S | c.1442G>C | 15332 | 98 | 0.0064 | 0.0135 | 161 | NA | PB | 95.0 | | R001 | C | BTK | chrX | 101356177 | | Т | Missense | p.C481S | c.1441T>A | 15333 | 8 | 0.0005 | 0.0015 | -15 | NA | PB | 70.0 | | R001 | F | BTK | chrX | 101356177 | | Т | Missense | p.C481S | c.1441T>A | 15371 | 8 | 0.0005 | 0.0011 | 161 | NA | PB | 95.0 | | R001 | С | PLCG2 | chr16 | 81912655 | С | Т | Missense | p.R665W | c.1993C>T | 14956 | 1 | 0.0001 | 0.0002 | -15 | NA | PB | 70.0 | | R001 | F | PLCG2 | chr16 | 81912655 | С | Т | Missense | p.R665W | c.1993C>T | 14762 | 44 | 0.0030 | 0.0063 | 161 | NA | PB | 95.0 | | R001 | C | PLCG2 | chr16 | 81919549 | C | Т | Missense | p.S707F | c.2120C>T | 15103 | 3 | 0.0002 | 0.0006 | -15 | NA | PB | 70.0 | | R001 | F | PLCG2 | chr16 | 81919549 | C | Т | Missense | p.S707F | c.2120C>T | 15577 | 10 | 0.0006 | 0.0014 | 161 | NA | PB | 95.0 | | R001 | С | PLCG2 | chr16 | 81928574 | С | T | Missense | p.P844L | c.2531C>T | 13414 | 1 | 0.0001 | 0.0002 | -15 | NA | PB | 70.0 | | R001 | F | PLCG2 | chr16 | 81928574 | С | Т | Missense | p.P844L | c.2531C>T | 15190 | 9 | 0.0006 | 0.0012 | 161 | NA | PB | 95.0 | | R001 | F | PLCG2 | chr16 | 81928574 | С | G | Missense | p.P844R | c.2531C>G | 15190 | 3 | 0.0002 | 0.0004 | 161 | NA | PB | 95.0 | | R001 | C | PLCG2 | chr16 | 81928578 | A | C | Missense | p.L845F | c.2535A>C | 13362 | 8 | 0.0006 | 0.0017 | -15 | NA | PB | 70.0 | | R001 | F | PLCG2 | chr16 | 81928578 | Α | С | Missense | p.L845F | c.2535A>C | 15105 | 631 | 0.0418 | 0.0879 | 161 | NA | PB | 95.0 | | R001 | F | PLCG2 | chr16 | 81928578 | Α | Т | Missense | p.L845F | c.2535A>T | 15105 | 2 | 0.0001 | 0.0003 | 161 | NA | PB | 95.0 | | R001 | С | PLCG2 | chr16 | 81928580 | G | T | Missense | p.G846V | c.2537G>T | 13350 | 9 | 0.0007 | 0.0019 | -15 | NA | PB | 70.0 | | R001 | F | PLCG2 | chr16 | 81928580 | G | Т | Missense | p.G846V | c.2537G>T | 15100 | 20 | 0.0013 | 0.0028 | 161 | NA | PB | 95.0 | | R001 | F | PLCG2 | chr16 | 81928580 | G | Α | Missense | p.G846E | c.2537G>A | 15100 | 2 | 0.0001 | 0.0003 | 161 | NA | PB | 95.0 | | R001 | F | PLCG2 | chr16 | 81936295 | Α | T | Missense | p.Q990L | c.2969A>T | 14829 | 3 | 0.0002 | 0.0004 | 161 | NA | PB | 95.0 | | R001 | С | PLCG2 | chr16 | 81936300 | G | T | Missense | p.V992F | c.2974G>T | 14553 | 4 | 0.0003 | 0.0008 | -15 | NA | PB | 70.0 | | R001 | F | PLCG2 | chr16 | 81936300 | G | T | Missense | p.V992F | c.2974G>T | 14806 | 41 | 0.0028 | 0.0058 | 161 | NA | PB | 95.0 | | R001 | С | PLCG2 | chr16 | 81936303 | G | Α | Missense | p.D993N | c.2977G>A | 14503 | 2 | 0.0001 | 0.0004 | -15 | NA | PB | 70.0 | | R001 | C | PLCG2 | chr16 | 81936303 | G | С | Missense | p.D993H | c.2977G>C | 14503 | 2 | 0.0001 | 0.0004 | -15 | NA | PB | 70.0 | | R001 | F | PLCG2 | chr16 | 81936303 | G | Α | Missense | p.D993N | c.2977G>A | 14712 | 43 | 0.0029 | 0.0062 | 161 | NA | PB | 95.0 | | R001 | F | PLCG2 | chr16 | 81936303 | G | С | Missense | p.D993H | c.2977G>C | 14712 | 12 | 0.0008 | 0.0017 | 161 | NA | PB | 95.0 | | R001 | С | PLCG2 | chr16 | 81936304 | Α | Т | Missense | p.D993V | c.2978A>T | 14448 | 1 | 0.0001 | 0.0002 | -15 | NA | PB | 70.0 | | R001 | F | PLCG2 | chr16 | 81936304 | Α | Т | Missense | p.D993V | c.2978A>T | 14652 | 19 | 0.0013 | 0.0027 | 161 | NA | PB | 95.0 | | R001 | Α | TP53 | chr17 | 7674191 | C | Т | Missense | p.E258K | c.772G>A | 10920 | 2 | 0.0002 | 0.0004 | -687 | 0.8267 | PB | 62.0 | | R001 | В | TP53 | chr17 | 7674191 | С | Т | Missense | p.E258K | c.772G>A | 10483 | 8 | 0.0008 | 0.0019 | -294 | 1.0000 | PB | 56.0 | | R001 | С | TP53 | chr17 | 7674191 | С | T | Missense | p.E258K | c.772G>A | 11610 | 4 | 0.0003 | 0.0007 | -15 | 0.8019 | PB | 70.0 | | R001 | Α | TP53 | chr17 | 7674262 | Т | С | Missense | p.Y234C | c.701A>G | 8995 | 1 | 0.0001 | 0.0003 | -687 | 0.8267 | PB | 62.0 | | R001 | В | TP53 | chr17 | 7674262 | Т | С | Missense | p.Y234C | c.701A>G | 8998 | 1 | 0.0001 | 0.0003 | -294 | 1.0000 | PB | 56.0 | | R001 | C | TP53 | chr17 | 7674262 | Т | C | Missense | p.Y234C | c.701A>G | 9469 | 2 | 0.0002 | 0.0004 | -15 | 0.8019 | PB | 70.0 | | R001 | Α | TP53 | chr17 | 7674263 | Α | Т | Missense | p.Y234N | c.700T>A | 8909 | 12 | 0.0013 | 0.0032 | -687 | 0.8267 | PB | 62.0 | | R001 | В | TP53 | chr17 | 7674263 | Α | T | Missense | p.Y234N | c.700T>A | 8916 | 31 | 0.0035 | 0.0089 | -294 | 1.0000 | PB | 56.0 | | R001 | С | TP53 | chr17 | 7674263 | Α | Т | Missense | p.Y234N | c.700T>A | 9359 | 5 | 0.0005 | 0.0011 | -15 | 0.8019 | PB | 70.0 | | R001 | F | TP53 | chr17 | 7674263 | Α | Т | Missense | p.Y234N | c.700T>A | 7718 | 1 | 0.0001 | 0.0001 | 161 | 0.9585 | PB | 95.0 | | R001 | В | TP53 | chr17 | 7675080 | G | С | Missense | p.H178D | c.532C>G | 10759 | 832 | 0.0773 | 0.1971 | -294 | 1.0000 | PB | 56.0 | | R001 | С | TP53 | chr17 | 7675080 | G | С | Missense | p.H178D | c.532C>G | 11910 | 1549 | 0.1301 | 0.2673 | -15 | 0.8019 | PB | 70.0 | | R001 | F | TP53 | chr17 | 7675080 | G | С | Missense | p.H178D | c.532C>G | 8833 | 2460 | 0.2785 | 0.3194 | 161 | 0.9585 | PB | 95.0 | | R001 | Α | TP53 | chr17 | 7675094 | Α | С | Missense | p.V173G | c.518T>G | 11034 | 227 | 0.0206 | 0.0494 | -687 | 0.8267 | PB | 62.0 | | R001 | В | TP53 | chr17 | 7675094 | Α | С | Missense | p.V173G | c.518T>G | 10680 | 559 | 0.0523 | 0.1334 | -294 | 1.0000 | PB | 56.0 | | R001 | С | TP53 | chr17 | 7675094 | Α | С | Missense | p.V173G | c.518T>G | 11875 | 269 | 0.0227 | 0.0466 | -15 | 0.8019 | PB | 70.0 | | R001 | F | TP53 | chr17 | 7675094 | Α | С | Missense | p.V173G | c.518T>G | 8720 | 13 | 0.0015 | 0.0017 | 161 | 0.9585 | PB | 95.0 | | R001 | F | TP53 | chr17 | 7675107 | TGTGC | - | Indel | p.Q167Hfs*12 | c.501_505del | 8960 | 176 | 0.0196 | 0.0225 | 161 | 0.9585 | PB | 95.0 | Abbreviations: Human Genome Variation Society nomenclature (HGVSc); Variant allele frequency (VAF); Cancer cell fraction (CCF); Loss of heterozygosity (LOH); Peripheral blood (PB). ### Supplemental Table S12. Patient R002 cancer cell fraction for variants with two or more mutant molecules in at least one sample. | | | Cample | | _ | Desition | Reference | Alternate | Mutation | UCVCn short | IICV6. | Duplex | Duplex | WAF | Variant CCF | Days post- | Sample | Percent disease (%) | |---|--------------|--------|------------|----------------|----------------------|-----------|-----------|----------------|----------------------------|--------------------------|--------------|--------------|------------------|------------------|---------------|------------|---------------------| | _ | | | | Chromosome | Position | allele | allele | type | HGVSp short | HGVSc | | mutant reads | VAF | Variant CCF | pirtobrutinib | type | (Tumor purity) | | | R002 | С | BAX | chr19 | 48955709 | C | T | Nonsense | p.R37* | c.109C>T | 8385 | 8 | 0.0010 | 0.0020 | -6 | BMA | 95.0 | | | R002 | D | BAX | chr19 | 48955709 | С | T
T | Nonsense | p.R37* | c.109C>T | 8739 | 3 | 0.0003 | 0.0008 | 82 | BMA | 91.0 | | | R002
R002 | E | BAX | chr19
chr19 | 48955709 | C
- | G | Nonsense | p.R37* | c.109C>T | 7802
9814 | 2 | 0.0003
0.0118 | 0.0005
0.0916 | 127
-331 | PB
BMA | 95.0
12.9 | | | | A | BAX | | 48955713 | | | Indel | p.E41Gfs*33 | c.121dup | | 116 | | | | | | | | R002 | C
C | BAX | chr19 | 48955713 | - |
G
GG | Indel | p.E41Gfs*33 | c.121dup
c.120 121dup | 8539 | 7474
17 | 0.8753 | 0.9213 | -6 | BMA | 95.0 | | | R002
R002 | D | BAX | chr19
chr19 | 48955713
48955713 | - | G | Indel
Indel | p.E41Gfs*20
p.E41Gfs*33 | c.121dup | 8539
8905 | 7349 | 0.0020
0.8253 | 0.0042
0.9069 | -6
82 | BMA
BMA | 95.0
91.0 | | | R002 | D | BAX | chr19 | 48955713 | - | GG | Indel | p.E41Gfs*20 | c.121dup | 8905 | 22 | 0.0025 | 0.0054 | 82 | BMA | 91.0 | | | R002 | E | BAX | chr19 | 48955713 | - | G | Indel | p.E41Gfs*20
p.E41Gfs*33 | c.121dup | 7951 | 7909 | 0.0023 | 1.0000 | 127 | PB | 95.0 | | | R002 | E | BAX | chr19 | 48955713 | - | GG | Indel | p.E41Gfs*20 | | 7951 | 19 | 0.0024 | 0.0050 | 127 | PB | 95.0 | | | R002 | A | BAX | chr19 | 48955714 | G | - | Indel | p.E41Gfs 20
p.E41Rfs*19 | c.120_121dup
c.121del | 9750 | 2 | 0.0024 | 0.0030 | -331 | BMA | 12.9 | | | R002 | C | BAX | chr19 | 48955714 | G | - | Indel | p.E41Rfs*19 | c.121del | 8456 | 5 | 0.0002 | 0.0032 | -6 | BMA | 95.0 | | | R002 | D | BAX | chr19 | 48955714 | G | - | Indel | p.E41Rfs*19 | c.121del | 8802 | 2 | 0.0000 | 0.0012 | 82 | BMA | 91.0 | | | R002 | E | BAX | chr19 | 48955714 | G | _ | Indel | p.E41Rfs*19 | c.121del | 7873 | 1 | 0.0001 | 0.0003 | 127 | PB | 95.0 | | | R002 | A | BAX | chr19 | 48955780 | C | Т | Silent | p.S60= | c.180C>T | 9971 | 2 | 0.0001 | 0.0031 | -331 | BMA | 12.9 | | | R002 | C | BAX | chr19 | 48955780 | C | T | Silent | p.S60= | c.180C>T | 9418 | 1 | 0.0002 | 0.0002 | -6 | BMA | 95.0 | | | R002 | E | BAX | chr19 | 48955780 | C | т Т | Silent | p.S60= | c.180C>T | 9571 | 1 | 0.0001 | 0.0002 | 127 | PB | 95.0 | | | R002 | D | BTK | chrX | 101354679 | | c | Missense | p.L528V | c.1582T>G | 6959 | 2 | 0.0001 | 0.0002 | 82 | BMA | 91.0 | | | R002 | C | BTK | chrX | 101354079 | | С | | p.N484D | c.13821>G | 6904 | 60 | 0.0003 | 0.0003 | -6 | BMA | 95.0 | | | R002 | D | BTK | chrX | 101356168 | | c | Missense | p.N484D | c.1450A>G | 6776 | 20 | 0.0030 | 0.0031 | 82 | BMA | 91.0 | | | | E | | | | | c | Missense | | | | 4 | | 0.0032 | 127 | | 95.0 | | | R002
R002 | C | BTK
BTK | chrX | 101356168 | | | Missense | p.N484D | c.1450A>G | 6542 | 2 | 0.0006 | 0.0003 | | PB | 95.0 | | | | | | chrX | 101356176 | | G | Missense | p.C481S | c.1442G>C | 6854 | | | | -6 | BMA | | | | R002 | D | BTK | chrX | 101356176 | | G | Missense | p.C481S | c.1442G>C | 6753 | 1 | 0.0001 | 0.0002 | 82 | BMA | 91.0 | | | R002 | E | BTK | chrX | 101356176 | | G | Missense | p.C481S | c.1442G>C | 6516 | 1 | 0.0002 | 0.0002 | 127 | PB | 95.0 | | | R002 | С | BTK | chrX | 101356177 | | G | Missense | p.C481R | c.1441T>C | 6865 | 16 | 0.0023 | 0.0025 | -6 | BMA | 95.0 | | | R002 | D | BTK | chrX | 101356177 | | G | Missense | p.C481R | c.1441T>C | 6764 | 62 | 0.0092 | 0.0101 | 82 | BMA | 91.0 | | | R002 | E | BTK | chrX | 101356177 | | G | Missense | p.C481R | c.1441T>C | 6543 | 20 | 0.0031 | 0.0032 | 127 | PB | 95.0 | | | R002 | С | BTK | chrX | 101356197 | | A | Missense | p.T474I | c.1421C>T | 6816 | 2 | 0.0003 | 0.0003 | -6 | BMA | 95.0 | | | R002 | D | ВТК | chrX | 101356197 | | A | Missense | p.T474I | c.1421C>T | 6796 | 262 | 0.0386 | 0.0424 | 82 | BMA | 91.0 | | | R002 | D | ВТК | chrX | 101356197 | | T | Missense | p.T474N | c.1421C>A | 6796 | 7 | 0.0010 | 0.0011 | 82 | BMA | 91.0 | | | R002 | E | BTK | chrX | 101356197 | | A | Missense | p.T474I | c.1421C>T | 6606 | 134 | 0.0203 | 0.0214 | 127 | PB | 95.0 | | | R002 | E | ВТК | chrX | 101356197 | | T | Missense | p.T474N | c.1421C>A | 6606 | 2 | 0.0003 | 0.0003 | 127 | PB | 95.0 | | | R002 | D | BTK | chrX | 101356239 | | G | Missense | p.L460S | c.1379T>C | 6550 | 3 | 0.0005 | 0.0005 | 82 | BMA | 91.0 | | | R002 | D | BTK | chrX | 101356242 | | G | Missense | p.Q459P | c.1376A>C | 6438 | 3 | 0.0005 | 0.0005 | 82 | BMA | 91.0 | | | R002 | Ε | BTK | chrX | 101356242 | | G | Missense | p.Q459P | c.1376A>C | 5859 | 2 | 0.0003 | 0.0004 | 127 | PB | 95.0 | | | R002 | E | BTK | chrX | 101356250 | | Α | Missense | p.K456N | c.1368G>T | 5801 | 3 | 0.0005 | 0.0005 | 127 | PB | 95.0 | | | R002 | D | BTK | chrX | 101358645 | | С | Missense | p.T316A | c.946A>G | 6505 | 12 | 0.0018 | 0.0020 | 82 | BMA | 91.0 | | | R002 | E | BTK | chrX | 101358645 | | С | Missense | p.T316A | c.946A>G | 6772 | 15 | 0.0022 | 0.0023 | 127 | PB | 95.0 | | F | R002 | C | BTK | chrX | 101358689 | | С | Missense | p.E301G | c.902A>G | 6157 | 2 | 0.0003 | 0.0003 | -6 | BMA | 95.0 | | | R002 | D | BTK | chrX | 101358689 | | С | Missense | p.E301G | c.902A>G | 6142 | 3 | 0.0005 | 0.0005 | 82 | BMA | 91.0 | | | R002 | E | BTK | chrX | 101358689 | T | С | Missense | p.E301G | c.902A>G | 5915 | 2 | 0.0003 | 0.0004 | 127 | PB | 95.0 | | | R002 | | PLCG2 | chr16 | 81912605 | Α | G | Missense | p.Y648C | c.1943A>G | 9037 | 1 | 0.0001 | 0.0002 | -6 | BMA | 95.0 | | | R002 | | PLCG2 | chr16 | 81912605 | Α | G | Missense | p.Y648C | c.1943A>G | 8931 | 5 | 0.0006 | 0.0012 | 82 | BMA | 91.0 | | | R002 | | PLCG2 | chr16 | 81912605 | Α | G | Missense | p.Y648C | c.1943A>G | 10575 | 9 | 0.0009 | 0.0018 | 127 | PB | 95.0 | | F | R002 | | PLCG2 | chr16 | 81919626 | Т | G | Missense | p.Y733D | c.2197T>G | 11414 | 3 | 0.0003 | 0.0006 | -6 | BMA | 95.0 | | F | R002 | D | PLCG2 | chr16 | 81928576 | T | G | Missense | p.L845V | c.2533T>G | 12212 | 2 | 0.0002 | 0.0004 | 82 | BMA | 91.0 | | F | R002 | E | PLCG2 | chr16 | 81928576 | T | G | Missense | p.L845V | c.2533T>G | 9726 | 4 | 0.0004 | 0.0009 | 127 | PB | 95.0 | | | R002 | Α | TP53 | chr17 | 7673838 | C | Т | Splice | p.X261_splice | c.783-1G>A | 12278 | 2 | 0.0002 | 0.0025 | -331 | BMA | 12.9 | | | R002 | C | TP53 | chr17 | 7674189 | T | G | Missense | p.E258D | c.774A>C | 12919 | 1 | 0.0001 | 0.0002 | -6 | BMA | 95.0 | | | R002 | Е | TP53 | chr17 | 7674189 | Т | G | Missense | p.E258D | c.774A>C | 12236 | 4 | 0.0003 | 0.0007 | 127 | PB | 95.0 | | | R002 | Α | TP53 | chr17 | 7674200 | Т | Α | Missense | p.1255F | c.763A>T | 12475 | 34 | 0.0027 | 0.0423 | -331 | BMA | 12.9 | | | R002 | C | TP53 | chr17 | 7674200 | Т | Α | Missense | p.1255F | c.763A>T | 12835 | 16 | 0.0012 | 0.0026 | -6 | BMA | 95.0 | | F | R002 | D | TP53 | chr17 | 7674200 | Т | Α | Missense | p.1255F | c.763A>T | 12544 | 3 | 0.0002 | 0.0005 | 82 | BMA | 91.0 | | F | R002 | Α | TP53 | chr17 | 7674217 | C | G | Missense | p.R249T | c.746G>C | 11802 | 4 | 0.0003 | 0.0053 | -331 | BMA | 12.9 | | F | R002 | D | TP53 | chr17 | 7674217 | С | G | Missense | p.R249T | c.746G>C | 11894 | 3 | 0.0003 | 0.0006 | 82 | BMA | 91.0 | | F | R002 | E | TP53 | chr17 | 7674217 | C | G | Missense | p.R249T | c.746G>C | 11660 | 2 | 0.0002 | 0.0004 | 127 | PB | 95.0 | | F | R002 | Α | TP53 | chr17 | 7674220 | C | T | Missense | p.R248Q | c.743G>A | 11727 | 3 | 0.0003 | 0.0040 | -331 | BMA | 12.9 | | F | R002 | Α | TP53 | chr17 | 7674900 | T | C | Missense | p.T211A | c.631A>G | 10813 | 35 | 0.0032 | 0.0502 | -331 | BMA | 12.9 | | F | R002 | C | TP53 | chr17 | 7674900 | T | С | Missense | p.T211A | c.631A>G | 11803 | 1 | 0.0001 | 0.0002 | -6 | BMA | 95.0 | | F | R002 | D | TP53 | chr17 | 7674900 | T | С | Missense | p.T211A | c.631A>G | 11402 | 10 | 0.0009 | 0.0019 | 82 | BMA | 91.0 | | F | R002 | A | TP53 | chr17 | 7675184 | Α | G | Missense | p.V143A | c.428T>C | 12343 | 6 | 0.0005 | 0.0075 | -331 | BMA | 12.9 | | F | R002 | D | TP53 | chr17 | 7675184 | Α | G | Missense | p.V143A | c.428T>C | 12392 | 1 | 0.0001 | 0.0002 | 82 | BMA | 91.0 | | F | R002 | E | TP53 | chr17 | 7675184 | Α | G | Missense | p.V143A | c.428T>C | 14362 | 1 | 0.0001 | 0.0001 | 127 | PB | 95.0 | | F | R002 | C | TP53 | chr17 | 7675205 | T | Α | Missense | p.Q136L | c.407A>T | 12558 | 3 | 0.0002 | 0.0005 | -6 | BMA | 95.0 | | F | R002 | D | TP53 | chr17 | 7675205 | Т | Α | Missense | p.Q136L | c.407A>T | 12047 | 4 | 0.0003 | 0.0007 | 82 | BMA | 91.0 | | F | R002 | E | TP53 | chr17 | 7675205 | T | Α | Missense | p.Q136L | c.407A>T | 13827 | 2 | 0.0001 | 0.0003 | 127 | PB | 95.0 | | F | R002 | Α | TP53 | chr17 | 7675218 | Т | С | Missense | p.K132E | c.394A>G | 12168 | 3 | 0.0002 | 0.0038 | -331 | BMA | 12.9 | | F | R002 | C | TP53 | chr17 | 7675238 | Т | Α | Splice | p.X126_splice | c.376-2A>T | 12283 | 5 | 0.0004 | 0.0009 | -6 | BMA | 95.0 | | F | R002 | D | TP53 | chr17 | 7675238 | Т | Α | Splice | p.X126_splice | | 11765 | 3 | 0.0003 | 0.0006 | 82 | BMA | 91.0 | | F | R002 | Ε | TP53 | chr17 | 7675238 | Т | Α | Splice | p.X126_splice | | 12618 | 2 | 0.0002 | 0.0003 | 127 | PB | 95.0 | | | | | | chr17 | 7676552 | T | С | Missense | p.S15G | c.43A>G | 10012 | 2 | 0.0002 | 0.0004 | 127 | PB | 95.0 | Abbreviations: Human Genome Variation Society nomenclature (HGVSc); Variant allele frequency (VAF); Cancer cell fraction (CCF); Bone marrow aspirate (BMA); Peripheral blood (PB). Supplemental Table S13. Comparison of NGS and duplex sequencing results. | Patient/ | Gene | Variant | NGS VAF | Duplex VAF | |-------------|------|--------------------|---------|------------| | sample code | | | | | | R001-A | BTK | p.C481S, c.1442G>C | NP | 0 | | R001-B | BTK | p.C481S, c.1442G>C | NP | 0 | | R001-C | BTK | p.C481S, c.1442G>C | NP | 0.0161 | | R001-D | BTK | p.C481S, c.1442G>C | 0.1 | 0.1061 | | R001-E | BTK | p.C481S, c.1442G>C | 0.1 | 0.1052 | | R001-F | BTK | p.C481S, c.1442G>C | NP | 0.0064 | | R001-A | TP53 | p.H178D, c.532C>G | NP | 0 | | R001-B | TP53 | p.H178D, c.532C>G | NP | 0.0773 | | R001-C | TP53 | p.H178D, c.532C>G | NP | 0.1301 | | R001-D | TP53 | p.H178D, c.532C>G | 0.18 | 0.1701 | | R001-E | TP53 | p.H178D, c.532C>G | 0.18 | 0.1761 | | R001-F | TP53 | p.H178D, c.532C>G | NP | 0.2785 | | R002-A | BTK | p.T474I, c.1421C>T | NP | 0 | | R002-B | BTK | p.T474I, c.1421C>T | NP | 0 | | R002-C | BTK | p.T474I, c.1421C>T | 0 | 0.0003 | | R002-D | ВТК | p.T474I, c.1421C>T | 0.06 | 0.0386 | | R002-E | ВТК | p.T474I, c.1421C>T | NP | 0.0203 | Abbreviations: Next-generation sequencing (NGS); Variant allele frequency (VAF); Clinical testing not
performed (NP). #### SUPPLEMENTAL FIGURES Supplemental Figure S1. Timeline of CLL treatments, PB and BM studies, and white blood cell (WBC) counts during patient R001's CLL history. The WBC line graph may be used to monitor disease severity. Time in the x-axis is centered on the first day of pirtobrutinib treatment. The length of each treatment bar is proportional to treatment duration, and the turquoise "CAR-T cell infusion" triangle is centered on the day of infusion. On the upper-x-axis, green triangles indicate the sequenced samples of the study, and maroon inverted triangles indicate clinical samples. Supplemental Figure S2. Timeline of CLL treatments, PB and BM studies, and white blood cell (WBC) counts during patient R002's CLL history. The WBC line graph may be used to monitor disease severity. Time in the x-axis is centered on the first day of pirtobrutinib treatment. The length of each treatment bar is proportional to treatment duration, and the turquoise "CAR-T cell infusion" triangle is centered on the day of infusion. On the upper-x-axis, green triangles indicate the sequenced samples of the study, and maroon inverted triangles indicate clinical samples. **Supplemental Figure S3.** Characterization of mutations identified pre- and post- treatment. A) Description of samples collected over time for both patients R001 (A, B, C, D, E, F) and R002 (A, B, C, D, E). Sample types include bone marrow and peripheral blood. Values for percent (%) disease, days pre-/post-pirtobrutinib treatment, and mean coding depth for duplex sequencing are shown for each sample. B) Mutation frequency for coding and non-coding mutations for each sample collected over time. C) Number of coding mutations found in genes associated with drug resistance in CLL for each sample. Genes associated with CLL resistance and covered by duplex sequencing probes include *BAX*, *Bcl2*, *BTK*, *PLCG2*, and *TP53*. Each sample is represented by a single column. Mutated genes are color-coded and represented as a fraction within the column with the number of mutation counts indicated underneath with a blue-colored gradient scale. **Supplemental Figure S4. Reproducibility of duplex sequencing data.** Two DNA samples extracted from the same bone marrow sample from patient R001 (R001-D and R001-E) were independently processed for DNA extraction and duplex sequencing. Variant allele frequencies (VAF) were calculated by dividing the number of mutant duplex reads (alternative counts) by the duplex sequencing depth at the mutated position. The correlation plot includes all mutations identified in both samples (n=20). Spearman's rank correlation coefficient and p-value demonstrate high reproducibility of measurements. ### A. Confirmation of *BTK* p.T474I (c.1421C>T) in sample R002-C via digital PCR # B. Comparison of *BTK* p.T474I (c.1421C>T) mutational frequencies between digital PCR and duplex sequencing in samples R002-C and R002-D **Supplemental Table S5. Orthogonal confirmation of** *BTK* **p.T474I** (**c.1421C>T**) **in sample R002-C using digital PCR (dPCR).** Figure S5A illustrates the detection via dPCR of *BTK* p.T474I (c.1421C>T) variant at 0.092 copies per 40μL reaction, controlled by assaying sample R002-D, which carried our target variant at a greater concentration, and K-562 cell line DNA lacking the target variant. Figure S5B compares the mutational frequencies for *BTK* p.T474I (c.1421C>T) in samples R002-C and R002-D as reported by dPCR versus duplex sequencing, demonstrating concordant mutational frequencies between the two techniques. #### SUPPLEMENTAL REFERENCES - 1. Schmitt MW, Fox EJ, Prindle MJ, et al. Sequencing small genomic targets with high efficiency and extreme accuracy. *Nat Methods*. 2015;12(5):423–425. - 2. Lai Z, Markovets A, Ahdesmaki M, et al. VarDict: a novel and versatile variant caller for next-generation sequencing in cancer research. *Nucleic Acids Res.* 2016;44(11):e108. - 3. Kennedy SR, Schmitt MW, Fox EJ, et al. Detecting ultralow-frequency mutations by Duplex Sequencing. *Nat Protoc*. 2014;9(11):2586–2606. - 4. Wickham H, Averick M, Bryan J, et al. Welcome to the Tidyverse. *JOSS*. 2019;4(43):1686. - 5. R Core Team. R: A language and environment for statistical computing. *The R Project for Statistical Computing*. 2018; - 6. Kittai AS, Woyach JA. Resistance Mechanisms to Targeted Agents in Chronic Lymphocytic Leukemia. *Cancer J.* 2019;25(6):428–435.