Ultra-deep mutational landscape in chronic lymphocytic leukemia uncovers dynamics of resistance to targeted therapies

David W. Woolston, ${ }^{1 *}$ Nathan D. Lee, ${ }^{2^{\star}}$ Mazyar Shadman, ${ }^{1,2^{*}}$ Elena Latorre-Esteves, ${ }^{2}$ Xin Ray Tee, ${ }^{2}$ Jeanne Fredrickson, ${ }^{2}$ Brendan F. Kohrn, ${ }^{2}$ Chaitra Ujjani, ${ }^{1,2}$ Ashley Eckel, ${ }^{2}$ Brian Till, ${ }^{1,2}$ Min Fang, ${ }^{1,2}$ Jerald Radich, ${ }^{1,2}$ Ivana Bozic, ${ }^{1,2 \#}$ Rosa Ana Risques ${ }^{2 \#}$ and Cecilia C.S. Yeung ${ }^{1,2 \#}$
${ }^{1}$ Fred Hutchinson Cancer Center and ${ }^{2}$ University of Washington, Seattle, WA, USA
*DWW, NDL, and MS contributed equally as first authors.
\#IB, RAR, and CCSY contributed equally as senior authors.

Correspondence: C. Yeung cyeung@fredhutch.org

Received:
April 19, 2023
https://doi.org/10.3324/haematol.2023.283372

SUPPLEMENTAL METHODS

DNA Duplex-seq library preparation

Given the small panel size (4843 bp), two rounds of hybridization capture were performed to increase efficiency. ${ }^{1}$

Duplex-seq analysis

Sequencing reads were analyzed using pipeline v2.1.2 available at https://github.com/Kennedy-Lab-UW/Duplex-Seq-Pipeline. First, raw reads were demultiplexed and grouped using the double stranded molecular tag included in the duplex adapters. Reads sharing the same tag were used to produce consensus Single-Strand Consensus Sequence (SSCS) reads. Then, SSCS reads with complementary tags were compared to produce a single, highly accurate Duplex Consensus Sequence (DCS) or "duplex read". Duplex reads were aligned to the human genome reference hg38 (GRCh38), end-trimmed (15 bp at $5^{\prime}, 5 \mathrm{bp}$ at 3^{\prime}), and overlap-trimmed. Samples with higher-than-average depth were subsampled using Samtools so that the mean depth per sample was similar across all samples from a particular patient. Variants were called using VarDict Java, and output VCF files were converted to MAF files using the Vcf2Maf script (https://github.com/mskcc/vcf2maf) with VEP version 104 and gene transcripts as indicated in Supplemental Table S3. ${ }^{2}$ Masking was performed for TP53 areas prone to sequencing artifacts.

For each sample, total number of sequenced raw reads, mean coding duplex depth, and total number of coding nucleotides were calculated (Supplemental Table S7). In Duplex-seq, the sensitivity of the assay is determined by the duplex depth, which is directly proportional to the
input amount of DNA assuming sufficient raw sequencing reads are allocated to build consensus sequences for most molecules. ${ }^{3}$ Given the size of our library (4843 bp), for 500 ng of DNA, we allocated $\sim 15 \mathrm{M}$ raw reads per sample to achieve a target duplex depth of $\sim 10,000 \mathrm{x}$. Sequencing data matched expectations except of one sample (R001-D) that had less sequencing raw reads and proportionally lower depth (Supplementary Table S7). This sample was a replicate and was only used for validation analyses.

Mutational analysis

R scripts were used to process MAF files using R version 4.2 .1 including the Tidyverse library. ${ }^{4,5}$ Variants were discarded if they had depth < 50 reads or were in masked areas. Variants were annotated based on their classification in the MAF file as missense, nonsense, silent, indel, splice, UTR or intronic. Intronic mutations, mutations in UTRs, and mutations in intronic splice regions were considered non-coding. All other mutations were considered coding.

Variant allele frequencies (VAF) were calculated by dividing the number of mutant duplex reads (alternative counts) by the duplex depth at the mutated position. Variants that were present in all the samples from a given patient at VAF >0.9 (homozygous) or VAF between 0.4 and 0.6 (heterozygous) and had a dbSNP identifier were considered single nucleotide polymorphisms (SNP)s (Supplemental Tables S5 and S6). Variants that had a dbSNP identifier, were present in all samples, and had a difference in VAF across samples (maximum minus minimum VAF) >0.2, were considered SNP-loss-of-heterozygosity (SNP-LOH). All variants that were not SNP or SNP-LOH and had depth > 1000 were considered mutations. For each sample, mutation
frequency (MF) was calculated as the number of mutant positions in coding regions divided by the total number of duplex nucleotides sequenced in coding regions.

Calculation of cancer cell fraction (CCF) for variants

To study clonal evolution of CLL under therapy, we converted the VAF of each mutation to its CCF (i.e., the fraction of cancer cells containing the mutation), which incorporates the tumor purity of the sample and the ploidy at the genomic location. In Duplex-seq, every duplex read corresponds to an original DNA molecule. While mutations in a single molecule are reliably detected, they are intrinsically subject to higher sampling error given the rarity of the event. Thus, we only focused on mutations detected in two or more molecules in a given sample to increase precision in CCF calculations. In patient R001, we analyzed clonal evolution using the four PB samples (A, B, C, and F) but not the two BMA samples (D, E) because they were technical replicates and collected only nine days after the third PB sample. In patient R002, sample R002-B was determined to have < 1% tumor purity and therefore was excluded from clonal evolution analyses, resulting in a total of four samples available for this patient: one PB (E) and three BMA samples (A, C, and D).

Calculation of variant CCF of heterozygous mutations in a diploid scenario

Let r be the total number of duplex reads for mutation i occurring in a diploid region of the genome, with v being the number of variant duplex reads. Then $V A F_{i}=v / r$. The population of cells in the sample will be a mixture of normal cells and cancer cells. The tumor purity (or the percent disease), p, of a sample is the fraction of cancer cells in the sample. Thus, $r(1-p)$ reads are expected to correspond to normal cells, and $r p$ reads are expected to come from cancer
cells. Furthermore, a somatic mutation in a diploid region is typically expected to be present in only one allele of a gene in question. In other words, the fraction of cancer cells containing mutation i is given by:

$$
C C F_{i}=\frac{2 v}{p r}=\frac{2 V A F_{i}}{p}
$$

An exception to this formula was $B A X$ mutation p.E41Gfs*33 in patient R002, which reached a CCF of 100%. BAX is in an autosome (chr. 19). Thus, such high VAF indicates either the mutation occurred independently in both alleles or that the second allele was lost by LOH in most cells. Therefore, for this mutation we use the formula $\frac{V A F_{i}}{p}$.

Calculation of variant CCF of heterozygous mutations located on \mathbf{X} chromosome for male patients

Of the genes included in the sequencing panel for this study, all are autosomal, except for BTK which is located on the X chromosome. Since there is only one allele of $B T K$ for male patients, the CCF of $B T K$ mutations is calculated as $\frac{V A F_{i}}{p}$. This formula is applied for the $B T K$ mutations detected for the male patient R002.

Calculation of CCF for LOH

LOH is another type of genetic alteration relatively frequent in CLL. Our panel was not specifically designed to detect LOH , but several heterozygous SNPs were captured and indicated LOH for TP53 in patient R001. As explained above, the availability of multiple samples allowed determination of LOH based on the comparison of the VAF of heterozygous SNPs across samples. As described in Methods, variants that had a dbSNP identifier, were present in all
samples, and had a difference in VAF across samples (maximum minus minimum VAF) >0.2 were considered SNP-loss of heterozygosity (SNP-LOH). The VAF of these SNPs was used to infer the frequency of cells with SNP-LOH in the sample. To describe the methods in more detail, we consider the case of two SNPs on the two alleles of the same gene, $\mathrm{SNP}_{\mathrm{a}}$ and $\mathrm{SNP}_{\mathrm{b}}$. There is a SNP-LOH in an unknown fraction of cells, x, in the sample, resulting in the loss of the allele containing $\mathrm{SNP}_{\mathrm{a}}$. Since $\mathrm{SNP}_{\mathrm{a}}$ is only present in cells without SNP-LOH, it follows:

$$
V A F_{a}=\frac{1-x}{2(1-x)+x}=\frac{1-x}{2-x}
$$

The denominator takes into consideration that the total coverage at the locus is 2 in cells without SNP-LOH (frequency $=1-x$) and 1 in cells with SNP LOH (frequency $=x$), so total average coverage is $2(1-x)+x$. Note that $V A F_{a}<0.5$ in this scenario, indicating that $\mathrm{SNP}_{\mathrm{a}}$ is affected by LOH . Since $\mathrm{SNP}_{\mathrm{b}}$ is present in all cells, we have:

$$
V A F_{b}=\frac{1}{2-x} .
$$

Similarly, $V A F_{b}>0.5$, indicating that SNPb is not affected by LOH.

The fraction of cells with SNP-LOH in the sample, x, can be calculated from any of the two equations above. To produce a single value of x , we combine the equations for $V A F_{a}$ and $V A F_{b}$, yielding

$$
x=1-\frac{V A F_{a}}{V A F_{b}} .
$$

To calculate the fraction of cancer cells with SNP-LOH (LOH CCF), we note that SNP-LOH should only be present in the cancer cell population. Thus, the fraction of cancer cells with SNPLOH is x / p, where p is the tumor purity.

To validate our estimates of the fraction of cells with SNP-LOH, we cross referenced with clinical cytogenetic data from a combination of karyotype, FISH, and chromosomal genomic array testing (CGAT) on the same samples used for duplex sequencing (Supplemental Table S10). LOH was only observed for TP53 in patient R001, with estimates very similar to CGAT data. For this patient we then calculated TP53 LOH CCF based on TP53 SNP-LOH (Supplemental Table S10) and tumor purity. TP53 LOH/deletion was present at CCFs of 80$100 \%$ in all the samples (Supplemental Table S11).

Calculation of variant CCF in the presence of LOH

Here we calculate the CCF of a variant located in a gene affected by LOH. In this situation, one allele is mutated, and the other allele is lost. This situation only applied to the TP53 mutations for patient R001.

We first need to determine x, the fraction of cells with LOH in the sample, using the methodology described in the previous section. Let p be the tumor purity of the sample. If mutation j is present in a fraction f of cancer cells with LOH and in a fraction g of cancer cells without LOH , then

$$
V A F_{j}=(f x+g(p-x)) /(2-x) \text { and } C C F_{j}=(f x+g(p-x)) / p
$$

Combining the two equations, it follows that

$$
C C F_{j}=\frac{V A F_{j}(2-x)}{p} .
$$

Digital PCR

Digital polymerase chain reaction (dPCR) was performed using the kits, instrument, and software suite of the QIAcuity ${ }^{\text {TM }} \mathrm{dPCR}$ system. Custom dPCR LNA® Assays were used to screen for regions and variants of interest. Reaction setups and thermocycling conditions were modified from the QIAcuity ${ }^{\mathrm{TM}}$ Probe PCR Kit product insert's protocol; the volume of primerprobe mix was doubled, and the annealing/extension step of the thermocycling conditions was increased to 60 seconds. Wild-type and mutant targets were assayed in a single multiplex reaction, and reactions were performed on a 24 -well nanoplate. The PCR template input was 50 ng of DNA, which was measured to ensure each positive partition only contained a singlet positive reaction and no doublet positives. Experimental reactions were represented by six replicates. For analysis, the results for the six replicate wells were consolidated into a 6-well hyperwell to achieve screening by 144,000 partitions to augment sensitivity for measurable residual disease.

SUPPLEMENTAL TABLES

Supplemental Table S1. Patient R001 clinical results of peripheral blood and bone marrow.

Experimental sample \#	Years postdiagnosis	Days postpirtobrutinib	Tissue	Percent disease (\%)	Hotspot mutation testing variant	Karyotype	FISH	CGAT
Not sequenced	0.0	-2281	BMA	73.0	NA	NA	NA	NA
Not sequenced	1.6	-1695	BMA	93.9	NA		```ish add(6)(MYB+), der(7)(ATM+), del(11)(ATM-), mar1(TP53+) [2] / add(6)(MYB+), der(7)(ATM+), del(11)(ATM-) mar2(TP53+) [1]. nuc ish (MYB,ATM,TP53) x2 [800], (CCND1,IGH) x2 [500], (D12Z3\times2) [800], (D13S319-D13S25,163C9) x2 [800]```	NA
Not sequenced	2.4	-1402	BMA	7.2	NA	NA	NA	NA
Not sequenced	2.9	-1232	BMA	69.5	NA	NA	NA	NA
R001-A	4.4	-687	PB	62.0	NA	```46, XX, add(6)(p21.3), der(7)t(7;11)(q22;q32), -10, del(11)(q21q23), add(12)(p13), add(15(q22), add(17)(p11.2), del(20)(q11.2q13.3), -22, add(22)(q13), +1~2mar[cp14] / 46, XX [6]```	nuc ish (MYBx2, ATMx2, TP53x1) [128/200]	```CNAs: 9p21- (2.3 Mb), 10pterq21+ (58 Mb), 10p11- (6.4 Mb), and 17p-in ~60% of cells; Normal for 11q, 12, and 13q```
Not sequenced	4.4	-660	BMA	78.1	NA	```46, XX, add(6)(p21.3), der(7)t(7;11)(q22;q21), -10, del(11)(q21q23), add(12)(p13), add(14)(q32), add(17)(p11.2), del(20)(q11.2q13.3), +mar[cp18] / 46, XX [2]```	NA	NA
Not sequenced	4.5	-636	BMA	33.1	NA	NA	NA	NA
Not sequenced	4.6	-617	PB	0.0	NA	NA	NA	NA
Not sequenced	4.6	-616	BMA	<1.0	NA	46, XX[21]	NA	NA
Not sequenced	4.6	-591	PB	0.1	NA	NA	NA	NA
Not sequenced	4.7	-560	PB	15.3	NA	NA	NA	NA
R001-B	5.4	-294	PB	56.0	NA	```46,X,t(X;18)(p22.1;q21.1), add(1)(q25), add(2)(q33), add(6)(p21.3), der(7)t(7;11)(q22;q21), - 10,del(11)(q21q23), add(12)(p13), add(17)(p11.2), del(20)(q11.2q13.3), +mar[cp14] / 46, XX [6]```	nuc ish (MYBx2, ATM×2, TP53x1) [153/200]	New aberrations: $1 q-, 2 q-$, and $12 q-$ in ~20\% of cells; Persistent aberrations: $9 p-, 10 p+/-, 10 q+$, and $-17 p$ in $\sim 60 \%$ of cells; Normal for 11q and 13q
R001-C	6.2	-15	PB	$70.0{ }^{+}$	NA	NA	NA	NA

R001-C	6.2	-15	PB	. ${ }^{+}$	NA	NA	NA	NA
					$\begin{gathered} \text { TP53 (p.H178D, } \\ \text { NM_000546.5:c. } 532 \\ \text { C>G, VAF 18\%) } \end{gathered}$			
R001-D/E*	6.2	-6	BMA	82.7	$\begin{gathered} \text { BTK (p.C481S, } \\ \text { NM_000061.3:c. } 144 \\ \text { 2G>C, VAF 10\%) } \end{gathered}$	46, XX, add(1)(q25), add(2)(q33), add(6)(p21.3), $\operatorname{der}(7) t(7 ; 11)(q 22 ; q 21),-10, \operatorname{del}(11)(q 21 q 23)$, add(17)(p11.2), +mar[11] / 46, XX [9]	nuc ish (MYBx2, ATMx2, TP53x1) [154/200]	```Persistent CNAs:1q-, 2q-, 9p-, 10p+, 10p-, 10q+, 12q-, and -17p in ~20-80% of cells; (specifically -17p = 80%); Normal for 11q and 13q```
					CARD11 (p.L341M, NM_032415.7:c. 102 1C>A, VAF 15\%)			

[^0]
Supplemental Table S2. Patient R002 clinical results of peripheral blood and bone marrow.

Experimental sample \#	Years postdiagnosis	Days postpirtobrutinib	Tissue	Percent disease (\%)	Hotspot mutation testing variant	Karyotype	FISH	CGAT
Not sequenced	12.2	-797	BMA	9.8	NA	NA	NA	NA
Not sequenced	12.7	-615	BMA	2.7	NA	NA	NA	NA
Not sequenced	13.1	-489	BMA	91.0	NA	NA	NA	NA
Not sequenced	13.3	-428	PB	2.2	NA	46, XY, $\operatorname{der}(1) t(1 ; 8)(q 41 ; q 13)$, $\operatorname{der}(7) t(3 ; 7)(q 26.1 ; p 21)$ [9] / 46, XY [11]	Whole blood: nuc ish(MYB,ATM,TP53) x2 [500], (MYCx3) [29/200], (CDKN2Ax0,D9Z3x2) [12/500], (D13S319-D13S25,163C9) x2[500]. Enriched abnormal B-cells: nuc ish (D12Z3x2) [300]	CNAs: 1q41qter- (32 Mb), 3q26qter+ (36 Mb), 7pterp21(12 Mb), 8q13qter+ (76 Mb), and 9p21-- (1.4 Mb, CDKN2A); Copy-neutral LOH (cnLOH) of 9pterp13 (35 Mb); Normal for 11q, 12, 13q, and 17p
R002-A	13.5	-331	BMA	12.9	NA	$46, X Y, \operatorname{der}(1) t(1 ; 8)(q 41 ; q 13)$, $\operatorname{der}(7) t(3 ; 7)(q 26.1 ; p 21)$ [6] / 46, XY [14]	NA	NA
R002-B	13.6	-294	BMA	< 1.0	NA	46, XY [20]	NA	NA
Not sequenced	13.6	-288	BMA	75.3	NA	NA	NA	NA
R002-C	14.4	-6	BMA	95.0	MAP2K1 (p.K57N, NM_002755.3:c. 171 G>C, VAF 48\%)	46, XY, der(1)t(1;8)(q41;q13), $\operatorname{der}(7) t(3 ; 7)(q 26.1 ; p 21)$ [16] / 46, XY [4]	nuc ish (MYBx2, ATMx3, TP53x2) [18/500]	CNAs : 1q41qter- (29 Mb), 3q26qter+ (35 Mb), 7pterp21(12 Mb), 8q13qter+ (76 Mb), and 9p21-- (1.4 Mb, CDKN2A) in $>80 \%$ of cells; Copy-neutral LOH (cnLOH) of 9pterp13 (36 Mb) in $>80 \%$ of cells; Normal for 11q, 12, 13q, and
Not sequenced	14.6	70	PB	88.0	NA	NA	NA	NA

MAP2K1 (p.K57N,
NM_002755.3:c. 171
G>C, VAF 43\%)

R002-D	14.7	82	BMA	91.0	SF3B1 (p.E622V,

NA
nuc ish (MYBx2, ATM×3, TP53×2) [16/500], (D12Z3×2)
[500], (D13S319-D13S25,163C9)×2 [500]
NM_012433.3:c. 186
5A>T, VAF 37%)
BTK (p.T474),
NM_000061.3:c. 142

R002-E	14.8	127	PB	95.0*	NA	NA	NA	NA

Abbreviations: Bone marrow aspirate (BMA); Peripheral blood (PB); Variant allele frequency (VAF); Fluorescence in situ hybridization (FISH); Chromosomal genomic array testing (CGAT) Copy number alterations (CNAs); Loss of heterozygosity (LOH).

* No flow-cytometry or ClonoSeq data was available for this specimen. Tumor burden was inferred from CBC WBC counts on the sample's collection date.

Supplemental Table S3. Duplex sequencing gene targets.

Gene	Gene NM	Transcript	Chromosome	Targeted area	Sequenced Exons	Source of Probes
BAX	NM_004324.4	ENST00000293288	19	hotspot codons	3,5	Integrated DNA Technologies
BCL2	NM_000633.3	ENST00000333681	18	hotspot codons	1	Integrated DNA Technologies
BTK	NM_000061.3	ENST00000308731	X	hotspot codons	$10,14,15$	Integrated DNA Technologies
PLCG2	NM_002661.5	ENST00000564138	16	hotspot codons	$18,19,23,26$	Integrated DNA Technologies
TP53	NM_000546.6	ENST00000269305	17	coding	$2-11^{*}$	TwinStrand Biosciences Cat. Number 06-1004-XX

* Probes also covered alternative exons that were considered non-coding for analysis.

Supplemental Table S4. Custom probes for hotspots.

Gene	Probe ID	Coding Exon	Coordinates of Probe (hg38)	Probe Sequence
BCL2	693383_32637003_BCL2(596)_1a_12	1	chr18: 60985589-60985709	ACCCGGTCGCCAGGACCTCGCCGCTGCAGACCCCGGCTGCCCCCGGCGCCGCCGCGGGGCCTGCGCTCAGCCCGGTGCCACCTGTGGTCCACCTGACCCTCCGCCAGGCCGGCGACGACT
	693383_32637003_BCL2(596)_12_13		chr18: 60985529-60985649	CTGCGCTCAGCCCGGTGCCACCTGTGGTCCACCTGACCCTCCGCCAGGCCGGCGACGACTTCTCCCGCCGCTACCGCCGCGACTTCGCCGAGATGTCCAGCCAGCTGCACCTGACGCCCT
BAX	693383_32636999_BAX(581)_3_2	3	chr19: 49458927-49459047	TCCATCCCCACTCTAGTTTCATCCAGGATCGAGCAGGGCGAATGGGGGGGGAGGCACCCGAGCTGGCCCTGGACCCGGTGCCTCAGGATGCGTCCACCAAGAAGCTGAGCGAGTGTCTCA
	693383_32636999_BAX(581)_3_3		chr19: 49458987-49459107	AGCTGGCCCTGGACCCGGTGCCTCAGGATGCGTCCACCAAGAAGCTGAGCGAGTGTCTCAAGCGCATCGGGGACGAACTGGACAGTAACATGGAGCTGCAGAGGTGTGGGCCCCTGAGGA
	693383_32637001_BAX(581)_6.1_4	5	chr19: 49464171-49464291	GTGAGACTCCTCAAGCCTCCTCACCCCCACCACCGCGCCCTCACCACCGCCCCTGCCCCACCGTCCCTGCCCCCCGCCACTCCTCTGGGACCCTGGGCCTTCTGGAGCAGGTCACAGTGG
	693383_32637001_BAX(581)_6.1_5		chr19: 49464231-49464351	CCGTCCCTGCCCCCCGCCACTCCTCTGGGACCCTGGGCCTTCTGGAGCAGGTCACAGTGGTGCCCTCTCCCCATCTTCAGATCATCAGATGTGGTCTATAATGCGTTTTCCTTACGTGTC
BTK	693383_32637018_BTK(695)_15a_2	15	chrX: 100611148-100611268	CCTTTCCTGTAGGAATCTTTCCCATGAGAAGCTGGTGCAGTTGTATGGCGTCTGCACCAAGCAGCGCCCCATCTTCATCATCACTGAGTACATGGCCAATGGCTGCCTCCTGAACTACCT
	693383_32637018_BTK(695)_15a_3		chrX: 100611088-100611208	GCAGCGCCCCATCTTCATCATCACTGAGTACATGGCCAATGGCTGCCTCCTGAACTACCTGAGGGAGATGCGCCACCGCTTCCAGACTCAGCAGCTGCTAGAGATGTGCAAGGATGTCTG
	693383_32637019_BTK(695)_16a_1	16	chrX: 100609650-100609770	TGGCTTCATTCTACTGGTCAGCAGAAGCTTTGTGCCTTTAACCTCTGTGCTGGGGACGGAGTCTCACTGGTCTCTGTTGCACTACAGGCAGCTCGAAACTGTTTGGTAAACGATCAAGG
	693383_32637019_BTK(695)_16a_2		chrX: 100609590-100609710	GTCTCACTGGTCTCTGTTGGACTACAGGCAGCTCGAAACTGTTTGGTAAACGATCAAGGAGTTGTTAAAGTATCTGATTCGGCCTGTCCAGGTGAGTGTGGCTTTTCATCTTTCCCT
	693383_32637014_BTK(695)_11a_2	11	chrX: 100613584-100613704	CTTCTTTTCGTTGTTCAGGGGAAAGAAGGAGGTTTCATTGTCAGAGACTCCAGCAAAGCTGGCAAATATACAGTGTCTGTGTTTGCTAAATCCACAGGGTGAGTGCTACTATTCCAAG
	693383_32637014_BTK(695)_11a_3		chrX: 100613524-100613644	CTGGCAAATATACAGTGTCTGTGTTTGCTAAATCCACAGGGTGAGTGCTACTATTCCAAGGCCCTGAGGACAAAGAACAGGGGTACCCTCCTAATAGCTCCTTGATGCTGTGCCCGTCCC
PLCG2	693383_32637040_PLCG2(5336)_19_2	19	chr16: 81946171-81946291	CTGGTCGTTTTCCCTGGCCCTGTGCCGCAGGTGGTACTATGACAGCCTGAGCCGCGGAGAGGCAGAGGACATGCTGATGAGGATTCCCCGGGACGGGGCCTTCCTGATCCGGAAGCGAGA
	693383_32637040_PLCG2(5336)_19_3		chr16: 81946231-81946351	GGCAGAGGACATGCTGATGAGGATTCCCCGGGACGGGGCCTTCCTGATCCGGAAGCGAGAGGGGGAGCGACTCCTATGCCATCACCTTCAGGTGGGTGCGAGGGTGGGAGGCACATGCTCT
	693383_32637041_PLCG2(5336)_20.1_2	20	chr16: 81953054-81953174	TGGCATGTCAACCCTGTGTCTTCCTGCTCCAGGGCTAGGGGCAAGGTAAAGCATTGTCGCATCAACCGGGACGGCCGGCACTTTGTGCTGGGGACCTCCGCCTATTTGAGAGTCTGG
	693383_32637041_PLCG2(5336)_20.1_3		chr16: 81953113-81953233	CGCATCAACCGGGACGGCCGGCACTTTGTGCTGGGGACCTCCGCCTATTTGAGAGTCTGGTGGAGCTCGTCAGTTACTACGAGAAGCATTCACTCTACCGAAAGATGAGACTGCGCTAC
	693383_32637041_PLCG2(5336)_20.1_4		chr16: 81953172-81953292	GGTGGAGCTCGTCAGTTACTACGAGAAGCATTCACTCTACCGAAAGATGAGACTGCGCTACCCCGTGACCCCCGAGCTCCTGGAGCGCTACAATATGGTAGGTGGTGGACTCCCTTGTGA
	693383_32637045_PLCG2(5336)_24_1	24	chr16: 81962076-81962196	TCTGCTAAACGGTGTGCTTTGGAAACGGGTTTCTTTTATATTCCCGTTACAACTAACGTGAGTTATGTCTTGTTTCTCACAGATTATTGAAGACAATCCCTTAGGGTCTCTTTGCA
	693383_32637045_PLCG2(5336)_24_2		chr16: 81962136-81962256	GTGAGTTATGTCTTGTTCTTCACAGATTATTGAAGACAATCCCTTAGGGTCTCTTTGCAGAGGAATATTGGACCTCAATACCTATAACGTCGGTACGTGCACACATCATCTTAGCCTGG
	693383_32637049_PLCG2(5336)_28_3	27	chr16: 81969818-81969938	CTGACAGCATCATCAGACAGAAGCCCGTCGACCTCCTGAAGTACAATCAAAAGGGCCTGACCCGCGTCTACCCAAAGGGACAAAGAGTTGACTCTTCAAACTACGACCCCTTCCGCCTCT
	693383_32637049_PLCG2(5336)_28_4		chr16: 81969878-81969998	CCCGCGTCTACCCAAAGGGACAAAGAGTTGACTCTTCAAACTACGACCCCTTCCGCCTCTGGCTGTGCGGTTCTCAGATGGTGGCACTCAATTTCCAGACGGCAGGTAAAGGCCGACTGA

Supplemental Table S5. Patient R001 duplex sequencing SNP data.

Chromosome	Gene	Position	HGVSc	$\begin{aligned} & \hline \text { HGVSp } \\ & \text { Short } \end{aligned}$	zygosity	เон	$\xrightarrow{\text { Roon-A }}$	$\begin{aligned} & \text { Ron-B B B } \\ & \text { VAF } \end{aligned}$	$\begin{aligned} & 2001-\mathrm{C} \\ & \text { VAF } \end{aligned}$	$\begin{aligned} & \text { 0001-D D } \\ & \text { vaF } \end{aligned}$	$\begin{aligned} & \text { R001-E E } \\ & \text { vAF } \end{aligned}$	$\begin{aligned} & \text { ROO1-F F } \\ & \text { VA } \end{aligned}$	R001-A duple depth	R001-B duple depth	Ro01-C duple depth	R001-D duplex depth	R001-E duplex depth	R001-F duplex depth	R001-A duplex mutant molecules	R001-B duplex mutant molecules	R001-C duplex mutant molecules	R001-D duplex mutant molecules	R001-E duplex mutant molecules	Ro01-F duplex mutant molecules
chr16	PLCG2	81912361	c.1935-236C>T	NA	Heterozygous	no	0.5071	0.5005	0.4946	0.5027	0.5000	0.4875	1485	1882	1486	1098	1394	1887	753	942	735	552	697	920
chr16	PLCG2	81912818	c.2054+102C>T	NA	Heterozygous	no	0.4946	0.5041	0.5079	0.5060	0.5085	0.5099	7528	7437	7871	4844	7292	7403	3723	3749	3998	2451	3708	3775
chr16	PLCG2	81912866	c.2054+150G $>$ T	na	Heterozygous	no	0.5031	0.5134	0.5138	0.5052	0.5082	0.5069	4798	4866	4994	3078	4658	4841	2414	2498	2566	1555	2367	2454
chr16	PLCG2	81912881	c.2054+1656>A	NA	Heterozygous	no	0.5012	0.5085	0.5032	0.5023	0.5063	0.5042	4068	4240	4187	2580	3893	4159	2039	2156	2107	1296	1971	2097
chr16	PLCG2	81913109	c.2054+3937>C	NA	Heterozygous	no	0.4821	0.4831	0.4891	0.4972	0.4494	0.4801	195	296	184	181	117	377	94	143	90	90	52	181
chr16	PLCG2	81919162	c.2055-322C>6	nA	Heterozygous	no	0.4945	0.5154	0.4810	0.4938	0.5114	0.8851	457	586	447	563	352	1142	226	302	215	278	180	554
chr16	PLCG2	8191947	c.205-8T>C	NA	Homozygous	NA	1.0000	1.0000	1.0000	1.0000	0.9999	1.0000	12705	12418	14084	10028	13263	15278	12705	124	1408	10028	1322	15278
chr16	PLCG2	81919763	c.2235+99A>6	NA	Homozygus	NA	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	5651	6058	6218	415	5820	6894	565	605	6218	415	582	6894
chr16	PLCG2	81936242	c.2916C>T	p.v972=	Heterozygous	no	0.4954	0.4858	0.4872	0.4856	0.4867	0.4919	12273	12045	13394	9028	13043	13958	6080	585	652	4384	6348	6866
chr16	PLCG2	8193658	c. $3052+205 \mathrm{C} \times 6$	NA	Homozygous	na	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1716	2001	1709	1200	1607	2647	1716	2001	1709	1200	1607	2647
chr17	TP53	7670065	c.1101-3756>A	NA	Heterozygous	SNP-LOH*	0.3411	0.2966	0.3095	0.1489	0.1074	0.0815	214	263	168	188	121	466	73	78	52	28	13	38
chr17	TP53	767497	c. $672+62 A>G$	NA	Homozygous	NA	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	10438	10545	10873	6588	9298	8806	10438	10545	10873	6588	9298	8806
chr17	TP53	7675327	c.376-916>A	NA	Homozygous	NA	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	6273	6241	6708	3982	5542	5575	6273	6241	6708	3982	5542	5575
chr17	тP53	7675519	c. $376-2837 \times C$	NA	Homozygous	NA	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1935	2354	2007	1212	1501	2065	1935	2354	2007	1212	1501	2065
chr17	TP53	7676154	c.215c>6	p.P72R	Homozygus	NA	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	11609	11461	12576	8478	10425	9927	11609	11461	12576	8478	10425	9927
chr17	TP53	7676278	c.97-6C>	NA	Heterozygous	SNP-LOH*	0.6998	0.6943	0.7055	0.8191	0.8300	0.9120	10636	10400	11231	7993	9500	9263	7443	7221	7924	6547	7885	8448
chr19	bax	48953313	c.35-335T>	NA	Heterozygous	no	0.5243	0.5025	0.4384	0.5422	0.4762	0.4938	103	197	73	83	63	162	54	99	32	45	30	80
chr19	bax	4895587	c. $233+14 A>6$	NA	Heterozygous	no	0.5014	0.4904	0.4985	0.4909	0.4913	0.4992	11637	11512	12704	6851	11967	10932	5835	5646	6333	3363	5879	5457
chr19	bax	4895955	c.233+122A>6	NA	Homozygous	NA	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	5001	5221	5483	3209	5156	5504	5001	5221	5483	3209	5156	5504
chrx	втк	101354559	c.1631+71C>T	NA	Homozygus	NA	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	8105	8008	8306	687	8858	10500	8105	8008	8306	6877	8858	10500
chrx	втк	10135629	c.1350-29A>6	na	Heterozyg	no	0.5	0.5304	0.5071	0.5113	0.5206	0.4931	9096	9214	9378	6703	10062	10073	4691	488	4756	3427	5238	4967

Abbreviations: Single nucleotide polymorphisms (SNP); Human Genome Variation Society nomenclature (HGVSc); Loss of heterozygosity (LOH); Variant allele frequency (VAF); Not applicable (NA).

* SNP-LOH were SNPs present in all samples with difference in VAF across samples (maximum minus minimum VAF) > 0.2.

Supplemental Table S6. Patient R002 duplex sequencing SNP data.

Chromosome	Gene	Position	Hgvsc	HGVSp Short	Zygosity	เон	$\begin{gathered} \text { R002-A } \\ \text { VAF } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { R002-B } \\ \text { VAF } \\ \hline \end{gathered}$	$\begin{gathered} \text { R002-C } \\ \text { VAF } \end{gathered}$	$\begin{gathered} \hline \text { R002-D } \\ \text { VAF } \\ \hline \end{gathered}$	$\begin{gathered} \text { R002-E } \\ \text { VAF } \\ \hline \end{gathered}$	$\begin{gathered} \text { R002-A duplex } \\ \text { depth } \\ \hline \end{gathered}$	$\begin{gathered} \text { R002-B duplex } \\ \text { depth } \\ \hline \end{gathered}$	$\begin{gathered} \text { R002-C duplex } \\ \text { depth } \\ \hline \end{gathered}$	$\begin{gathered} \text { R002-D duplex } \\ \text { depth } \end{gathered}$	$\begin{gathered} \text { R002-E duplex } \\ \text { depth } \\ \hline \end{gathered}$	R002-A duplex mutant molecules	$\begin{gathered} \text { R002-B duplex } \\ \text { mutant molecules } \\ \hline \end{gathered}$	R002-C duplex mutant molecules	$\begin{gathered} \text { R002-D duplex } \\ \text { mutant molecules } \\ \hline \end{gathered}$	R002-E duplex mutant molecules
chr16	PLCG2	81912818	c. $2054+102 \mathrm{C}>$ T	NA	Homozygous	NA	1.0	1.0	1.0	1.0	1.0	6432	5829	6165	6038	5442	6432	5829	6165	6038	5442
chr16	PLCG2	81912866	c. 2054+150G>T	NA	Homozygous	NA	1.0	1.0	1.0	1.0	1.0	4108	3779	4014	3791	3353	4108	3779	4014	3791	3353
chr16	PLCG2	81919162	c. 2055-322C>6	NA	Homozygous	NA	1.0	1.0	1.0	1.0	1.0	749	702	655	625	191	749	702	655	625	191
chr16	PLCG2	81919219	c.2055-265T>C	NA	Homozygous	NA	1.0	1.0	1.0	1.0	1.0	1222	1282	1137	1110	488	1222	1282	1137	1110	488
chr16	PLCG2	81919431	2055-50_2055-47c	NA	Heterozygous	no	0.4925	0.4859	0.4827	0.4920	0.4974	9664	9655	9409	9642	8385	4760	4691	4542	4744	4171
chr16	PLCG2	81919476	c. $2055-8$ P>C	NA	Homozygous	NA	1.0	1.0	1.0	1.0	1.0	12439	12144	11890	12126	11396	12439	12144	11890	12126	11396
chr16	PLCG2	81919763	c. $2235+99 A>G$	NA	Homozygous	NA	1.0	1.0	1.0	1.0	1.0	5453	5637	5264	5510	3749	5453	5637	5264	5510	3749
chr16	PLCG2	81928268	c. $2515-2906>$ T	NA	Homozygous	NA	1.0	1.0	1.0	1.0	1.0	1306	1337	1077	1238	248	1306	1337	1077	1238	248
chr16	PLCG2	81928466	c. $2515-92 \mathrm{~A} \times \mathrm{C}$	NA	Homozygous	NA	1.0	1.0	1.0	1.0	1.0	8418	8682	8358	8557	5809	8418	8682	8358	8557	5809
chr17	TP53	7674797	c. $672+62 A>G$	NA	Homozygous	NA	0.9998	1.0	1.0	1.0	1.0	12033	11623	12568	12077	10325	12031	11623	12568	12077	10325
chr17	TP53	7675327	c. 376 -916>A	NA	Homozygous	NA	1.0	1.0	1.0	1.0	1.0	7923	7630	7927	7700	6646	7923	7630	7927	7700	6646
chr17	TP53	7675519	c.376-283T>C	NA	Homozygous	NA	1.0	1.0	1.0	1.0	1.0	2510	2373	2368	2236	844	2510	2373	2368	2236	844
chr17	TP53	7676154	c.215c>6	p.P72R	Homozygous	NA	1.0	1.0	1.0	1.0	1.0	13461	12771	13976	13424	14830	13461	12771	13976	13424	14830
chr18	BCL2	63318646	c. $21 \mathrm{~A} \times \mathrm{B}$	p.T7=	Homozygous	NA	1.0	1.0	1.0	1.0	1.0	1294	938	1029	745	1039	1294	938	1029	745	1039
chr19	bax	48955513	c. $35-35 A>C$	NA	Heterozygous	no	0.4864	0.5027	0.4846	0.5096	0.4809	1583	1647	1525	1513	863	770	828	739	771	415
chr19	bax	48955847	c. $233+14 \mathrm{~A}>\mathrm{G}$	NA	Homozygous	NA	1.0	1.0	1.0	1.0	1.0	10047	9811	9559	9889	9058	10047	9811	9559	9889	9057
chr19	BAX	48955955	c. $233+122 A>G$	NA	Homozygous	NA	1.0	1.0	1.0	1.0	1.0	4539	4417	4317	4265	3256	4539	4417	4317	4265	3256
chrx	втк	101354559	c. $1631+71 \mathrm{C} \times$ T	NA	Homozygous	NA	1.0	1.0	1.0	1.0	1.0	5128	4992	5147	4975	3812	5128	4992	5147	4975	3812

Abbreviations: Single nucleotide polymorphisms (SNP); Human Genome Variation Society nomenclature (HGVSc); Loss of heterozygosity (LOH); Variant allele frequency (VAF); Not applicable (NA).

Supplemental Table S7. Duplex sequencing summary by sample.

Patient/ Sample Code	Sample type	Age at collection date	Days postpirtobrutinib	Percent disease (\%)	Raw reads (paired end)	Mean coding duplex depth	Coding nucleotides	Coding mutations	Coding MF	Included for clonal evolution analysis
R001-A	PB	65.4	-687	62.0	15,073,850	10227	32152379	27	$8.40 \mathrm{E}-07$	yes
R001-B	PB	66.5	-294	56.0	15,956,920	10185	32021158	25	7.80E-07	yes
R001-C	PB	67.3	-15	70.0	15,708,831	11170	35120001	41	$1.20 \mathrm{E}-06$	yes
R001-D*	BMA	67.3	-6	82.7	9,925,204	7812	24404287	32	$1.30 \mathrm{E}-06$	no
R001-E*	BMA	67.3	-6	82.7	15,019,519	10236	32152220	37	$1.20 \mathrm{E}-06$	no
R001-F	PB	67.8	161	95.0	19,197,071	10510	33042090	67	$2.00 \mathrm{E}-06$	yes
R002-A	BMA	72.2	-331	12.9	16,354,256	9192	28643615	31	$1.10 \mathrm{E}-06$	yes
R002-B	BMA	72.3	-294	< 1.0	18,129,500	9190	28314575	20	7.10E-07	no
R002-C	BMA	73.1	-6	95.0	16,470,890	9347	29042549	31	$1.10 \mathrm{E}-06$	yes
R002-D	BMA	73.3	82	91.0	17,769,765	9320	28548364	46	$1.60 \mathrm{E}-06$	yes
R002-E	PB	73.4	127	95.0	15,884,332	9605	29639794	65	2.20E-06	yes

Abbreviations: Peripheral blood (PB); Bone marrow aspirate (BMA); Mutation frequency (MF).

* Samples R001D and R001E are technical replicates of the same specimen.

Supplemental Table S8. List of coding mutations detected in samples from patient R001. The asterisks in the column "HGVSp Short" are standard Human Genome Variation Society nomenclature and do not represent footnotes. VAF > 0.01 are color coded in red/pink.

Abbreviations: Human Genome Variation Society nomenclature (HGVSc); Variant allele frequency (VAF).

* BTKi resistance mutations and codons according to Kittai et al. ${ }^{6}$
\dagger Samples R001-D and R001-E are technical replicates of the same specimen.

Supplemental Table S9．List of coding mutations detected in samples from patient R002．The asterisks in the column ＂HGVSp Short＂are standard nomenclature for amino acid variants and do not represent footnotes．VAF＞ 0.01 are color coded in red／pink．

mosom	bene ${ }_{\text {Pa}}$	${ }_{\substack{\text { sar } \\ \text { postion }}}^{\text {Su}}$	vse	$\underset{\substack{\text { ucrusp } \\ \text { short }}}{\text { der }}$	втка restiance	BTKI resistance codon ${ }^{*}$	Number of samples with＞1 mutant molecules		$\begin{aligned} & \text { Roozec Rooz-D Rooz-E } \\ & \text { VAF VAF } \end{aligned}$	$\begin{aligned} & \text { move-A } \\ & \text { doppex } \\ & \text { depath } \end{aligned}$	$\begin{aligned} & \text { Rooo- } \\ & \text { duplex } \\ & \text { duper } \end{aligned}$	$\begin{aligned} & \text { noooz- } \\ & \text { doupex } \\ & \text { depent } \end{aligned}$	$\begin{aligned} & \text { Roover } \\ & \text { dupex } \end{aligned}$	$\begin{aligned} & \text { yon2-E } \\ & \text { dopupex } \\ & \text { depath } \end{aligned}$	R002－A duplex mutant molecule			R002－D duplex mutant molecule	
cris	${ }^{\text {bax }}$	42955509	c_{10001}	${ }^{\text {p．an7 }}$		NA	$\stackrel{4}{4}^{4}$	${ }^{0.0003}$	0.0010 0．0003 0.0003	${ }^{9706}$	${ }^{982}$	${ }^{335}$	${ }^{8779}$	7302					
9	${ }^{\text {bax }}$	48955713	cirdup	p． 614165×33	Na	na	4	0.0118	0.83530 .03330 .0937	\＄14	9958	8360	8817		${ }^{116}$				7509
crns	${ }_{\text {bax }}$	355713	C120．1210up	p．EAL65tr20	NA	Na	${ }^{3}$		0.00200 .0025	9814	938	880	${ }^{8177}$						
cris	${ }_{\text {axa }}$	55714	${ }^{\text {c．12del }}$	p．E412ts 19	NA	Na	3	0.0002	0.000680 .0002	935	9322	${ }^{2958}$	${ }^{8802}$		2		5		
cris	bax	4835s730	${ }^{\text {ciseot }}$		NA	Na	2		001	997	${ }_{983}$	9218	9581			10			
chis	${ }_{\text {axa }}$	4339559		${ }^{\text {p．aider }}$	NA	NA	\bigcirc	0.0003	003	${ }^{31688}$	321	${ }_{312}$	3324						
cris cris	${ }_{\text {gax }}^{\text {gax }}$	4	C．8stldup	${ }_{\text {Na }}$	${ }_{N A}$	${ }_{\text {NA }}$	：		${ }_{0} 0.00004$	${ }_{4172}$	${ }_{3191}$	${ }_{3}^{3392}$	－	2637					
¢п19	${ }_{\text {axa }}$	4835359	cragt	р．023	Na	NA	－		${ }_{0} 0.0003$	4224	4259	4062	4172	3314					1
¢n19	${ }_{\text {tax }}$	4895577	c17506	${ }^{\text {p．LS9\％}}$	NA	NA	－	2．001		992	9981	938	9557	9515		1			
¢119	bax			p．C23sts	NA	NA	－	0.0001		938	9879	9378	9534		1				
cris	bax		c．1998a	678	NA	NA	\bigcirc	500		10001	9978	971	939	976					
cris	${ }_{\text {bax }}^{\text {bax }}$	4385024 4856873		p．vizacs ${ }^{\text {a }}$	NA	NA	\bigcirc	0.0002		${ }^{4659}$	${ }^{4249}$	431	${ }^{4242}$	4121					
cris	${ }_{\text {bax }}$	435809093		p．alism	${ }_{\text {NA }}$	NA	：	${ }_{0}^{0.0002}$		${ }_{\substack{5894 \\ 6871}}$	¢	${ }_{\substack{5655 \\ 634}}$	$\underset{\substack{553 \\ 630}}{\substack{20}}$	5655 7007	1				
dı19	${ }_{8 a x}$	48380988	C5285 ${ }^{\text {A }}$	p．9176＝	na	NA	－	0.0001	0．0001	7510	6972	1213	7181	7973		1		1	
19	${ }^{\text {bax }}$	48380982	csser ${ }^{\text {a }}$	p．14810	Na	Na	\bigcirc	0.0001		${ }^{8217}$	707	794	7388	8857		1			
cris	${ }_{\text {Bax }}^{\text {Bax }}$	48380983			${ }_{\text {NA }}$	${ }_{N A}$	：		$0.0001 \quad 0.0001$	${ }_{8280}^{8171}$	${ }_{88072}^{7679}$	${ }_{8}^{7312}$	（7222				1		1
dris	${ }_{80} \times$	48881080	c．asorc	p．F214	NA	NA	－		0.0001	8091	7346	7926	sato	782				1	
chns	${ }_{80}^{802}$	6331239		${ }^{\text {p．E1360 }}$	Na	Na	\bigcirc		${ }^{0.0002}$	${ }_{5}^{5171}$	${ }_{5}^{528}$	${ }_{\substack{5132 \\ 629}}$	${ }_{4}^{487}$	5355				1	
chns dris	${ }_{\substack{802 \\ 802}}^{802}$	6331338 6			${ }_{N A}$	${ }_{N A}$	：		${ }_{0}^{0.0001}$	${ }^{6947}$	${ }_{7}^{7095}$	${ }_{6}^{6759}$	${ }_{\substack{6112 \\ 603}}^{620}$	${ }_{\substack{893 \\ 985}}$					1
cmin	${ }^{812} 2$	6331826	${ }^{2} 21210 \times 8$	p．asit	Na	na	－		0.0001	738	705	678	6284	9115					1
${ }_{\text {chn }}$	${ }_{802}^{802}$	6331838		p．ants	Na	Na	\bigcirc		${ }^{0} 0.0001$	6897 129	${ }^{6} 785$	${ }^{6517}$	${ }_{6}^{6150}$	${ }_{8}^{8682}$					
${ }_{\text {chn }}$	${ }_{\text {Bal }}$	633135600	civor		${ }_{\text {Na }}$	${ }_{N A}$	－		0.0007	${ }^{12950}$	${ }_{\substack{326 \\ 195}}$	${ }_{1}$		${ }_{235}$				1	
chix	втк 1	101356168	cı1ssarc	p．．．seso	NA	NA	3		0.00870 .000300 .0006	6136	6573	699	676	6842			${ }^{6}$	20	4
chix	${ }_{\text {BTK }}$	${ }^{101355177}$	${ }^{\text {c．inarlic }}$	p．C．as12	res	res	3		0．0023 0.000920 .0033	${ }_{6}^{638}$	${ }^{6559}$	${ }_{6885}^{685}$	6764	653			${ }^{16}$	62	
$\cos _{\text {chix }}^{\text {cix }}$	${ }_{\substack{\text { Brk } \\ \text { BTK } \\ 10}}$	${ }_{\text {1023s8689 }}$		${ }_{\text {p．Pranic }}^{\text {p．174 }}$	No	Yes	3_{3}^{3}			${ }_{6009}^{6376}$	${ }_{\text {c }}^{6932}$	${ }_{6}^{6157}$	${ }_{\substack{6742 \\ 6148}}^{68}$	¢			${ }_{2}^{2}$	${ }_{3}^{202}$	${ }_{2}^{134}$
din	втк 1	101356197	c．12120A	р．T77an	no	V	2		0.00100 .0003	6376	6532	6816	6796	6606				7	2
chix	${ }^{\text {BIK }}$	101356222	cı376ac	p．assp	na	Na	2		0.00050 .0 .0003	su9	6057	${ }^{6362}$	6338	5599				3	2
${ }_{\text {chin }}^{\text {cix }}$	$\underbrace{\text { gik }}_{\text {gik }}$	10135885 1035469		${ }_{\substack{\text { p．T3130 } \\ 0.528 v}}$	ves		${ }^{2}$		${ }^{0.00018} 0.0 .00022$	${ }_{\substack{6930 \\ 7122}}^{6}$	¢	${ }_{\substack{622 \\ 7215}}$	（6505	${ }_{\substack{6851 \\ 685}}$				${ }_{2}^{12}$	15
$\operatorname{cin}_{\text {cix }}$	${ }_{\text {BIK }}$	101535178	${ }_{\text {cilimer }}$		No	tes	1		$0.00030_{0.00001}^{0.00002}$	${ }_{6363}^{7122}$	6557	${ }_{685}$	6733	${ }_{6516}$			2	1	1
chix	вTK 1	103135239	c．133D	p．ases	Na	NA	1		0.0005	5954	6190	${ }_{646}$	6550	ssa				3	
chix	втк	101356250	c．13680	p．R．SSCN	Na	NA	1		0.0005	5927	6066	6399	6995	5801					3
${ }_{\text {chin }}^{\text {chin }}$	${ }_{\text {Brk }}^{\text {Bik }}$	101033645	${ }_{\text {cher }}$	${ }_{\text {p．oss }}^{\text {p．csas }}$	${ }_{\text {NA }}$	${ }_{N A}$	：		$0.0001{ }_{0.0001}$	${ }_{7516}$	787	${ }_{720}$	${ }_{730}^{7370}$	${ }_{6726} 661$				1	1
chin	вTk 1	103356678	c．iss3x	p．L5235	no	res	－		0.0001	${ }_{736}$	6320	7720	6982	689					1
chix	өtर	101356123	c．assor	р．1999：	NA	NA	－	0.0002		5837	629	6380	6387	5800		1			
chix	tik	101366298	c．ivespa	p．a40	NA	NA	\bigcirc		．0002	${ }_{6}^{685}$	${ }^{6335}$	6602	6620	6315					
${ }_{\text {chix }}$	${ }_{\text {bix }}^{\text {bix }}$	（10136200	crama	palamv	Na	Na	\bigcirc		0.0002	${ }_{6}^{6186}$	${ }_{6}^{6335}$	${ }^{6650}$	${ }_{6598}$	627					
chix	${ }_{\text {gre }}$	${ }^{10123562222}$	cilemenc	${ }_{\text {p．assp }}$	${ }_{\text {NA }}$	${ }_{N A}$	！		${ }^{0.0002} 0.0002$	${ }_{\text {cke }}^{6246}$	${ }_{6057}$	${ }_{6}^{6618}$		${ }_{\text {Scese }}$			1		
crn6	plcaz	8192705	с．193306	p．resc	na	na	2		0.00010 .00060 .0 .0099	${ }^{8337}$	9002	3037	${ }^{8331}$	10575			1	5	，
${ }^{\text {chn6 }}$		81929576	${ }^{\text {cherem }}$	${ }^{\text {p．l．sasv }}$	No	res	2	0000	0.00020 .0004	${ }^{12376}$	${ }^{12887}$	${ }_{\text {11273 }}^{112}$	${ }^{121212}$	（976				2	4
${ }^{\text {chri6 }}$		（1919578	c2asoa	p．vin	Na	Na	1	0.0009		${ }_{12214}^{1214}$	${ }_{1171}^{1171}$	${ }_{12952}$	11914	${ }^{12506}$					
${ }_{\text {chric }}^{\text {chric }}$		81992628	c．als	${ }_{\text {pasmbe }}^{\text {prrsio }}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	$\stackrel{1}{\circ}$		${ }_{\substack{0}}^{0.00003}$	${ }_{\substack{1351 \\ 9095}}$	${ }_{935}^{1734}$	${ }_{\substack{1214 \\ \text { Sala }}}^{121}$	${ }_{\substack{1174 \\ 936}}$	（12208			${ }_{1}^{3}$		
crn6		8192250	cigespa	${ }^{\text {p．163 }}$	na	na	－		0.0001	9550	975	9935	9332	${ }^{11988}$					1
${ }_{\text {chn }}$		8191265	c．1930	p．nessw	Na	Na	：		0.00010 .0001	${ }^{9678}$	${ }^{\text {s309 }}$	${ }^{\text {928 }}$	${ }^{9311}$	${ }^{12080}$			1	1	
${ }_{\text {chric }}^{\text {chric }}$		${ }_{\text {819393 }}^{819392}$	c．cerace	${ }_{p}^{\text {p．L．6538 }}$	${ }_{\text {Na }}$	${ }_{\text {Na }}$	：		${ }_{0}^{0.00001}$	12200 12156 10	（11622	11356 1125	${ }_{\text {11769 }}^{117}$	${ }_{\substack{11747 \\ 11968}}$					1
chn6		${ }^{1919588}$	с2119＞＞	p．507p	мо	vis	－		0.0001	1279	${ }^{12098}$	1192	12360	12387				1	
${ }^{\text {chn6 }}$		819359	c21200A	p．50\％	vos	ris	\therefore		${ }^{0.0001}$	12774	${ }^{12065}$	${ }^{1139}$	12339	${ }^{12283}$					
${ }_{\text {chnt }}^{\text {chni6 }}$		silvess	centera	${ }_{\text {p．ander }}$	NA	Na	：		0.00010 .000010 .00001	${ }_{1281}^{1274}$	${ }_{12000}^{12005}$	${ }_{\text {L }}$	${ }_{12239}^{1239}$	${ }_{12838}^{1283}$			1	1	1
am6	PLCG2	s191354	c212spo	p．rvoso	na	na	－		0.0001	12214	11824	1159	12142	12780					1
ann	plcaz	${ }^{1919595}$	с214sca	p．1786	Na	NA	－		${ }^{0.0000}$	${ }^{12197}$	${ }^{11702}$	${ }^{11457}$	${ }^{11923}$	${ }^{122888}$					
chnt ${ }_{\text {char }}^{\text {chic }}$	${ }_{\text {PlCal }}^{\text {picar }}$				${ }_{\text {NA }}$	${ }_{\text {NA }}$	：		${ }^{0.0000} 0.00001$	${ }_{\substack{11288 \\ 1293}}$	${ }_{1}^{12390} 1$	111538	${ }_{\substack{11788 \\ 12268}}$	${ }_{\substack{10077 \\ \text { ges }}}$				1	1
cris	PlCC2	s192552	c323Tx 6	р．Nеs3\％	Na	na	－		0.0001	12887	1239	11705	12329	seas					1
वпn¢	PlCaz	${ }_{81929574}$	cz3nca	р．веяан	Na	Na	\bigcirc		coor	12278	12329	${ }^{11594}$	${ }^{12236}$	974				1	
${ }_{\substack{\text { chn6 } \\ \text { chir }}}$				${ }_{\text {prem }}^{\text {p．l2sss }}$	${ }_{\text {No }}$	NAs	：		${ }^{0.00001}$	12293	$\underset{12335}{12368}$	11193 1163	$\underset{\substack{12312 \\ 1223}}{ }$	${ }_{9}^{9765}$					1
वm6	P1CC2	8192358	c．35s5C	р．ceser	na	na	－		0.0001	12250	1271	11974	12096	9509				1	
chn6	${ }^{\text {PLCG2 }}$	${ }^{19298615}$	${ }^{\text {cissmb }}$	${ }^{\text {preses }}$ ，	Na	Na	\bigcirc		0001	11297	${ }^{11248}$	${ }^{10733}$	${ }^{11240}$	878 cma					1
chnt	${ }_{\text {PlCaz }}^{\text {PICG2 }}$			${ }_{\text {p，Ressec }}$	${ }_{\text {NA }}$	${ }_{\text {Na }} \mathrm{Na}$	：		${ }_{0}^{0.0001 ~} 0.0001$	${ }^{8819} 9$	（1939	${ }^{8925}$	（2033	${ }_{702}^{664}$			1		1
dn16	PICG2	${ }^{1939220}$	с2396a	p．596s	Na	Na	\bigcirc	0.0001		${ }^{10597}$	${ }^{10280}$	${ }^{10785}$	${ }_{1258}^{12295}$	8615	1				
${ }_{\text {drab }}$	${ }_{\text {PLCa2 }}$	${ }_{\text {81936302 }}$	çavore		NA	NA	－		0.00010 .0001	${ }_{122059}$	${ }_{121292}$	${ }_{12168}$	${ }_{1248}^{1245}$	${ }^{111030}$				1	1
ch16	PlCG2	${ }^{1939303}$	c23mba	p．0993	Na	NA	\bigcirc		0.00010 .0001	11992	${ }^{12163}$	1239	${ }^{12242}$	${ }^{10988}$				1	1
${ }_{\substack{\text { chrib } \\ \text { din6 }}}$	${ }_{\text {PlCa2 }}$	${ }^{8193634} 8$			${ }_{\text {NA }}$	${ }_{N A}$	－	0.0001	0.0001	（11339	${ }_{\substack{12125 \\ 11388}}$	（1279	${ }_{\substack{12356 \\ 12202}}$	${ }_{1}^{10388}$ 1045	1			1	
${ }^{\text {chr16 }}$	${ }^{\text {PLCG2 }}$	${ }^{19393536}$	c30300 ${ }^{\text {cos }}$	p．vilios	Na	Na	\bigcirc		0.0001	10388	11508	${ }^{11283}$	${ }^{11594}$	${ }^{9257}$				1	
${ }_{\text {chn }}^{\text {chn7 }}$	${ }_{\text {Tres3 }}$				${ }_{\text {Na }} \mathrm{Na}$	${ }_{N A}$	${ }_{3}^{4}$	${ }^{0.0027} 0.00022$	000120．0002 0.00030 .0002	${ }_{\substack{1245 \\ 11802}}^{12}$	${ }_{\substack{1237 \\ 11436}}$	${ }_{\substack{12335 \\ 12350}}$	${ }_{\substack{1254 \\ 1189}}^{12}$	12288 11650	${ }_{4}^{34}$	2		${ }_{3}^{3}$	2
ch17	TP33	7274900	c．63149	p．r211	Na	NA	3	0.00320 .0027	0.00010 .0009	10813	1086	11883	11402	12025	${ }_{3} 5$	${ }^{29}$	1	10	
${ }_{\text {chil }}$	${ }_{\text {TP53 }}^{\text {TP3 }}$	${ }_{7}^{76752525}$		p．0136	Na	Na					${ }_{1}^{11274}$	${ }_{12588}^{12258}$	12047 12755 1	${ }_{\substack{13827 \\ 12628}}$					
dr17	TP3	767838			NA	NA	1	0.0002		11278	${ }_{12235}$	${ }_{12850}$	${ }_{12621}^{1205}$	${ }_{13154}$	2				
${ }_{6}^{6117}$	${ }_{\text {Tr53 }}$	${ }^{778148}$	${ }^{\text {c，} 7 \text { ¢as }}$	p．e2se	Na	Na	1		$0.0001{ }^{0.0003}$	${ }_{1}^{12345}$	12074	${ }_{121299}^{1299}$	${ }_{1}^{12588}$	$\underset{\substack{12368 \\ 12388}}{ }$			1		4
${ }_{\substack{\text { chn7 } \\ \text { crin }}}^{\text {che }}$	${ }_{\text {TT53 }}^{\text {TP3 }}$	${ }_{7}^{76772208}$		${ }_{\text {p．Pr248a }}^{\text {p．}}$	${ }_{\text {Na }} \mathrm{Na}$	${ }_{\mathrm{NA}}^{\mathrm{Na}}$	1	000030	0.00010 .0001	${ }_{\substack{1127 \\ 1238}}^{123}$	11378 12088 1	${ }_{12297}^{12293}$	${ }_{\substack{11831 \\ 1232}}^{1292}$	$\underset{\substack{11488 \\ 14362}}{12}$	3 6			1	1
chat	${ }_{\text {TP3 }}$	7675218	с394＊	p．K．132E	na	Na	1	0.0002		${ }^{12168}$	11859	${ }^{12613}$	12133	${ }^{13577}$	3				
ch17	${ }_{\text {TP53 }}$	${ }_{7}^{7605652}$	c．asa ${ }^{\text {a }}$	${ }_{\text {p．S．SIS }}$	Na	Na	1		0.0002	${ }^{5678}$	${ }^{979}$	${ }_{1}^{105588}$	${ }^{9378}$	10012					2
	${ }_{\text {TP53 }}^{\text {TP3 }}$	${ }_{7}^{76686392}$			${ }_{N a} \mathrm{Na}$	${ }_{N a} \mathrm{Na}$	！	0.0001	0.0001	1093 1159	10500 11763	$\underset{\substack{10851 \\ 12024}}{ }$	${ }_{\substack{10771 \\ 1195}}$		1		1		
cha7	${ }^{\text {TpS3 }}$	${ }^{7} 7002020$	${ }^{\text {cioseser }}$	p．rbess	Na	${ }^{\mathrm{Na}}$	\bigcirc		0.0001	12015	12035	12336	12359	10551			，		1
ch17	${ }^{\text {TP53 }}$	770058	${ }^{\text {clicsema }}$	${ }^{\text {р．A335 }}$	Na	Na	\bigcirc		${ }^{0.00001}$	${ }^{12001}$	12108	12350	12519	10871					
${ }_{\text {chat }}$ ch17	${ }_{\text {TPS3 }}^{\text {TP3 }}$	${ }_{\text {l }}^{760062}$	（1037）		${ }_{\mathrm{Na}}$	${ }_{N A}$	：		0010.0001	（12922	11709 11200 1	${ }_{121250}^{12150}$	$\underset{\substack{12098 \\ 1293 \\ \hline}}{ }$	${ }_{\substack{1017 \\ 9210}}$			1		1
chin	TP53	767381	csioca	p．P316\％	NA	NA	。		0.00001	${ }^{129358}$	14000	${ }_{12883}$	14673	16512			1		1
chr17	TP3	767355	c．9330A	${ }_{\text {p．N311 }}$	Na	Na	\bigcirc		0.0001	11535	12092	${ }^{125382}$	${ }^{1426}$	${ }^{1629}$					1
${ }_{\text {chat }}$ ch17	${ }_{\text {TpS3 }}$	${ }_{7}^{7637235}$			${ }_{N a}$	${ }_{N A}$	：		${ }_{0}^{0} 0.0001$	$c1235613519$	${ }_{\substack{13556 \\ 1292}}$	${ }_{12512}^{12318}$	${ }_{\substack{13976 \\ 1321}}$						1
chin	TP3	${ }^{763735}$	cissom	${ }_{\text {p．z23s }}$	NA	NA	－		$0.0001{ }^{0.0001}$	${ }_{1310}$	${ }_{12238}$	12396	${ }_{1} 13051$	12499			1		
chri7	TP3	763732	c．838 ${ }^{\text {c }}$	${ }^{\text {p．R2306 }}$	na	na	－	0.0001		12389	12326	13355	${ }^{12966}$	${ }^{12288}$	1				
${ }_{\text {chat }}$ chl7	${ }_{\text {TPS3 }}^{\text {TPS }}$	${ }^{7617394}$			Na	${ }^{\mathrm{Na}}$	：	${ }^{0.0001} 0.0001$		${ }_{12393}^{12385}$	$\underset{\substack{12652 \\ 12255}}{ }$		13098 13200	${ }^{212009}$	1	1			
chr17	TP33	${ }_{67830}$	c．allor	${ }_{\text {p．razac }}$	NA	NA	－	． 0	0.0001	1229	1284	${ }_{1388}$	13321	12310	1		1		
chr17	TP3 3	767337	с．739¢	p．5261＝	na	NA	－		0.0001	12303	12356	1298	${ }^{2263}$	${ }^{13198}$					1
chn7	${ }_{\text {Tres }}^{\text {Tr3 }}$	787180 760129	crazion	xeri．splice	Na	Na	：		${ }_{0}^{0.0001}$	${ }_{\text {1278 }}^{12785}$	${ }_{12139}^{1219}$	（13074	$\underset{\substack{12775 \\ 12750}}{12}$	12275 12201 1					1
chri7	TP3	768199	c．isaric	${ }_{\text {p．}}^{\text {p．2sst }}$	Na	NA	：	${ }^{0.0001}$	0.0001	${ }_{12265}^{1266}$	121219	${ }_{123000}$	${ }^{12665}$	${ }_{12270}$		1			
chri7	TP3	768221	c．7200	p．r2asw	na	na	－	0.0001		1171	11976	12393	${ }^{11955}$	${ }^{11587}$		1			
chri	${ }_{\text {TPS3 }}$	${ }^{760223}$	c．7atas	${ }^{\text {p }}$ Nosat	Na	NA	：	，0001 0001	${ }^{0.0001}$		${ }_{\text {1236 }}^{1326}$	${ }_{12123}^{1239}$	$\underset{\substack{11807 \\ 1125}}{ }$	${ }^{11501}$		1		1	
criv	${ }_{\text {TrPs }}$	${ }_{76} \mathbf{7} 72225$	cıフoa	${ }_{\text {p．} 2 \text { N23\％}}$	NA	NA	－	0.0001		${ }_{1119}$	11051	12350	${ }_{11238}$	11031	1	1			
${ }_{\text {chnt }}$ chit	${ }_{\text {TPS3 }}$	${ }^{760250}$	c．isga	${ }^{\text {p．c．ess }}$	Na	${ }^{\mathrm{Na}}$	：	${ }^{0.0001}$	0001	11159	${ }^{11116}$	11991		${ }^{10776}$		1	1		
crin	${ }_{\text {TPS3 }}$	${ }_{767275}^{20721}$		p．rizan	NA	NA	－		${ }^{0.0000}{ }_{0.0001}$	${ }_{9065}$	${ }_{\text {B387 }}$	${ }_{958}$	${ }_{9288}$	${ }_{8618}^{1037}$			1	1	
chri7	${ }_{\text {tPs }} 1$	7672281	c．68209	p．023s	Na	Na	0	0.0001		s52s	${ }^{\text {a688 }}$	${ }^{913}$	8710	so6s		1			
${ }_{\text {chnr }}$ chr	${ }_{\text {TPS3 }}$	${ }^{7} 7808888$	c．6b30	${ }^{\text {p．e22］}}$	Na	${ }^{\mathrm{Na}}$	：		0．0001	ninsa	${ }^{1154}$	${ }_{12387}^{12371}$	（13864	${ }_{\text {12888 }}^{11788}$				1	
${ }_{\text {chn }}$ ch7	${ }_{\text {TrPS }}$	${ }_{7}^{7643285}$	${ }_{\text {cosem }}$	${ }_{\text {prazac }}$	${ }_{\text {Na }}$	${ }_{\text {NA }}$	：	0.00010 .0001		${ }_{12123}^{1203}$	${ }_{\text {l13 }}$	${ }_{1}^{12003}$	${ }_{11287}^{1153}$	117380 1310	1	1			
${ }_{\text {chri }}$	${ }_{\text {Tres }}$	${ }^{768937}$	Css 5sadelinst	p．niss Eisgel	Na	Na	\bigcirc	0.0001		${ }^{11327}$	${ }^{151510}$	${ }^{12354}$	${ }^{112965}$	13354	1				
${ }_{\text {chriz }}$	${ }_{\text {TPS }}{ }^{\text {Pr }}$	${ }_{\text {chass }}$	csisaca	p．	NA	NA	－		0.0001	${ }_{\text {H }}$	${ }_{\text {11233 }}$	${ }_{12735}$	${ }_{1233}^{1205}$	${ }^{124214}$				1	
chri7	${ }_{\text {TP53 }}$	7604954	${ }^{\text {cserca }}$	palise	NA	${ }_{\text {Na }}$	：		${ }_{0}^{0.0001}$	${ }_{12168}^{1202}$	${ }^{12093}$	$\underset{\substack{13012 \\ 12612}}{ }$	12550 12080	24500 14388					1
${ }_{\text {chrin }}^{\text {chil }}$	${ }_{\text {Tr93 }}{ }^{\text {Tr3 }}$	${ }_{\text {cosmbes }}$	${ }^{\text {cosen }}$	${ }_{\text {posisias }}$	${ }_{\text {NA }}$	${ }_{\text {Na }}$	：	0.0001		${ }_{\substack{11522 \\ 1158}}^{\text {cen }}$	${ }_{1}^{11711}$	${ }_{123080}^{12312}$	${ }_{1}^{12050}$	${ }_{\substack{142088 \\ 1473}}$	1				
${ }_{\text {chn }} \mathrm{m} 77$	${ }_{\text {TP53 }}$	${ }^{7} 785078$		$\mathrm{p}^{\text {phitry }}$	${ }_{\text {Na }}$	${ }^{\mathrm{Na}}$	：	0.0001	2001	${ }_{\substack{11880 \\ 1575}}$	11880 1157	${ }_{12388}^{12388}$	$\underset{12155}{12007}$	$\underset{\substack{14792 \\ 14780}}{ }$	1				1
${ }_{\text {char }}$	${ }_{\text {TrP3 }}$	${ }_{\text {cosmes }}$	cs20r	${ }_{\text {p．alse }}$	${ }_{N A}$	NA	：		$0.0001{ }^{0.0001}$	${ }_{\text {L14\％}}$	${ }_{1290}^{1120}$	${ }_{12238}^{1238}$	${ }_{12036}^{1207}$	${ }_{1}^{124687}$			1		
ch177	${ }_{\text {Tres }}$ TP5	${ }^{7} 7875088$	cille	${ }^{\text {p．vinf }}$	Na	Na	\bigcirc	0.0001		${ }_{1293}^{11395}$	${ }^{11374}$	${ }^{12770}$	${ }^{11293}$	${ }_{1}^{12454}$	1				1
${ }_{\text {chir }}$	${ }_{\text {Tr93 }}$	${ }_{\text {cosprex }}$	casot	${ }_{\text {p．ince }}$	${ }_{N A}$	${ }_{\text {NA }}$	－		$0.0001{ }^{\text {a．0001 }}$	${ }_{10793}$	${ }_{1029}$	${ }_{12364}$	${ }_{11599}$	${ }_{12404}^{1456}$				1	1
din7	T53	${ }^{765145}$	caticas	p．R156H	na	na	－		0.0001	1023	10780	11355	${ }^{1337}$	13374			1		
${ }_{\substack{\text { chn7 } \\ \text { chri }}}$	${ }_{\text {Tr93 }}^{\text {Tr3 }}$	$\underset{\substack{7675294 \\ 765208}}{ }$	c．asa cata cos	${ }_{\substack{\text { p．0136e } \\ p .135 \%}}$	${ }_{\text {Na }}$	$\stackrel{N a}{N a}$	：	0.0001 0.0001		（1236	11827 11823	12876 1259 1	12174 1208	${ }_{\substack{13995 \\ 13781}}$		1			
chin	T53	767593	c37510\％	p×x25－splice	na	na	－	0.0001		12781	12380	1373	13314	11352	1				
${ }_{\text {chn }}$ dri7	${ }_{\text {Tres }}{ }_{\text {Tre }}$	7678018 768507		${ }^{\text {p．}}$ ． $6117=$	${ }_{\mathrm{Na}}$	${ }_{\mathrm{Na}}$	\bigcirc	0.0001	0.0001	1229 12128	$\underset{\substack{1213 \\ 12088 \\ 1}}{ }$	13360 13120	13091 12711	${ }_{1}^{13572}$		1			
${ }_{\text {chn }}^{\text {chin }}$	${ }_{\text {Trp3 }}^{\text {Tr53 }}$	7676097 760170			Na	NA		0.0001		（13101310 1353	（12066	13776 1381 1381	$\underset{\substack{13344 \\ 1331}}{ }$	込 $\begin{aligned} & 14376 \\ & 15097\end{aligned}$	1				

[^1]＊BTKi resistance mutations and codons according to Kittai et al．${ }^{6}$

Supplemental Table S10. Comparison of copy number alterations identified by chromosomal genomic array testing (CGAT) and duplex sequencing.

Samples	BTK		BAX		PLCG2		BCL2		TP53	
	CGAT (\%)	$\begin{gathered} \text { Duplex SNP- } \\ \text { LOH (\%) } \end{gathered}$	CGAT (\%)	$\begin{gathered} \text { Duplex SNP- } \\ \text { LOH (\%) } \end{gathered}$	CGAT (\%)	$\begin{gathered} \text { Duplex SNP- } \\ \text { LOH (\%) } \end{gathered}$	CGAT (\%)	$\begin{gathered} \text { Duplex SNP- } \\ \text { LOH (\%) } \end{gathered}$	CGAT (\%)	$\begin{gathered} \text { Duplex SNP- } \\ \text { LOH (\%) } \end{gathered}$
R001-A	0	no LOH	0	no LOH	0	no LOH	0	NA	del 17p, 60.0	51.3
R001-B	0	no LOH	0	no LOH	0	no LOH	0	NA	del 17p, 60.0	57.3
R001-C	NP	no LOH	NP	no LOH	NP	no LOH	NP	NA	NP	56.1
R001-D	0	no LOH	0	no LOH	0	no LOH	0	NA	del 17p, 80.0	81.8
R001-E	0	no LOH	0	no LOH	0	no LOH	0	NA	del 17p, 80.0	87.1
R001-F	NP	no LOH	NP	no LOH	NP	no LOH	NP	NA	NP	91.1
R002-A	NP	NA	NP	no LOH	NP	no LOH	NP	NA	NP	NA
R002-B	NP	NA	NP	no LOH	NP	no LOH	NP	NA	NP	NA
R002-C	0	NA	0	no LOH	0	no LOH	0	NA	0\%	NA
R002-D	NP	NA	NP	no LOH	NP	no LOH	NP	NA	NP	NA
R002-E	NP	NA	NP	no LOH	NP	no LOH	NP	NA	NP	NA

Abbreviations: Chromosomal Genomic Array Testing (CGAT); Single nucleotide polymorphisms (SNP); Loss of heterozygosity (LOH); Cancer cell fraction (CCF); Not available because no heterozygous SNPs were sequenced (NA); Not performed (NP).

Supplemental Table S11. Patient R001 cancer cell fraction (CCF) for variants with two or more mutant molecules in at least one sample.

Patient	Sample	Gene	Chromosome	Position	Reference allele	Alternate allele	Mutation type	HGVSp short	HGVSc	Duplex depth	Duplex mutant reads	VAF	Variant CCF	Days postpirtobrutinib	$\begin{gathered} \text { TP53 LOH } \\ \text { CCF } \end{gathered}$	Sample type	Percent disease (\%) (Tumor purity)
R001	B	BAX	chr19	48955799	G	A	Missense	p.G67R	c.199G>A	12179	24	0.0020	0.0070	-294	NA	PB	56.0
R001	C	BAX	chr19	48955799	G	A	Missense	p.G67R	c.199G>A	13874	11	0.0008	0.0023	-15	NA	PB	70.0
R001	A	BCL2	chr18	63318200	A	T	Missense	p.V156D	c. 467 P $>$ A	4095	12	0.0029	0.0095	-687	NA	PB	62.0
R001	A	BCL2	chr18	63318262	C	T	Silent	p.E135=	c. $405 \mathrm{G}>\mathrm{A}$	7311	1	0.0001	0.0004	-687	NA	PB	62.0
R001	C	BCL2	chr18	63318262	c	T	Silent	p.E135=	c. $405 \mathrm{G} \times \mathrm{A}$	8593	1	0.0001	0.0003	-15	NA	PB	70.0
R001	F	BCL2	chr18	63318262	C	T	Silent	p.E135=	c. $405 \mathrm{G} \times \mathrm{A}$	8310	2	0.0002	0.0005	161	NA	PB	95.0
R001	A	BCL2	chr18	63318264	CCACCAC	-	Indel	p.V133Rfs*8	c.397_403del	7376	2	0.0003	0.0009	-687	NA	PB	62.0
R001	A	BCL2	chr18	63318329	G	C	Missense	p.A113G	c. $338 \mathrm{C}>\mathrm{G}$	9737	11	0.0011	0.0036	-687	NA	PB	62.0
R001	A	BCL2	chr18	63318329	G	A	Missense	p.A113V	c. $338 \mathrm{C}>$ T	9737	2	0.0002	0.0007	-687	NA	PB	62.0
R001	B	BCL2	chr18	63318329	G	C	Missense	p.A113G	c. $338 \mathrm{C}>\mathrm{G}$	11047	3	0.0003	0.0010	-294	NA	PB	56.0
R001	B	BCL2	chr18	63318329	G	A	Missense	p.A113V	c. $338 \mathrm{C}>$ T	11047	1	0.0001	0.0003	-294	NA	PB	56.0
R001	F	BCL2	chr18	63318329	G	C	Missense	p.A113G	c. $338 \mathrm{C}>\mathrm{G}$	11261	1	0.0001	0.0002	161	NA	PB	95.0
R001	A	BCL2	chr18	63318336	-	GGCGGTAG	Indel	p.R107_R110dup	c.319_330dup	9789	38	0.0039	0.0125	-687	NA	PB	62.0
R001	B	BCL2	chr18	63318336	-	GGCGGTAG	Indel	p.R107_R110dup	c.319_330dup	11016	12	0.0011	0.0039	-294	NA	PB	56.0
R001	C	BCL2	chr18	63318336	-	GGCGGTAG	Indel	p.R107_R110dup	c.319_330dup	11806	12	0.0010	0.0029	-15	NA	PB	70.0
R001	F	BCL2	chr18	63318411	G	A	Missense	p.L86F	c. $256 \mathrm{C}>$ T	12137	2	0.0002	0.0003	161	NA	PB	95.0
R001	F	BCL2	chr18	63318531	G	A	Missense	p.P46S	c. $136 \mathrm{C}>$ T	7666	2	0.0003	0.0005	161	NA	PB	95.0
R001	F	BCL2	chr18	63318601	c	T	Silent	р.K22=	c. $66 \mathrm{G}>\mathrm{A}$	3677	3	0.0008	0.0017	161	NA	PB	95.0
R001	F	BTK	chrX	101354652	C	A	Missense	p.V537L	c. $1609 \mathrm{G}>\mathrm{T}$	16376	2	0.0001	0.0003	161	NA	PB	95.0
R001	C	BTK	chrX	101354678	A	C	Missense	p.L528W	c. $1583 \mathrm{~T}>$ ¢	14459	1	0.0001	0.0002	-15	NA	PB	70.0
R001	F	BTK	chrX	101354678	A	C	Missense	p.L528W	c. 1583 T>G	16022	2687	0.1677	0.3531	161	NA	PB	95.0
R001	C	BTK	chrX	101356176	C	G	Missense	p.C481S	c. $1442 \mathrm{G} \times \mathrm{C}$	15308	247	0.0161	0.0461	-15	NA	PB	70.0
R001	F	BTK	chrX	101356176	C	G	Missense	p.C481s	c. $1442 \mathrm{G} \times \mathrm{C}$	15332	98	0.0064	0.0135	161	NA	PB	95.0
R001	C	BTK	chrX	101356177	A	T	Missense	p.C481s	c. 1441 T $>$ A	15333	8	0.0005	0.0015	-15	NA	PB	70.0
R001	F	BTK	chrX	101356177	A	T	Missense	p.C481s	c. 1441 T>A	15371	8	0.0005	0.0011	161	NA	PB	95.0
R001	C	PLCG2	chr16	81912655	C	T	Missense	p.R665W	c.1993C>T	14956	1	0.0001	0.0002	-15	NA	PB	70.0
R001	F	PLCG2	chr16	81912655	c	T	Missense	p.R665W	c. 1993 > $>$ T	14762	44	0.0030	0.0063	161	NA	PB	95.0
R001	C	PLCG2	chr16	81919549	c	T	Missense	p.S707F	c. $2120 \mathrm{C}>\mathrm{T}$	15103	3	0.0002	0.0006	-15	NA	PB	70.0
R001	F	PLCG2	chr16	81919549	c	T	Missense	p.S707F	c. $2120 \mathrm{C}>$ T	15577	10	0.0006	0.0014	161	NA	PB	95.0
R001	C	PLCG2	chr16	81928574	c	T	Missense	p.P844L	c. 2531 C > T	13414	1	0.0001	0.0002	-15	NA	PB	70.0
R001	F	PLCG2	chr16	81928574	c	T	Missense	p.P844L	c. 2531 C > T	15190	9	0.0006	0.0012	161	NA	PB	95.0
R001	F	PLCG2	chr16	81928574	C	G	Missense	p.P844R	c. $2531 \mathrm{C}>\mathrm{G}$	15190	3	0.0002	0.0004	161	NA	PB	95.0
R001	C	PLCG2	chr16	81928578	A	C	Missense	p.L845F	c. $2535 \mathrm{~A} \times \mathrm{C}$	13362	8	0.0006	0.0017	-15	NA	PB	70.0
R001	F	PLCG2	chr16	81928578	A	C	Missense	p.L845F	c. $2535 \mathrm{~A} \times \mathrm{C}$	15105	631	0.0418	0.0879	161	NA	PB	95.0
R001	F	PLCG2	chr16	81928578	A	T	Missense	p.L845F	c. $2535 \mathrm{~A}>\mathrm{T}$	15105	2	0.0001	0.0003	161	NA	PB	95.0
R001	C	PLCG2	chr16	81928580	G	T	Missense	p.G846V	c. $2537 \mathrm{G}>\mathrm{T}$	13350	9	0.0007	0.0019	-15	NA	PB	70.0
R001	F	PLCG2	chr16	81928580	G	T	Missense	p.G846V	c. $2537 \mathrm{G} \times \mathrm{T}$	15100	20	0.0013	0.0028	161	NA	PB	95.0
R001	F	PLCG2	chr16	81928580	G	A	Missense	p. G846E	c. $2537 \mathrm{G} \times \mathrm{A}$	15100	2	0.0001	0.0003	161	NA	PB	95.0
R001	F	PLCG2	chr16	81936295	A	T	Missense	p. Q990L	c. 2969A>T	14829	3	0.0002	0.0004	161	NA	PB	95.0
R001	C	PLCG2	chr16	81936300	G	T	Missense	p.V992F	c. $2974 \mathrm{G} \times \mathrm{T}$	14553	4	0.0003	0.0008	-15	NA	PB	70.0
R001	F	PLCG2	chr16	81936300	G	T	Missense	p.V992F	c. $2974 \mathrm{G} \times \mathrm{T}$	14806	41	0.0028	0.0058	161	NA	PB	95.0
R001	C	PLCG2	chr16	81936303	G	A	Missense	p.D993N	c. $2977 \mathrm{G}>\mathrm{A}$	14503	2	0.0001	0.0004	-15	NA	PB	70.0
R001	c	PLCG2	chr16	81936303	G	C	Missense	p.D993H	c. $2977 \mathrm{G} \times \mathrm{C}$	14503	2	0.0001	0.0004	-15	NA	PB	70.0
R001	F	PLCG2	chr16	81936303	G	A	Missense	p.D993N	c. $2977 \mathrm{G}>\mathrm{A}$	14712	43	0.0029	0.0062	161	NA	PB	95.0
R001	F	PLCG2	chr16	81936303	G	C	Missense	p. D993H	c. $2977 \mathrm{G} \times \mathrm{C}$	14712	12	0.0008	0.0017	161	NA	PB	95.0
R001	C	PLCG2	chr16	81936304	A	T	Missense	p.D993V	c. 2978 \gg ${ }^{\text {T }}$	14448	1	0.0001	0.0002	-15	NA	PB	70.0
R001	F	PLCG2	chr16	81936304	A	T	Missense	p.D993V	c. $2978 \mathrm{~A}>\mathrm{T}$	14652	19	0.0013	0.0027	161	NA	PB	95.0
R001	A	TP53	chr17	7674191	C	T	Missense	p.E258K	c. $772 \mathrm{G}>\mathrm{A}$	10920	2	0.0002	0.0004	-687	0.8267	PB	62.0
R001	B	TP53	chr17	7674191	c	T	Missense	p.E258K	c. $772 \mathrm{G}>\mathrm{A}$	10483	8	0.0008	0.0019	-294	1.0000	PB	56.0
R001	C	TP53	chr17	7674191	C	T	Missense	p.E258K	c. $772 \mathrm{G}>\mathrm{A}$	11610	4	0.0003	0.0007	-15	0.8019	PB	70.0
R001	A	TP53	chr17	7674262	T	C	Missense	p.Y234C	c. $701 \mathrm{~A}>\mathrm{G}$	8995	1	0.0001	0.0003	-687	0.8267	PB	62.0
R001	B	TP53	chr17	7674262	T	C	Missense	p.Y234C	c. $701 \mathrm{~A}>\mathrm{G}$	8998	1	0.0001	0.0003	-294	1.0000	PB	56.0
R001	C	TP53	chr17	7674262	T	c	Missense	p.Y234C	c. $701 \mathrm{~A}>\mathrm{G}$	9469	2	0.0002	0.0004	-15	0.8019	PB	70.0
R001	A	TP53	chr17	7674263	A	T	Missense	p.Y234N	c. $700 \mathrm{~T}>\mathrm{A}$	8909	12	0.0013	0.0032	-687	0.8267	PB	62.0
R001	B	TP53	chr17	7674263	A	T	Missense	p.Y234N	c. $700 \mathrm{~T}>\mathrm{A}$	8916	31	0.0035	0.0089	-294	1.0000	PB	56.0
R001	C	TP53	chr17	7674263	A	T	Missense	p.Y234N	c. $700 \mathrm{~T}>\mathrm{A}$	9359	5	0.0005	0.0011	-15	0.8019	PB	70.0
R001	F	TP53	chr17	7674263	A	T	Missense	p.Y234N	c. $700 \mathrm{~T}>\mathrm{A}$	7718	1	0.0001	0.0001	161	0.9585	PB	95.0
R001	B	TP53	chr17	7675080	G	C	Missense	p. H178D	c. $532 \mathrm{C}>\mathrm{G}$	10759	832	0.0773	0.1971	-294	1.0000	PB	56.0
R001	C	TP53	chr17	7675080	G	C	Missense	p.H178D	c. $532 \mathrm{C}>6$	11910	1549	0.1301	0.2673	-15	0.8019	PB	70.0
R001	F	TP53	chr17	7675080	G	C	Missense	p.H178D	c. $532 \mathrm{C}>\mathrm{G}$	8833	2460	0.2785	0.3194	161	0.9585	PB	95.0
R001	A	TP53	chr17	7675094	A	C	Missense	p.V173G	c. $518 \mathrm{~T}>\mathrm{G}$	11034	227	0.0206	0.0494	-687	0.8267	PB	62.0
R001	B	TP53	chr17	7675094	A	C	Missense	p.V173G	c. $518 \mathrm{~T}>\mathrm{G}$	10680	559	0.0523	0.1334	-294	1.0000	PB	56.0
R001	C	TP53	chr17	7675094	A	c	Missense	p.V173G	c. $518 \mathrm{~T}>\mathrm{G}$	11875	269	0.0227	0.0466	-15	0.8019	PB	70.0
R001	F	TP53	chr17	7675094	A	c	Missense	p.V173G	c. $518 \mathrm{~T}>\mathrm{G}$	8720	13	0.0015	0.0017	161	0.9585	PB	95.0
R001	F	TP53	chr17	7675107	TGTGC	-	Indel	p.Q167Hfs*12	c.501_505del	8960	176	0.0196	0.0225	161	0.9585	PB	95.0

Abbreviations: Human Genome Variation Society nomenclature (HGVSc); Variant allele frequency (VAF); Cancer cell fraction (CCF); Loss of heterozygosity (LOH); Peripheral blood (PB).

Supplemental Table S12. Patient R002 cancer cell fraction for variants with two or more mutant molecules in at least one sample.

Patient	Sample	Gene	Chromosome	Position	Reference allele	Alternate allele	Mutation type	HGVSp short	HGVSc	Duplex depth	Duplex mutant reads	VAF	Variant CCF	Days postpirtobrutinib	Sample type	Percent disease (\%) (Tumor purity)
R002	C	BAX	chr19	48955709	c	T	Nonsense	p.R37*	c.109C>T	8385	8	0.0010	0.0020	-6	BMA	95.0
R002	D	BAX	chr19	48955709	c	T	Nonsense	p.R37*	c.109C>T	8739	3	0.0003	0.0008	82	BMA	91.0
R002	E	BAX	chr19	48955709	c	T	Nonsense	p.R37*	c.109C>T	7802	2	0.0003	0.0005	127	PB	95.0
R002	A	BAX	chr19	48955713	-	G	Indel	p.E41Gfs*33	c.121dup	9814	116	0.0118	0.0916	-331	BMA	12.9
R002	C	BAX	chr19	48955713	-	G	Indel	p.E41Gfs*33	c.121dup	8539	7474	0.8753	0.9213	-6	BMA	95.0
R002	C	BAX	chr19	48955713	-	GG	Indel	p.E41Gfs*20	c.120_121dup	8539	17	0.0020	0.0042	-6	BMA	95.0
R002	D	BAX	chr19	48955713	-	G	Indel	p.E41Gfs*33	c.121dup	8905	7349	0.8253	0.9069	82	BMA	91.0
R002	D	BAX	chr19	48955713	-	GG	Indel	p.E41Gfs*20	c.120_121dup	8905	22	0.0025	0.0054	82	BMA	91.0
R002	E	BAX	chr19	48955713	-	G	Indel	p.E41Gfs*33	c.121dup	7951	7909	0.9947	1.0000	127	PB	95.0
R002	E	BAX	chr19	48955713	-	GG	Indel	p.E41Gfs*20	c.120_121dup	7951	19	0.0024	0.0050	127	PB	95.0
R002	A	BAX	chr19	48955714	G	-	Indel	p.E41Rfs*19	c.121del	9750	2	0.0002	0.0032	-331	BMA	12.9
R002	C	BAX	chr19	48955714	G	-	Indel	p.E41Rfs*19	c.121del	8456	5	0.0006	0.0012	-6	BMA	95.0
R002	D	BAX	chr19	48955714	G	-	Indel	p.E41Rfs*19	c.121del	8802	2	0.0002	0.0005	82	BMA	91.0
R002	E	BAX	chr19	48955714	G	-	Indel	p.E41Rfs*19	c.121del	7873	1	0.0001	0.0003	127	PB	95.0
R002	A	BAX	chr19	48955780	c	T	Silent	p.S60=	c. $180 \mathrm{C}>$ T	9971	2	0.0002	0.0031	-331	BMA	12.9
R002	C	BAX	chr19	48955780	c	T	Silent	p.S60=	c. $180 \mathrm{C}>\mathrm{T}$	9418	1	0.0001	0.0002	-6	BMA	95.0
R002	E	BAX	chr19	48955780	c	T	Silent	p.S60=	c. $180 \mathrm{C}>$ T	9571	1	0.0001	0.0002	127	PB	95.0
R002	D	BTK	chrX	101354679	A	c	Missense	p. 51528 V	c. 1582 T >G	6959	2	0.0003	0.0003	82	BMA	91.0
R002	C	BTK	chrX	101356168	T	c	Missense	p.N484D	c.1450A>G	6904	60	0.0087	0.0091	-6	BMA	95.0
R002	D	BTK	chr X	101356168	T	c	Missense	p.N484D	c. $1450 \mathrm{~A}>\mathrm{G}$	6776	20	0.0030	0.0032	82	BMA	91.0
R002	E	BTK	chrX	101356168	T	c	Missense	p.N484D	c.1450A>G	6542	4	0.0006	0.0006	127	PB	95.0
R002	C	BTK	chr X	101356176	c	G	Missense	p.C481s	c.1442G>C	6854	2	0.0003	0.0003	-6	BMA	95.0
R002	D	BTK	chrX	101356176	c	G	Missense	p.C481s	c. $1442 \mathrm{G} \times \mathrm{C}$	6753	1	0.0001	0.0002	82	BMA	91.0
R002	E	BTK	chr X	101356176	c	G	Missense	p.C481S	c. $1442 \mathrm{G} \times \mathrm{C}$	6516	1	0.0002	0.0002	127	PB	95.0
R002	C	BTK	chrX	101356177	A	G	Missense	p.C481R	c. 1441 T $>$ C	6865	16	0.0023	0.0025	-6	BMA	95.0
R002	D	BTK	chrX	101356177	A	G	Missense	p.C481R	c. 1441 T $>$ C	6764	62	0.0092	0.0101	82	BMA	91.0
R002	E	BTK	chr X	101356177	A	G	Missense	p.C481R	c. 1441 T>C	6543	20	0.0031	0.0032	127	PB	95.0
R002	C	BTK	chr X	101356197	G	A	Missense	p.T474\|	c. 1421 C T	6816	2	0.0003	0.0003	-6	BMA	95.0
R002	D	BTK	chrX	101356197	G	A	Missense	p. 74741	c. 1421 ¢ $>$	6796	262	0.0386	0.0424	82	BMA	91.0
R002	D	BTK	chrX	101356197	G	T	Missense	p.T474N	c. $1421 \mathrm{C}>\mathrm{A}$	6796	7	0.0010	0.0011	82	BMA	91.0
R002	E	BTK	chrX	101356197	G	A	Missense	p.T474\|	c. 1421 C T	6606	134	0.0203	0.0214	127	PB	95.0
R002	E	BTK	chrX	101356197	G	T	Missense	p. 7474 N	c. $1421 \mathrm{C}>\mathrm{A}$	6606	2	0.0003	0.0003	127	PB	95.0
R002	D	BTK	chrX	101356239	A	G	Missense	p.L460S	c.1379T>C	6550	3	0.0005	0.0005	82	BMA	91.0
R002	D	BTK	chr X	101356242	T	G	Missense	p.Q459P	c. $1376 \mathrm{~A} \times \mathrm{C}$	6438	3	0.0005	0.0005	82	BMA	91.0
R002	E	BTK	chr X	101356242	T	G	Missense	p.Q459P	c. $1376 \mathrm{~A} \times \mathrm{C}$	5859	2	0.0003	0.0004	127	PB	95.0
R002	E	BTK	chrX	101356250	c	A	Missense	p.K456N	c. $1368 \mathrm{G} \times \mathrm{T}$	5801	3	0.0005	0.0005	127	PB	95.0
R002	D	BTK	chr X	101358645	T	C	Missense	p.T316A	c.946A>G	6505	12	0.0018	0.0020	82	BMA	91.0
R002	E	BTK	chrX	101358645	T	c	Missense	p.T316A	c.946A>G	6772	15	0.0022	0.0023	127	PB	95.0
R002	C	BTK	chrX	101358689	T	c	Missense	p.E301G	c.902A>G	6157	2	0.0003	0.0003	-6	BMA	95.0
R002	D	BTK	chrX	101358689	T	c	Missense	p.E301G	c.902A>G	6142	3	0.0005	0.0005	82	BMA	91.0
R002	E	BTK	chrX	101358689	T	c	Missense	p.E301G	c.902A>G	5915	2	0.0003	0.0004	127	PB	95.0
R002	C	PLCG2	chr16	81912605	A	G	Missense	p.Y648C	c.1943A>G	9037	1	0.0001	0.0002	-6	BMA	95.0
R002	D	PLCG2	chr16	81912605	A	G	Missense	p.Y648C	c. $1943 A>G$	8931	5	0.0006	0.0012	82	BMA	91.0
R002	E	PLCG2	chr16	81912605	A	G	Missense	p.Y648C	c. $1943 A>G$	10575	9	0.0009	0.0018	127	PB	95.0
R002	C	PLCG2	chr16	81919626	T	G	Missense	p.Y733D	c. $21971>G$	11414	3	0.0003	0.0006	-6	BMA	95.0
R002	D	PLCG2	chr16	81928576	T	G	Missense	p.L845V	c. 2533 T >G	12212	2	0.0002	0.0004	82	BMA	91.0
R002	E	PLCG2	chr16	81928576	T	G	Missense	p.L845V	c. 2533 T>G	9726	4	0.0004	0.0009	127	PB	95.0
R002	A	TP53	chr17	7673838	c	T	Splice	p.X261_splice	c. $783-1 \mathrm{G}>\mathrm{A}$	12278	2	0.0002	0.0025	-331	BMA	12.9
R002	C	TP53	chr17	7674189	T	G	Missense	p.E258D	c. $774 \mathrm{~A}>\mathrm{C}$	12919	1	0.0001	0.0002	-6	BMA	95.0
R002	E	TP53	chr17	7674189	T	G	Missense	p.E258D	c. $774 \mathrm{~A} \times \mathrm{C}$	12236	4	0.0003	0.0007	127	PB	95.0
R002	A	TP53	chr17	7674200	T	A	Missense	p.1255F	c.763A>T	12475	34	0.0027	0.0423	-331	BMA	12.9
R002	C	TP53	chr17	7674200	T	A	Missense	p.1255F	c. $763 \mathrm{~A}>\mathrm{T}$	12835	16	0.0012	0.0026	-6	BMA	95.0
R002	D	TP53	chr17	7674200	T	A	Missense	p.1255F	c.763A>T	12544	3	0.0002	0.0005	82	BMA	91.0
R002	A	TP53	chr17	7674217	c	G	Missense	p.R249T	c. $7466 \mathrm{G} \times \mathrm{C}$	11802	4	0.0003	0.0053	-331	BMA	12.9
R002	D	TP53	chr17	7674217	c	G	Missense	p.R249T	c. $746 \mathrm{G} \times \mathrm{C}$	11894	3	0.0003	0.0006	82	BMA	91.0
R002	E	TP53	chr17	7674217	c	G	Missense	p.R249T	c. $746 \mathrm{G} \times \mathrm{C}$	11660	2	0.0002	0.0004	127	PB	95.0
R002	A	TP53	chr17	7674220	c	T	Missense	p.R248Q	c. $743 \mathrm{G} \times \mathrm{A}$	11727	3	0.0003	0.0040	-331	BMA	12.9
R002	A	TP53	chr17	7674900	T	c	Missense	p.T211A	c.631A>G	10813	35	0.0032	0.0502	-331	BMA	12.9
R002	C	TP53	chr17	7674900	T	c	Missense	p.T211A	c.631A>G	11803	1	0.0001	0.0002	-6	BMA	95.0
R002	D	TP53	chr17	7674900	T	c	Missense	p.T211A	c.631A>G	11402	10	0.0009	0.0019	82	BMA	91.0
R002	A	TP53	chr17	7675184	A	G	Missense	p.V143A	c. $428 \mathrm{~T}>\mathrm{C}$	12343	6	0.0005	0.0075	-331	BMA	12.9
R002	D	TP53	chr17	7675184	A	G	Missense	p.V143A	c. $428 \mathrm{~T} \times \mathrm{C}$	12392	1	0.0001	0.0002	82	BMA	91.0
R002	E	TP53	chr17	7675184	A	G	Missense	p.V143A	c. $428 \mathrm{~T} \times \mathrm{C}$	14362	1	0.0001	0.0001	127	PB	95.0
R002	C	TP53	chr17	7675205	T	A	Missense	p.Q136L	c. $407 \mathrm{~A}>\mathrm{T}$	12558	3	0.0002	0.0005	-6	BMA	95.0
R002	D	TP53	chr17	7675205	T	A	Missense	p.Q136L	c.407A>T	12047	4	0.0003	0.0007	82	BMA	91.0
R002	E	TP53	chr17	7675205	T	A	Missense	p.Q136L	c.407A>T	13827	2	0.0001	0.0003	127	PB	95.0
R002	A	TP53	chr17	7675218	T	C	Missense	p.K132E	c.394A>G	12168	3	0.0002	0.0038	-331	BMA	12.9
R002	C	TP53	chr17	7675238	T	A	Splice	p.X126_splice	c. $376-2 \mathrm{~A} \times \mathrm{T}$	12283	5	0.0004	0.0009	-6	BMA	95.0
R002	D	TP53	chr17	7675238	T	A	Splice	p.X126_splice	c. $376-2 \mathrm{~A} \times \mathrm{T}$	11765	3	0.0003	0.0006	82	BMA	91.0
R002	E	TP53	chr17	7675238	T	A	Splice	p. X 126 _splice	c. $376-2 \mathrm{~A}>$ T	12618	2	0.0002	0.0003	127	PB	95.0
R002	E	TP53	chr17	7676552	T	C	Missense	p.S15G	c.43A>G	10012	2	0.0002	0.0004	127	PB	95.0

Abbreviations: Human Genome Variation Society nomenclature (HGVSc); Variant allele frequency (VAF); Cancer cell fraction (CCF); Bone marrow aspirate (BMA); Peripheral blood (PB).

Supplemental Table S13. Comparison of NGS and duplex sequencing results.

Patient/ sample code	Gene	Variant	NGS VAF	Duplex VAF
R001-A	BTK	p.C481S, c.1442G>C	NP	0
R001-B	BTK	p.C481S, c.1442G>C	NP	0
R001-C	BTK	p.C481S, c.1442G>C	NP	0.0161
R001-D	BTK	p.C481S, c.1442G>C	0.1	0.1061
R001-E	BTK	p.C481S, c.1442G>C	0.1	0.1052
R001-F	BTK	p.C481S, c.1442G>C	NP	0.0064
R001-A	TP53	p.H178D, c.532C>G	NP	0
R001-B	TP53	p.H178D, c.532C>G	NP	0.0773
R001-C	TP53	p.H178D, c.532C>G	NP	0.1301
R001-D	TP53	p.H178D, c.532C>G	0.18	0.1701
R001-E	TP53	p.H178D, c.532C>G	0.18	0.1761
R001-F	TP53	p.H178D, c.532C>G	NP	0.2785
R002-A	BTK	p.T474I, c.1421C>T	NP	0
R002-B	BTK	p.T474I, c.1421C>T	NP	0
R002-C	BTK	p.T474I, c.1421C>T	0	0.0003
R002-D	BTK	p.T474I, c.1421C>T	0.06	0.0386
R002-E	BTK	p.T474I, c.1421C>T	NP	0.0203

Abbreviations: Next-generation sequencing (NGS); Variant allele frequency (VAF); Clinical testing not performed (NP).

SUPPLEMENTAL FIGURES

Supplemental Figure S1. Timeline of CLL treatments, PB and BM studies, and white blood cell (WBC) counts during patient R001's CLL history. The WBC line graph may be used to monitor disease severity. Time in the x -axis is centered on the first day of pirtobrutinib treatment. The length of each treatment bar is proportional to treatment duration, and the turquoise "CAR-T cell infusion" triangle is centered on the day of infusion. On the upper-x-axis, green triangles indicate the sequenced samples of the study, and maroon inverted triangles indicate clinical samples.

- Clinical samples
- Sequenced samples

Patient R002 CLL Treatment History

Days post-pirtobrutinib initiation

Supplemental Figure S2. Timeline of CLL treatments, PB and BM studies, and white blood cell (WBC) counts during patient R002's CLL history. The WBC line graph may be used to monitor disease severity. Time in the x -axis is centered on the first day of pirtobrutinib treatment. The length of each treatment bar is proportional to treatment duration, and the turquoise "CAR-T cell infusion" triangle is centered on the day of infusion. On the upper-x-axis, green triangles indicate the sequenced samples of the study, and maroon inverted triangles indicate clinical samples.

A

B

C

Gene \square BAX \square BCL2 \square BTK \square PLCG2 \square TP53

Supplemental Figure S3. Characterization of mutations identified pre- and post- treatment. A) Description of samples collected over time for both patients R001 (A, B, C, D, E, F) and R002 (A, B, C, D, E). Sample types include bone marrow and peripheral blood. Values for percent (\%) disease, days pre-/post-pirtobrutinib treatment, and mean coding depth for duplex sequencing are shown for each sample. B) Mutation frequency for coding and non-coding mutations for each sample collected over time. C) Number of coding mutations found in genes associated with drug resistance in CLL for each sample. Genes associated with CLL resistance and covered by duplex sequencing probes include $B A X, B c l 2, B T K, P L C G 2$, and TP53. Each sample is represented by a single column. Mutated genes are colorcoded and represented as a fraction within the column with the number of mutation counts indicated underneath with a blue-colored gradient scale.

Supplemental Figure S4. Reproducibility of duplex sequencing data. Two DNA samples extracted from the same bone marrow sample from patient R001 (R001-D and R001-E) were independently processed for DNA extraction and duplex sequencing. Variant allele frequencies (VAF) were calculated by dividing the number of mutant duplex reads (alternative counts) by the duplex sequencing depth at the mutated position. The correlation plot includes all mutations identified in both samples ($n=20$). Spearman's rank correlation coefficient and p-value demonstrate high reproducibility of measurements.
A. Confirmation of BTK p.T474I (c.1421C>T) in sample R002-C via digital PCR

B. Comparison of BTK p.T474I (c.1421C>T) mutational
frequencies between digital PCR and duplex sequencing in samples R002-C and R002-D

Supplemental Table S5. Orthogonal confirmation of BTK p.T474I (c.1421C>T) in sample R002-C using digital PCR (dPCR). Figure S5A illustrates the detection via dPCR of BTK p.T474I (c.1421C>T) variant at 0.092 copies per $40 \mu \mathrm{~L}$ reaction, controlled by assaying sample R002-D, which carried our target variant at a greater concentration, and K-562 cell line DNA lacking the target variant. Figure S5B compares the mutational frequencies for $B T K$ p.T474I (c.1421C>T) in samples R002-C and R002-D as reported by dPCR versus duplex sequencing, demonstrating concordant mutational frequencies between the two techniques.

SUPPLEMENTAL REFERENCES

1. Schmitt MW, Fox EJ, Prindle MJ, et al. Sequencing small genomic targets with high efficiency and extreme accuracy. Nat Methods. 2015;12(5):423-425.
2. Lai Z, Markovets A, Ahdesmaki M, et al. VarDict: a novel and versatile variant caller for nextgeneration sequencing in cancer research. Nucleic Acids Res. 2016;44(11):e108.
3. Kennedy SR, Schmitt MW, Fox EJ, et al. Detecting ultralow-frequency mutations by Duplex Sequencing. Nat Protoc. 2014;9(11):2586-2606.
4. Wickham H, Averick M, Bryan J, et al. Welcome to the Tidyverse. JOSS. 2019;4(43):1686.
5. R Core Team. R: A language and environment for statistical computing. The R Project for Statistical Computing. 2018;
6. Kittai AS, Woyach JA. Resistance Mechanisms to Targeted Agents in Chronic Lymphocytic Leukemia. Cancer J. 2019;25(6):428-435.

[^0]: Abbreviations: Bone marrow aspirate (BMA); Peripheral blood (PB); Variant allele frequency (VAF); Fluorescence in situ hybridization (FISH); Chromosomal genomic array testing (CGAT); Copy number alterations (CNAs).

 * Samples R001D and R001E are technical replicates from the same bone marrow aspiration procedure (independent specimen processing, DNA extraction and library preparation)
 \dagger No flow-cytometry or ClonoSeq data were available for these specimens. Tumor burden was inferred from CBC WBC counts on the samples' collection dates.

[^1]: Abbreviations：Human Genome Variation Society nomenclature（HGVSc）；Variant allele frequency（VAF）．

