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Supplementary Materials and Methods - Extended

Ultra-High-Pressure Liquid Chromatography-Mass Spectrometry (MS) metabolomics:
Frozen plasma aliquots (50 puL) were thawed on ice then extracted 1:25, in ice cold extraction
solution (methanol:acetonitrile:water 5:3:2 v/v/v). Samples were vortexed for 30 min at 4°C and
insoluble material pelleted via centrifugation at 15,000 g for 15 min under refrigerated conditions,
as described. 12 Analyses were performed using a Vanquish UHPLC coupled online to a Q
Exactive mass spectrometer (Thermo Fisher, Bremen, Germany). Samples were resolved as
described,?* over a Kinetex C18 column (2.1x150 mm, 1.7 um; Phenomenex, Torrance, CA, USA)
at 45°C. A volume of 10 ul of sample extracts was injected into the UHPLC-MS. Each sample was
injected with two different chromatographic and MS conditions as follows: 1) using a 5 minute
gradient at 450 puL/minute from 5-95% B (A: water/0.1% formic acid; B:acetonitrile/0.1% formic
acid) and the MS was operated in positive mode and 2) using a 5 minute gradient at 450 puL/minute
from 5-95% B (A: 5% acetonitrile, 95%water/1 mM ammonium acetate; B:95%acetonitrile/5%
water, 1 mM ammonium acetate) and the MS was operated in negative ion mode. The UHPLC
system was coupled online with a Q Exactive scanning in Full MS mode at 70,000 resolution in
the 60-900 m/z range, 4 kV spray voltage, 15 sheath gas and 5 auxiliary gas. These
chromatographic and MS conditions were applied for both relative and targeted quantitative
metabolomics measurements, with the differences that for the latter targeted quantitative post hoc
analyses were performed on the basis of the stable isotope-labeled internal standards used as a

reference quantitative measurement, as detailed below.

Quiality control and data processing: Calibration was performed prior to analysis using
the Pierce™ Positive and Negative lon Calibration Solutions (Thermo Fisher Scientific). Acquired
data was then converted from raw to .mzXML file format using RawConverter. Samples were
analyzed in randomized order with a technical mixture injected every 15 samples to qualify
instrument performance and ensure technical coefficients of variations (standard deviation divided
by the mean) below 20%. Metabolite assignments, isotopologue distributions, and quantification
of stable isotope-labeled internal standards were performed using MAVEN (Princeton, NJ, USA),
as described.®

Statistical analyses: Data analysis was performed through the auxilium of the software

MAVEN. Graphs and statistical analyses (either two-way ANOVA or repeated measures



ANOVA) were prepared with GraphPad Prism 9.0 (GraphPad Software, Inc, La Jolla, CA), GENE
E (Broad Institute, Cambridge, MA, USA), Multivariate analyses, including principal component
analyses (PCA), hierarchical clustering analyses, two-way ANOVAS, correlation analyses
(Spearman) and calculation of receiver operating characteristic (ROC) curves were performed
through the software MetaboAnalyst 5.0.8 For survival analysis, we used time to right censorship
(including death or last follow-up) as time to event and vital status (death or alive) was the studied
outcome. PCA was used to derive a hemolytic component from lactate dehydrogenase, aspartate
aminotransferase total bilirubin and reticulocyte percent.” We applied Cox proportional hazard
models to calculate the hazard ratios and P value for each metabolite. and Cox analysis and
adjusted regressions of metabolites to clinical outcomes were performed in R (R Core Team

(2022), https://www.r-project.org/).

Sickle Cell Disease ShinyApp portal A portal for online sharing of all the data generated
in this study, in like-wise fashion to our recent COVID-Ome Explorer portal.!® After data curation
and quality control, each of the datasets (plasma metabolomics, RBC metabolomics from our
previous study on the WALK-PHASST Cohort!?, clinical data) was linked at the sample level with
a unique identifier, enabling cross-referencing among datasets. Then, each of the datasets was
imported into applications developed using R, R Studio, and the R-based web application
framework Shiny. All code required to run the COVIDome Explorer applications can be found at
https://github.com/cusom/CUSOM.COVIDome.Shiny-Apps (Zenodo
https://doi.org/10.5281/zen0do.5081091) and https://github.com/cusom/CUSOM.ShinyHelpers
(Zenodo https://doi.org/10.5281/zenodo.5081093).
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Supplementary Figure 1 Plasma metabolomics of the WALK-PHASST SCD cohort Principal
component analysis (PCA) (A) and hierarchical clustering analysis (B) of metabolomics data
on 596 plasma samples from 6 different genotypes. Of note, metabolomics measurements of
plasma creatinine showed significant positive correlation (r=0.95) with CLIA-measurements in
the clinics, despite double randomization of the samples, blinding of the mass spec lab and
prolonged storage of the Walk-PHASST samples (C), as previously noted.!
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Supplementary Figure 2 Plasma metabolic correlates to Hydroxyurea treatment in the WALK-
PHaSST cohort SS patients who were not recently transfused (HbA<20%; n=306) were tested
as a function of treatment with hydroxyurea (n=147 vs n=159 untreated - A). In B, principal
component analysis of the data from this cohort, color-coded based on HbF %. In C, heat map of
the most significant metabolites affected by the treatment. In D, metabolic correlates to HbF%.
In E, linear model identifying the effect of hydroxyurea in SS patients, either unadjusted (x axis)
or adjusted by HbF% (y axis). In F, to reduce the noise in the hydroxyurea group, owing to
questionable adherence to the treatment, we narrowed the analysis down to the patients on



treatment with MCV >105. The analysis (G) showed a beneficial effect of hydroxyrea in lowering
the levels of several circulating acylcarnitines, an effect that was masked by the general analysis.
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Supplementary Figure 3 Plasma metabolomics of patients enrolled in the WALK-PHASST
study with high and low hemolytic propensity tracks with genotypes (high in SS, low in SC)
and shows distinct metabolic phenotypes, as gleaned by principal component analysis (A),
hierarchical clustering analysis (B) and line plots (C — x axis tracks with patients’ age).
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Supplementary Figure 4 Plasma metabolomics of patients enrolled in the WALK-PHASST
study with high and low tricuspid regurgitation velocity (TRV) tracks with genotypes (high in
SS, low in SC), age (high in older patients) and shows distinct metabolic phenotypes, as gleaned
by principal component analysis (A), hierarchical clustering analysis (B) and line plots (C — x
axis tracks with patients’ age).
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Supplementary Figure 6 Plasma metabolomics of patients enrolled in the WALK-PHASST
study with high and low eGFR tracks with genotypes (high in SC, low in SS) and shows distinct
metabolic phenotypes, as gleaned by principal component analysis (A), hierarchical clustering

analysis (B) and line plots (C — x axis tracks with patients’ age).
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Supplementary Figure 7 Plasma metabolic markers of mortality as determined by receiver
operating characteristic curves (ROC — A), multivariate analyses via random forest (B). The top
15 variables from this analysis are reported in C.
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Supplementary Figure 8 Plasma metabolomics correlates to clinical and hematological
parameters, including the degree of hemolysis (A), TRV (B), body mass index (BMI — C),
estimated glomerular filtration rate (eGFR - D).
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- Overview of the project;

- Data from plasma and red blood cells
- Cross-Malrix variable correlations

Snapshot for publication quality figures
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Supplementary Figure 9 Overview of the MIRAGES Sickle Cell Disease portal which offers the
opportunity to perform streamlined data analysis of plasma, red blood cells or cross-matrix
analyses of metabolomics data as a function of relevant clinical or hematological covariates,
patients’ demographics data. The portal is freely accessible at:

https://mirages.shinyapps.io/SickleCellDisease/
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Correlation of vs RBC metabolites
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Supplementary Figure 10 Plasma vs RBC metabolites: correlation matrix Plasma metabolite
levels from the WALK PHASST cohort were matched to RBC metabolomics measurements
(D’Alessandro et al. Am J Hematol 2023?%). Results indicated a strong positive cross-matrix
correlation for almost all metabolic markers of cardiorenal dysfunction, except for sphingosine
1-phosphate (S1P), whose levels were elevated in SS RBCs and SC plasma, suggesting an
increased synthesis or decreased export in the more clinically severe SS genotype
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Supplementary Figure 11 ANOVA of merged metabolomics data from plasma and red blood

cells from our recent Walk-PHASST study.'* Determination of the most significantly impacted
metabolites in plasma (present study) and RBCs!! from the Walk-PHASST trial are shown in
the Manhattan plot at the top of the figure, where the y axis indicates -log10 of p-values by
ANOVA based on patients’ genotypes and HbS%. Of note, sphingosine 1-phosphate (S1P) in
plasma and RBC ranked amongst the top 5 most significantly impacted metabolites of both
matrices, though its levels were higher in SS RBCs and lower in SS plasma compared to other
genotypes (box plots at the bottom of the figure).
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Supplementary Figure 12 Plasma and RBC metabolic correlates to pain crisis events in SCD
Spearman correlation of plasma (yellow) and RBC (red) metabolite levels to self-reported pain
crisis events in the 12 months preceding the analysis (A). Line plots show (Loess smoothing
algorithm-adjusted) median (+ quartile) associations to pain for AcCa 10:1, 2:0, ornithine and
S1P in plasma and RBC (B-E).
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