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Supplementary Materials and Methods - Extended 

Ultra-High-Pressure Liquid Chromatography-Mass Spectrometry (MS) metabolomics: 

Frozen plasma aliquots (50 µL) were thawed on ice then extracted 1:25, in ice cold extraction 

solution (methanol:acetonitrile:water 5:3:2 v/v/v). Samples were vortexed for 30 min at 4℃ and 

insoluble material pelleted via centrifugation at 15,000 g for 15 min under refrigerated conditions, 

as described. 1,2 Analyses were performed using a Vanquish UHPLC coupled online to a Q 

Exactive mass spectrometer (Thermo Fisher, Bremen, Germany). Samples were resolved as 

described,3,4 over a Kinetex C18 column (2.1x150 mm, 1.7 µm; Phenomenex, Torrance, CA, USA) 

at 45°C. A volume of 10 ul of sample extracts was injected into the UHPLC-MS. Each sample was 

injected with two different chromatographic and MS conditions as follows: 1) using a 5 minute 

gradient at 450 µL/minute from 5-95% B (A: water/0.1% formic acid; B:acetonitrile/0.1% formic 

acid) and the MS was operated in positive mode and 2) using a 5 minute gradient at 450 µL/minute 

from 5-95% B (A: 5% acetonitrile, 95%water/1 mM ammonium acetate; B:95%acetonitrile/5% 

water, 1 mM ammonium acetate) and the MS was operated in negative ion mode. The UHPLC 

system was coupled online with a Q Exactive scanning in Full MS mode at 70,000 resolution in 

the 60-900 m/z range, 4 kV spray voltage, 15 sheath gas and 5 auxiliary gas. These 

chromatographic and MS conditions were applied for both relative and targeted quantitative 

metabolomics measurements, with the differences that for the latter targeted quantitative post hoc 

analyses were performed on the basis of the stable isotope-labeled internal standards used as a 

reference quantitative measurement, as detailed below. 

Quality control and data processing:  Calibration was performed prior to analysis using 

the PierceTM Positive and Negative Ion Calibration Solutions (Thermo Fisher Scientific). Acquired 

data was then converted from raw to .mzXML file format using RawConverter. Samples were 

analyzed in randomized order with a technical mixture injected every 15 samples to qualify 

instrument performance and ensure technical coefficients of variations (standard deviation divided 

by the mean) below 20%. Metabolite assignments, isotopologue distributions, and quantification 

of stable isotope-labeled internal standards were performed using MAVEN (Princeton, NJ, USA), 

as described.5 

Statistical analyses: Data analysis was performed through the auxilium of the software 

MAVEN. Graphs and statistical analyses (either two-way ANOVA or repeated measures 
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ANOVA) were prepared with GraphPad Prism 9.0 (GraphPad Software, Inc, La Jolla, CA), GENE 

E (Broad Institute, Cambridge, MA, USA), Multivariate analyses, including principal component 

analyses (PCA), hierarchical clustering analyses, two-way ANOVAs, correlation analyses 

(Spearman) and calculation of receiver operating characteristic (ROC) curves were performed 

through the software MetaboAnalyst 5.0.6 For survival analysis, we used time to right censorship 

(including death or last follow-up) as time to event and vital status (death or alive) was the studied 

outcome. PCA was used to derive a hemolytic component from lactate dehydrogenase, aspartate 

aminotransferase total bilirubin and reticulocyte percent.7-9 We applied Cox proportional hazard 

models to calculate the hazard ratios and P value for each metabolite. and Cox analysis and 

adjusted regressions of metabolites to clinical outcomes were performed in R (R Core Team 

(2022), https://www.r-project.org/). 

Sickle Cell Disease ShinyApp portal A portal for online sharing of all the data generated 

in this study, in like-wise fashion to our recent COVID-Ome Explorer portal.10 After data curation 

and quality control, each of the datasets (plasma metabolomics, RBC metabolomics from our 

previous study on the WALK-PHASST Cohort11, clinical data) was linked at the sample level with 

a unique identifier, enabling cross-referencing among datasets. Then, each of the datasets was 

imported into applications developed using R, R Studio, and the R-based web application 

framework Shiny.  All code required to run the COVIDome Explorer applications can be found at 

https://github.com/cusom/CUSOM.COVIDome.Shiny-Apps  (Zenodo 

https://doi.org/10.5281/zenodo.5081091) and https://github.com/cusom/CUSOM.ShinyHelpers 

(Zenodo https://doi.org/10.5281/zenodo.5081093). 
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SUPPLEMENTARY FIGURES 

 

Supplementary Figure 1 Plasma metabolomics of the WALK-PHASST SCD cohort Principal 

component analysis (PCA) (A) and hierarchical clustering analysis (B) of metabolomics data 

on 596 plasma samples from 6 different genotypes. Of note, metabolomics measurements of 

plasma creatinine showed significant positive correlation (r=0.95) with CLIA-measurements in 

the clinics, despite double randomization of the samples, blinding of the mass spec lab and 

prolonged storage of the Walk-PHASST samples (C), as previously noted.11 
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Supplementary Figure 2 Plasma metabolic correlates to Hydroxyurea treatment in the WALK-

PHaSST cohort SS patients who were not recently transfused (HbA<20%; n=306) were tested 

as a function of treatment with hydroxyurea (n=147 vs n=159 untreated - A). In B, principal 

component analysis of the data from this cohort, color-coded based on HbF %. In C, heat map of 

the most significant metabolites affected by the treatment. In D, metabolic correlates to HbF%. 

In E, linear model identifying the effect of hydroxyurea in SS patients, either unadjusted (x axis) 

or adjusted by HbF% (y axis). In F, to reduce the noise in the hydroxyurea group, owing to 

questionable adherence to the treatment, we narrowed the analysis down to the patients on 
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treatment with MCV >105. The analysis (G) showed a beneficial effect of hydroxyrea in lowering 

the levels of several circulating acylcarnitines, an effect that was masked by the general analysis. 

 

Supplementary Figure 3 Plasma metabolomics of patients enrolled in the WALK-PHASST 

study with high and low hemolytic propensity tracks with genotypes (high in SS, low in SC) 

and shows distinct metabolic phenotypes, as gleaned by principal component analysis (A), 

hierarchical clustering analysis (B) and line plots (C – x axis tracks with patients’ age). 
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Supplementary Figure 4 Plasma metabolomics of patients enrolled in the WALK-PHASST 

study with high and low tricuspid regurgitation velocity (TRV) tracks with genotypes (high in 

SS, low in SC), age (high in older patients) and shows distinct metabolic phenotypes, as gleaned 

by principal component analysis (A), hierarchical clustering analysis (B) and line plots (C – x 

axis tracks with patients’ age). 
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Supplementary Figure 5 Plasma metabolomics of patients enrolled in the WALK-PHASST 

study with high and low eGFR propensity, as gleaned by hierarchical clustering analysis (A). 

Metabolic markers and clinical measurements of kidney dysfunction were identified as the top 

correlates to patients’ age (Spearman - B). 
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Supplementary Figure 6 Plasma metabolomics of patients enrolled in the WALK-PHASST 

study with high and low eGFR tracks with genotypes (high in SC, low in SS) and shows distinct 

metabolic phenotypes, as gleaned by principal component analysis (A), hierarchical clustering 

analysis (B) and line plots (C – x axis tracks with patients’ age). 
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Supplementary Figure 7 Plasma metabolic markers of mortality as determined by receiver 

operating characteristic curves (ROC – A), multivariate analyses via random forest (B). The top 

15 variables from this analysis are reported in C. 
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Supplementary Figure 8 Plasma metabolomics correlates to clinical and hematological 

parameters, including the degree of hemolysis (A), TRV (B), body mass index (BMI – C), 

estimated glomerular filtration rate (eGFR - D). 
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Supplementary Figure 9 Overview of the MIRAGES Sickle Cell Disease portal which offers the 

opportunity to perform streamlined data analysis of plasma, red blood cells or cross-matrix 

analyses of metabolomics data as a function of relevant clinical or hematological covariates, 

patients’ demographics data. The portal is freely accessible at: 

  https://mirages.shinyapps.io/SickleCellDisease/  

  

https://mirages.shinyapps.io/SickleCellDisease/
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Supplementary Figure 10 Plasma vs RBC metabolites: correlation matrix Plasma metabolite 

levels from the WALK PHASST cohort were matched to RBC metabolomics measurements 

(D’Alessandro et al. Am J Hematol 202321). Results indicated a strong positive cross-matrix 

correlation for almost all metabolic markers of cardiorenal dysfunction, except for sphingosine 

1-phosphate (S1P), whose levels were elevated in SS RBCs and SC plasma, suggesting an 

increased synthesis or decreased export in the more clinically severe SS genotype 
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Supplementary Figure 11 ANOVA of merged metabolomics data from plasma and red blood 

cells from our recent Walk-PHASST study.11 Determination of the most significantly impacted 

metabolites in plasma (present study) and RBCs11 from the Walk-PHASST trial are shown in 

the Manhattan plot at the top of the figure, where the y axis indicates -log10 of p-values by 

ANOVA based on patients’ genotypes and HbS%. Of note, sphingosine 1-phosphate (S1P) in 

plasma and RBC ranked amongst the top 5 most significantly impacted metabolites of both 

matrices, though its levels were higher in SS RBCs and lower in SS plasma compared to other 

genotypes (box plots at the bottom of the figure).  
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Supplementary Figure 12 Plasma and RBC metabolic correlates to pain crisis events in SCD 

Spearman correlation of plasma (yellow) and RBC (red) metabolite levels to self-reported pain 

crisis events in the 12 months preceding the analysis (A). Line plots show (Loess smoothing 

algorithm-adjusted) median (+ quartile) associations to pain for AcCa 10:1, 2:0, ornithine and 

S1P in plasma and RBC (B-E). 


