Optimizing transplantation procedures through identification of prognostic factors in second remission for children with acute myeloid leukemia with no prior history of transplant

Hisashi Ishida,¹ Shin-ichi Tsujimoto,² Daisuke Hasegawa,³ Hirotoshi Sakaguchi,⁴ Shohei Yamamoto,⁵ Masakatsu Yanagimachi,⁶ Katsuyoshi Koh,² Akihiro Watanabe,⁴ Asahito Hama,⁵ Yuko Cho,¹⁰ Kenichiro Watanabe,¹¹ Maiko Noguchi,¹² Masanobu Takeuchi,² Junko Takita,¹³ Kana Washio,¹ Keisuke Kato,¹⁴ Takashi Koike,⁵ Yoshiko Hashii,¹⁵ Ken Tabuchi,¹⁶ Moeko Hino,¹² Yoshiko Atsuta¹¹³,² and Yasuhiro Okamoto²⁰

Department of Pediatrics, Okayama University Hospital, Okayama; ²Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama; ³Department of Pediatrics, St. Luke's International Hospital, Tokyo; ⁴Children's Cancer Center, National Center for Child Health and Development, Tokyo; ⁵Department of Pediatrics, Tokai University, Kanagawa; ⁶Division of Hematology/Oncology, Kanagawa Children's Medical Center, Yokohama, Kanagawa; ⁷Department of Hematology and Oncology, Saitama Children's Medical Center, Saitama; ⁸Department of Pediatrics, Niigata Cancer Center Hospital, Niigata; ⁹Department of Hematology and Oncology, Children's Medical Center, Japanese Red Cross Aichi Medical Center Nagoya First Hospital, Nagoya; ¹⁰Department of Pediatrics, Hokkaido University Hospital, Sapporo; ¹¹Department of Hematology and Oncology, Shizuoka Children's Hospital, Shizuoka; ¹²Department of Pediatrics, National Hospital Organization Kyushu Cancer Center, Fukuoka; ¹³Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto; ¹⁴Division of Pediatric Hematology and Oncology, Ibaraki Children's Hospital, Mito; ¹⁵Department of Pediatrics, Osaka International Cancer Institute, Osaka; ¹⁶Department of Pediatrics, Tokyo Metropolitan Cancer and Infectious Disease Center, Komagome Hospital, Tokyo; ¹⁷Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba; ¹⁸Japanese Data Center for Hematopoietic Cell Transplantation, Nagakute; ¹⁹Department of Pediatrics, Graduate School of Medicine, Nagakute and ²⁰Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan

Correspondence:

H. ISHIDA - hiishida1218@okayama-u.ac.jp

https://doi.org/10.3324/haematol.2023.283203

Received: March 22, 2023. Accepted: June 30, 2023. Early view: July 20, 2023.

©2024 Ferrata Storti Foundation
Published under a CC BY-NC license © ① S

Supplementary data

Supplementary Table S1. Univariate analysis for overall survival, cumulative incidence of relapse, and cumulative incidence of non-relapse mortality

-	•			• •		•	•
Factor	Group	5y-OS (95% CI)	p value	5y-CIR (95% CI)	p value	5y-CINRM (95% CI)	p value
Age at HSCT	0–4	62.5 (49.6–73.0)	0.253	31.3 (20.8–42.4)	0.095	10.3 (4.5–19.0)	0.787
	5–9	72.6 (58.5–82.6)		17.4 (8.8–28.3)		14.9 (6.8–25.9)	
	10–15	63.1 (51.5–72.7)		27.0 (17.9–36.8)		11.9 (6.0–19.9)	
PS	0–1	66.9 (59.1–73.5)	0.538	26.4 (20.1–33.1)	0.927	10.5 (6.5–15.7)	0.350
	2–4	56.2 (14.7–84.2)		25.0 (3.0-57.9)		12.5 (0.4–45.3)	
	NA	59.3 (38.7–75.1)		22.0 (8.7–39.2)		22.2 (8.7–39.4)	
Duration of first CR	≤1 year	45.2 (24.0-64.2)	0.005	50.5 (27.4–69.7)	0.012	13.5 (3.2–31.3)	0.111
	> 1 year	71.8 (62.8–79.0)		22.5 (15.8-30.0)		8.6 (4.5-14.3)	
	NA	59.2 (45.2–70.7)		24.5 (14.2–36.3)		19.6 (10.4–31.0)	
Interval from CR2 to HSCT	≤ 79 days	60.6 (48.5–70.7)	0.212	29.6 (19.9–39.9)	0.540	13.3 (6.7–22.0)	0.142
	> 79 days	72.9 (61.1–81.7)		24.5 (15.5–34.6)		6.3 (2.3-13.1)	
	NA	62.5 (48.1-74.0)		22.2 (12.2-34.0)		18.8 (9.6–30.5)	
FAB classification	MO	57.1 (17.2–83.7)	0.026	25.0 (3.0-57.9)	NA	15.0 (0.4–51.7)	NA
	M1	67.4 (47.9-81.0)		16.3 (5.8–31.5)		19.5 (7.7–35.2)	
	M2	70.2 (59.1–78.9)		21.4 (13.5–30.6)		12.1 (6.1–20.3)	
	M4	77.8 (58.9–88.7)		18.8 (7.5–34.0)		9.5 (2.3–22.9)	
	M5	58.5 (36.7–75.0)		33.2 (16.9–50.5)		7.6 (1.2–22.4)	
	M6	53.3 (6.8-86.3)		26.7 (0.2–75.1)		20.0 (0.4-62.1)	
	M7	25.7 (6.9-50.1)		68.8 (37.7–86.6)		12.5 (1.7–34.7)	
	Others	50.0 (0.6–91.0)		50.0 (0.0-96.0)		0 (NA)	
	NA	NA		NA		NA	
Year of HSCT	2000–2009	61.8 (52.6-69.8)	0.132	26.6 (19.2–34.7)	0.714	13.0 (7.7–19.6)	0.557
	2010-2019	71.4 (59.8–80.2)		24.9 (16.2-34.5)		11.1 (5.3–19.2)	
Cytogenetics/genetics	CBF	76.8 (65.3–84.9)	0.002	16.8 (9.4–26.0)	0.012	11.0 (5.1–19.4)	0.087
, 0	11q23*	42.8 (20.6-63.4)		24.6 (8.5-45.1)		31.5 (11.9–53.4)	
	HR cytogentics**	48.3 (27.1–66.7)		50.5 (28.5–69.0)		13.1 (3.0–30.7)	
	Others	65.1 (53.8–74.3)		27.3 (18.5–36.8)		8.9 (4.1–16.1)	
Conditioning regimen	TBI/Cy based MAC	55.2 (43.5–65.5)	0.075	36.5 (25.9–47.0)	NA	14.1 (7.4–22.8)	NA
	Bu/Cy based MAC	58.3 (23.0-82.1)		30.0 (6.1–59.5)		10.0 (0.4–37.6)	
	TBI/Mel based MAC	65.7 (50.2–77.4)		16.7 (7.7–28.6)		17.2 (7.9–29.4)	
		• ,		, ,		, ,	

	Bu/Mel based MAC	79.5 (61.1–89.9)		16.5 (6.5–30.4)		7.7 (1.9–18.9)	
	Mel based MAC	81.7 (52.7–93.9)		24.7 (7.9-46.3)		0 (NA)	
	other MAC	100.0 (NA)		0 (NA)		0 (NA)	
	RIC	58.0 (26.1-80.2)		28.2 (8.1-52.9)		19.4 (2.4–48.6)	
GVHD prophylaxis	CSA ± MTX	59.3 (46.4–70.1)	0.720	34.6 (23.6–45.9)	0.103	9.4 (3.8-18.1)	0.371
	TAC ± MTX	68.3 (59.4–75.7)		21.3 (14.8–28.6)		14.4 (9.0–21.0)	
	NA	75.0 (31.5–93.1)		25.0 (3.0-57.9)		0 (NA)	
HLA disparities	0	64.2 (51.6–74.3)	0.723	30.5 (20.4–41.1)	0.274	8.8 (3.5-17.2)	0.257
	1	71.1 (57.9–80.8)		28.3 (17.7–39.8)		7.5 (2.7–15.6)	
	2	63.6 (46.6-76.6)		15.6 (6.7–27.8)		22.1 (10.6-36.3)	
	NA	57.9 (37.9–73.5)		24.3 (10.5-41.2)		17.4 (6.2–33.5)	
Donor source	Rel-BM	58.5 (43.3-70.9)	0.553	35.3 (22.7-48.1)	0.101	10.5 (3.7–21.5)	0.242
	Rel-PB	61.1 (34.5–79.6)		10.0 (1.6–27.9)		28.9 (9.7–51.7)	
	UR-BM	70.1 (57.1–79.8)		20.1 (11.3–30.7)		12.2 (5.6–21.4)	
	UR-CB	67.5 (55.0–77.1)		28.0 (18.3–38.6)		10.0 (4.3-18.4)	
Donor-recipient sex match	Match	63.2 (52.6-72.1)	0.244	29.2 (20.5-38.4)	0.574	11.4 (6.0–18.7)	0.364
	Male to Female	62.2 (47.5-73.8)		23.1 (13.0-34.9)		17.2 (8.4–28.8)	
	Female to Male	65.3 (47.4–78.4)		27.4 (14.4-42.1)		13.1 (4.6-26.2)	
	NA	88.2 (60.6–96.9)		11.8 (1.8–31.9)		0 (NA)	

^{*}The 11q23 group included those with no information on the rearrangement partner of *KMT2A* or those who did not meet the criteria of HR cytogenetics; two patients with t(11;19)(q23;p13.1) and one patient with t(9;11)(p22:q23).

Abbreviations: OS, overall survival; CIR, cumulative incidence of relapse; CINRM, cumulative incidence of non-relapse mortality; CI, confidence interval; HSCT, hematopoietic stem cell transplantation; PS, performance status; CR, complete remission; FAB, French-American-British; CBF, core-binding factor; HR, high-risk; TBI, total-body irradiation; Cy, cyclophosphamide; Mel; melphalan; MAC, myeloablative conditioning; RIC, reduced-intensity conditioning; CSA, cyclosporine A; TAC, tacrolimus; MTX, methotrexate; HLA, human leukocyte antigen; Rel, related; UR, unrelated; BM, bone marrow; PB, peripheral blood; CB, cord blood; GVHD, graft-versus-host disease; NA, not available.

^{**}HR cytogenetics found in the current study included twenty patients with complex karyotypes, two patients each with t(6;11)(q27;q23) or 7-/7q-, and one patient each with t(9;22)(q34;q11.2), t(7;12)(q36;p13), or *FLT3*-ITD. Among them, one patient had both a complex karyotype and deletion of chromosome 7 and another patient had both a complex karyotype and t(7;12)(q36;p13).

Supplementary Table S2. Details of Mel-containing non-TBI myeloablative regimens

Conditioning regimen	Patient number	
Bu/Mel-based MAC (Bu > 9 mg/kg)	40	
Bu + Mel		31
Bu + Mel + VP		3
Bu + Mel + Flu		5
Bu + Mel + Flu + CA		1
Mel-based MAC (Mel > 140 mg/m²)	27	
Bu + Mel (Bu ≤ 9 mg/kg)		3
Bu + Mel + Flu + CA (Bu ≤ 9 mg/kg)		1
Flu + Mel		7
Flu + Mel + VP		3
Flu + Mel + LD-TBI		3
Flu + Mel + LD-TBI + CA		9
Flu + Mel + LD-TBI + VP		1

Abbreviations: MAC, myeloablative conditioning; Mel, melphalan; TBI, total-body irradiation; Bu, busulfan; VP, etoposide; Flu, fludarabine; CA, cytarabine; LD-TBI, low-dose total-body irradiation

Supplementary Table S3. Multivariate analysis for event-free survival when classifying the conditioning regimen into TBI-based MAC, chemotherapy-based MAC, and RIC

Factor		Hazard ratio (95% CI)	<i>p</i> value
Age at HSCT	0–4	ref	
	5–9	0.72 (0.30–1.72)	0.460
	10–15	0.84 (0.33–2.14)	0.709
Duration of first CR	≤1 year	ref	
	> 1 year	0.36 (0.18–0.71)	0.004
Year of HSCT	2000–2009	ref	
	2010–2019	1.09 (0.60–1.97)	0.771
Conditioning regimen	TBI-based MAC	ref	
	chemo-based MAC	0.42 (0.19-0.90)	0.025
	RIC	0.98 (0.36–2.65)	0.972
Donor source	Rel-BM	ref	
	Rel-PB	1.19 (0.43–3.26)	0.738
	UR-BM	0.55 (0.22–1.37)	0.196
	UR-CB	0.56 (0.27–1.18)	0.129
HLA disparities	0	ref	
	1	0.82 (0.40-1.68)	0.585
	2	0.69 (0.31–1.54)	0.359
FAB	Others	ref	
	M7	2.43 (1.02–5.80)	0.045
Cytogenetics	Others	ref	
	CBF	0.70 (0.32–1.51)	0.359
	11q23*	1.64 (0.67–4.01)	0.275
	HR cytogenetics**	1.77 (0.74–4.23)	0.196

^{*}The 11q23 group included those with no information on the rearrangement partner of KMT2A or those who did not meet the criteria of HR cytogenetics; two patients with t(11;19)(q23;p13.1) and one patient with t(9;11)(p22:q23).**HR cytogenetics found in the current study included twenty patients with complex karyotypes, two patients each with t(6;11)(q27;q23) or 7-/7q-, and one patient each with t(9;22)(q34;q11.2), t(7;12)(q36;p13), or *FLT3*-ITD. Among them, one patient had both a complex karyotype and deletion of chromosome 7 and another patient had both a complex karyotype and t(7;12)(q36;p13).

Abbreviations: CI, confidence interval; HSCT, hematopoietic stem cell transplantation; CR, complete remission; TBI, total-body irradiation; MAC, myeloablative conditioning; RIC, reduced-intensity conditioning; Rel, related; UR, unrelated; BM, bone marrow; PB, peripheral blood; CB, cord blood; HLA, human leukocyte antigen; FAB, French-American-British; CBF, core-binding factor; HR, highrisk; NA, not available; ref, reference.