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The diagnosis of myelodysplastic syndromes (MDS) might be challenging and relies on the convergence of cytological, cyto-
genetic, and molecular factors. Multiparametric flow cytometry (MFC) helps diagnose MDS, especially when other features 
do not contribute to the decision-making process, but its usefulness remains underestimated, mostly due to a lack of stan-
dardization of cytometers. We present here an innovative model integrating artificial intelligence (AI) with MFC to improve the 
diagnosis and the classification of MDS. We develop a machine learning model through an elasticnet algorithm directed on a 
cohort of 191 patients, only based on flow cytometry parameters selected by the Boruta algorithm, to build a simple but 
reliable prediction score with five parameters. Our AI-assisted MDS prediction score greatly improves the sensitivity of the 
Ogata score while keeping an excellent specificity validated on an external cohort of 89 patients with an Area Under the Curve 
of 0.935. This model allows the diagnosis of both high- and low-risk MDS with 91.8% sensitivity and 92.5% specificity. Inter-
estingly, it highlights a progressive evolution of the score from clonal hematopoiesis of indeterminate potential (CHIP) to high-
risk MDS, suggesting a linear evolution between these different stages. By significantly decreasing the overall misclassification 
of 52% for patients with MDS and of 31.3% for those without MDS (P=0.02), our AI-assisted prediction score outperforms the 
Ogata score and positions itself as a reliable tool to help diagnose MDS.  
 

Abstract 

Introduction 
Myelodysplastic syndromes (MDS) are a heterogeneous 
group of myeloid neoplasms the incidence of which in-
creases with age, with a median age at diagnosis of 75 
years.1 MDS are characterized by ineffective hematopoiesis 
leading to peripheral cytopenia, and dysplastic features in 
the erythroid, myeloid, monocytic and megakaryocytic cell 
lineages in bone marrow (BM) and peripheral blood (PB). 
Besides the symptoms and complications associated with 
cytopenia, MDS have a time-dependent heterogeneous 
but life-threatening potential for malignant transforma-
tion into acute myeloid leukemia (AML).2 
According to the World Health Organization (WHO) 2016 
classification, cytomorphology and cytogenetics are the 
gold standard for MDS diagnosis.3 However, cytomorpho-
logical analysis of BM smears may be challenging and 
identification of myelodysplastic features requires a well-

trained cytologist. It is especially important when cyto-
genetic analysis does not reveal any chromosomal abnor-
mality, which happens in 50% of patients. Thus, additional 
diagnostic procedures such as next generation sequenc-
ing (NGS) and multiparametric flow cytometry (MFC) need 
to be performed to facilitate the diagnosis. Several MDS 
MFC-scores have already been reported, like the Ogata 
score4 focusing on progenitor cells, the RED-score5 ana-
lyzing nucleated red blood cells, or the integrated flow 
score (iFS)6 that includes aspects of most of the MFC 
scores. However, the widespread use of these diagnostic 
tools is severely limited by a lack of standardization of the 
procedure among the centers performing flow cytometry, 
especially when using different flow cytometry machines 
and different brands of antibodies. 
Over the past few years, due to the increased sensitivity 
of molecular biology techniques, several definitions and 
classifications of pre-MDS conditions have been pro-
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posed.7 Among these pre-MDS conditions are ICUS (idio-
pathic cytopenia of unknown significance), CHIP (clonal 
hematopoiesis of indeterminate potential), and CCUS 
(clonal cytopenia of unknown significance). They have re-
lied either on the presence (ICUS and CCUS) or the ab-
sence (CHIP) of cytopenia, or on the detection (CHIP and 
CCUS) or not (ICUS) of clonal hematopoiesis in molecular 
biology or cytogenetic analyses. These stages do not 
require any treatment and CHIP is associated with a 1% 
risk of transformation to MDS per year. The differential di-
agnosis between these pre-MDS stages may be challeng-
ing and have implications on the patient’s follow-up. 
Besides, it is often difficult to distinguish pre-MDS stages 
from low-risk MDS in the absence of marked BM dyspla-
sia, whereas there is a huge difference in the risk of ulti-
mate malignant transformation.8 
Recently, artificial intelligence (AI) has begun to play an 
important role in numerous areas of medicine. Several 
methods (machine learning, convolutional neural net-
works) have been developed in hematology to address 
these specific problems. Interestingly, more and more 
feature selection algorithms are being developed, which 
allow us to select and focus on the most important par-
ameters of a given pathology. 
In this study, using a 10-color single-tube, we sought to 
discriminate patients with MDS from patients without 
MDS based on the profile obtained with MFC in a well-
characterized and multicentric cohort from hematology 
departments of three different centers. After features se-
lection using the Boruta algorithm, we established a di-
agnostic score to accurately distinguish between patients 
without MDS and patients with or without excess blasts. 

Methods 
Patients  
Between 2019 and 2021, patients with suspected MDS 
who had undergone MFC evaluation at initial diagnosis 
were retrospectively identified in the hematology depart-
ments of 3 different centers (Amiens, Ambroise Paré and 
Cochin hospitals). Peripheral blood (PB) cytopenia were 
defined as platelets below 150x109/L (thrombocytopenia), 
neutrophils below 1.8x109/L (neutropenia), and hemoglobin 
concentration below 12 g/dL or 13 g/dL (anemia) for 
women and men, respectively. All MDS diagnoses were 
made according to the 2016 World Health Organization 
(WHO) classification. Clinical, morphologic, immunophe-
notypic, molecular, and cytogenetic data were reviewed. 
The Revised International Prognostic Scoring System 
(IPSS-R) was calculated as previously described.9 We di-
vided the total cohort into two;  first, we designed a learn-
ing cohort with patients from two hospitals (Ambroise 
Paré and Cochin), and then we used an external validation 

cohort with patients from the Amiens hospital. This pro-
cess is the gold standard of development and medical ap-
plication on a machine learning algorithm. This method, 
associated with crossvalidation on a learning cohort, 
allows  generalized performances which can be applied 
to other hospitals, as well as algorithms with less over-
fitting to be obtained.10 

Flow cytometry 
One center used a Navios™ instrument (Beckman Coulter, 
Miami, FL, USA) and the two others used FACSCanto™ and 
FACSLyric™ instruments (Beckton Dickinson, Franklin 
Lakes, NJ, USA). Before each series, the settings of the 
photomultipliers were checked with fluorescent calibra-
tion beads.  
Direct immunolabeling was performed on 50 mL of whole 
BM. After 20 minutes incubation, red blood cells were 
lysed with VersalyseTM solution (Beckman Coulter) accord-
ing to the manufacturer’s instructions, and the samples 
were washed once in phosphate-buffered saline (PBS). At 
least 50,000 events were acquired. All the antibodies used 
are listed in Online Supplementary Tables S1-S3. As de-
scribed by Della Porta et al.11 regarding the Ogata score, 
four parameters (1 point each when outside the normal 
ranges) were analyzed: 1) the percentage of CD34+ mye-
loid progenitors among all acquired cells (threshold for 
normal <2%); 2) the percentage of B-cell progenitors, de-
fined as CD34+CD38+CD19+ cells, among all CD34+ cells 
(threshold for normal >5%); 3) the lymphocyte/myeloid 
progenitor CD45 ratio (normal range 4-7.5); and 4) the gra-
nulocyte/lymphocyte SSC peak channel ratio (threshold 
for normal >6). The Ogata score was positive if ≥2. 
Expression of CD7, CD56 and HLA-DR on blast cells was 
also assessed, as well as the total hematogone ratio 
(number of hematogones/number of CD34+ cells). 

Statistical analysis 
R software 4.0.5 was used for the statistical analysis: χ2 
test for categorical variables, non-parametric Kruskall Wal-
lis test and Pearson correlation for quantitative parameters. 
We performed features selection using the Boruta algo-
rithm with 150 random forest iterations and obtained a 
predictive model by logistic regression penalized by an 
elasticnet algorithm on previously selected features.12 We 
used an α coefficient of penalization of 0.6 and a 10-fold 
crossvalidation on training and test cohorts to reduce bias 
and optimize threshold category; an algorithm perform-
ance with a matrix of prediction on the Amiens Hospital 
validation cohort was obtained. A Receiver Operating 
Characteristic (ROC) curve analysis was performed on this 
validation cohort. Finally, we used a Cochran-Mantel-
Haenszel χ2 test to analyze differences between the dif-
ferent matrices of prediction obtained by the Ogata and 
the elasticnet score on each group.   
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Machine learning was performed on MDS and no MDS pa-
tients without CHIP (n=280). CHIP was added to the figures 
a posteriori to observe the behavior of the model on this 
pathology. Two-tailed P<0.05 was considered statistically 
significant.  

Results  
A total of 105 (34.65%) patients without MDS (no MDS), 23 
with pre-MDS (7.59%), 112 (36.96%) with MDS without ex-
cess blasts, and 63 patients (20.79%) with MDS with ex-
cess blasts (MDS-EB) were enrolled in the total cohort 
(Table 1). All patients with pre-MDS stages listed in the in-
troduction were combined in the pre-MDS group because 
of the small number of patients in each category. Among 
the 105 no MDS cases, there are patients with drug toxicity 
(n=15, 14.28%), autoimmune disease (n=10, 9.52%), liver in-
suffiency (n=12, 11.43%), bone marrow metastasis (n=8, 
7.61%), idiopathic thrombocytopenia (ITP) (n=12, 11.43%), 
infections (n=12, 11.43%), vitamin B9 or B12 deficiency (n=7, 
6.67%), non-Hodgkin lymphoma (n=12, 11.43%), aplastic 
anemia (n=7, 6.67%), kidney failure (n=6, 5.71%), and 
multiple myeloma (n=4, 3.81%). 
In the total cohort, there was a significant difference in 

median age at diagnosis between these groups (72 years for 
patients without malignancy, 75 for pre-MDS, 78 for MDS, 
and 80 for MDS-EB; P=0.016). We did not found any signifi-
cant difference between MCV values, probably due to the 
high values in some no MDS patients (vitamin deficiency). 
A positive-Ogata score classified 71% of MDS patients in 
the MDS group, and accurately classified 81.10% of no MDS 
patients. It performed better for patients with MDS-EB, 
accurately classifying 95% of them in the MDS group, 
whereas it performed less well for the diagnosis of MDS 
without excess of blasts, both for MDS-MLD and MDS-
SLD, only identifying 57.10% and 47.13% of them, respect-
ively. Thus, the sensitivity of the Ogata score was 69.80% 
with 93.80% specificity, with a 95% positive predictive 
value (PPV) and a 63% negative predictive value (NPV). 
As expected, the percentage of CD34+ myeloid progenitors 
was significantly higher in the MDS-EB group (2.76%) than 
in the patients with no MDS (0.71%), pre-MDS (0.63%), and 
MDS without excess of blasts (0.92%) (P<0.001).  
We found no significant immunophenotypic aberrations, 
with a similar median value of CD7+ blasts (P=0.942), 
CD56+ blasts (P=0.551), and HLA-DR negative blasts 
(P=0.658) across the different groups. On the other hand, 
the percentage of CD7+ blast cells was significantly higher 
in the MDS groups (P<0.001). 

Parameters 
Median (range)

Pathology
PNo MDS 

N=105
CHIP 
N=23

MDS 
N=112

MDS-EB 
N=63

Age in years 72 (33-92) 75 (43-88) 78 (45-92) 80 (54-91) 0.016

Hemoglobin, g/dL 11.4 (5.4-17.7) 10.8 (9-15.8) 10.6 (6.1-16.3) 9.5 (7.7-13) 0.059

MCV, fL 93 (64.3-110) 95.9 (74-109) 98 (79.8-119) 95.6 (83-125) 0.212

Platelet count, x109/L 111 (11-479) 136 (35-918) 146 (14-608) 82 (15-320) 0.048

WBC, x109/L 3.6 (1.1-12.8) 6.2 (2.2-24) 4.6 (1.2-12.2) 3.2 (1.5-7.8) 0.005

ANC, x109/L 2.2 (0.3-8.7) 4.1 (0.9-20) 2.9 (0.59-10.2) 1.9 (0.3-6.4) 0.01

Monocyte count, % 0.4 (0.07-18) 1.5 (0.3-11.2) 0.54 (0-14) 0.29 (0-4.3) 0.001

Bone marrow blasts, % 2 (0-4) 2 (2-3) 2 (0-4) 8 (5-18) <0.001

CD34+ myeloid progenitors, % 0.7 (0.06-3.5) 0.6 (0.05-2.2) 0.9 (0.08-5.2) 2.76 (0.5-23) <0.001

CD34+CD38-, % 6.3 (0.1-36) 11 (0.3-21) 6.75 (0-39) 4.54 (0.25-60) 0.012

CD7+ blasts, % 6.33 (0-25.6) 6 (1.2-38.5) 7 (0-82) 7 (0-87) 0.94

CD56+ blasts, % 0.8 (0-9.1) 0.4 (0-16.8) 1 (0-60.6) 1.2 (0-85) 0.55

HLA-DR- blasts, % 1.6 (0-30) 1.6 (0.2-10.8) 1.65 (0-56.5) 2.6 (0.5-13) 0.66

Total Hg, ratio 134.8 (1-1,172) 99.2 (11.3-539) 21.7 (0.3-647) 3.4 (0-114.8) <0.001

Hg Ogata, % 19.5 (0-89.2) 11.5 (0.6-48.7) 3.94 (0-67.6) 0.8 (0-37) <0.001

CD45 Ogata, ratio 6.8 (3.23-20.7) 11.7 (9.1-16.8) 6.7 (4.4-23.1) 8 (3.5-34.7) 0.4

SSC Ogata, ratio 6.95 (4.2-15.3) 5.8 (3.8-7.6) 5.5 (3.3-15.6) 5.1 (2.1-12.6) <0.001

Table 1. Global cohort characteristics grouped by pathology.

MDS: myelodysplastic syndromes; CHIP: clonal hematopoiesis of indeterminate potential; MDS-EB: MDS with excess blasts; MCV: mean 
corpuscular volume; WBC: white blood cells; ANC: absolute neutrophil count; CD34+CD38- : percentage of CD34+ CD38- blast cells; CD7+ 
blasts: median value of CD7+ blast cells; CD56+ blasts: median value of CD56+ blast cells; HLA-DR- blasts: median value of HLA-DR- blast cells; 
Total Hg: ratio Hg/CD34+; Hg Ogata: hematogone parameter of the Ogata Score; CD45 Ogata score: CD45 lymphocytes/ myeloid progenitor 
CD45 ratio of the Ogata score;  SSC Ogata: granulocytes/lymphocytes side scatter parameter of the Ogata score.
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To help distinguish patients with MDS from those with no 
MDS, we applied a Boruta feature selection algorithm on 
flow cytometry parameters. The qualitative granulocyte/lym-
phocyte SSC peak channel ratio (SSC Ogata score <6), the 
total hematogone ratio (number of hematogones/number of 
CD34+ cells), the percentage of CD34+ B-cell progenitors 
among all CD34+ cells (hematogone Ogata score), and the 
percentage of CD34+ myeloid progenitors were informative 
features to predict the diagnosis of MDS by MFC. On the 
contrary, the percentage of CD34+CD38- blast cells and the 
lymphocyte/myeloid progenitor CD45 ratio were found to be 
the least relevant features (Figure 1). 

We then used an elasticnet model to evaluate the proba-
bility of MDS (with or without excess blasts) on the learn-
ing and the test cohorts (plus pre-MDS patients; Figure 
2A), allowing us to propose this mathematical formula: 
MDS prediction score = -1.58 + 2.928*SSC Ogata score + 
0.965*hematogone Ogata score + 0.8907*%CD34+ myeloid 
progenitors – 0.0032*Total hematogone ratio 
In our learning cohort, a threshold of 0 with this formula 
proved ideal to distinguish patients with MDS from pre-
MDS or no MDS patients using crossvalidation. 
We then validated this model with a threshold of 0 on the 
Amiens Hospital validation cohort, and we obtained a ma-

Figure 1. Features selection by Boruta algorithm. Features in green are validated as useful, features in red are useless to predict 
myelodysplastic syndromes, control in blue are hazard permuted features that allow us to confront predictive potential of our 
variables with these randomness features. y-axis represents difference between each Z-score accuracy on feature and control, 
associated with standard deviation obtained on 100 iterations. Horizontal threshold represented significant different threshold 
between features and control. SS Ogata score: granulocyte/lymphocyte SSC peak channel ratio; Ogata final: numerical value of 
the Ogata score between 0 and 4; SS Ogata: numerical value of the granulocyte/lymphocyte SSC peak channel ratio; Total Hg: 
number of hematogones/number of CD34+ cells; Hg Ogata score: percentage of CD34+ B-cell progenitors among all CD34+ cells; 
% of MFC blasts:  percentage of CD34+ myeloid progenitors; quantitative Ogata Hg: numerical value of the percentage of CD34+ 
B-cell progenitors among all CD34+ cells; Ogata Mb score: percentage of CD34+ myeloid progenitors; Ratio CD45: numerical 
value of the lymphocyte/myeloid progenitor CD45 ratio; Ogata CD45 score: out of 4-7.8 range; min: minimum; max: maximum.
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trix prediction with sensitivity of 91.84%, a specificity of 
92.48%, and positive and negative predictive values of 
93.75% and 90.03%, respectively. The prognostic values of 
our AI-assisted MDS prediction score strikingly outper-
forms the Ogata score,  particularly by significantly im-
proving the sensitivity and the NPV (Table 2). 
To validate our diagnosis threshold with normalized data, 
we built a cumulative proportion plot for all pathologies 
on the total cohort that shows representativeness of this 
cohort without imbalanced data (Figure 2B).  
With a cut off of 0, ROC curve analysis performed on the 
same validation cohort showed an Area Under the Curve 
of 0.935, highlighting the excellent performance of the 
MDS prediction score by which only 6.47% of the patients 
were misclassified (Figure 2C).   
In the total cohort (191 patients on learning and test co-
horts plus 89 patients on external validation cohort: total 
n=280), our elasticnet MDS prediction score allowed for a 
clear distribution of MDS, MDS-EB and no MDS groups 
(Figure 2D). To improve the accuracy of diagnosis for these 
three subgroups, we refined the thresholds of our model 

and identified three groups: group A with an elasticnet 
MDS prediction score between -3 and 0, group B higher 
than 0 and less than 3, and group C higher than 3 (Figure 
3). Group A included many patients without MDS (87.88% 
with no MDS; 90.90% of the no MDS patients in the global 
cohort were in this group: n=132). Group B had more MDS 
patients without EB (88.17% with MDS in this group: n=93), 
and group C had more MDS-EB patients or MDS without 
EB but with multiple abnormalities like multi-lineage dys-
plasia or genetic abnormalities (100% of MDS in this group: 
n=78) (Table 3). Patients with pre-MDS stages were equally 
distributed in group A and group B. Strikingly, our AI-as-
sisted model shows a progressive evolution of the MDS 
prediction score from a pre-MDS condition (CHIP) to high-
risk MDS, suggesting a linear evolution between these dif-
ferent stages (Figure 2C and Figure 4). 
We then tested the accuracy of the model to classify pa-
tients according to the IPSS-R categories. In the whole co-
hort, IPSS-R was available for 150 MDS patients. Only 18 
MDS patients (9.42% of total MDS; 13.63% of group A) were 
classified in group A, all others being classified in groups 

A B

Figure 2. Probability of myelodysplastic syndrome (MDS) diagnosis according to the elasticnet MDS score. Development of an 
elasticnet model to predict the probability of MDS in the training and test cohorts. (A) Density plot of pathology repartition 
according to the MDS score. (B) Cumulative proportion of the cases in the global cohort according to the MDS score. (C) Receiver 
Operating Characteristic curves of the MDS score on the external validation cohort for MDS and no MDS patients (without pre-
MDS patients). (D) Cumulative proportion of the MDS score according to different pathologies. Pre-MDS: pre-myelodysplastic 
syndrome conditions; MDS-EB: MDS with excess blasts. 
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A B C

B and C of our model. Of these 18 patients, only one was 
of intermediate risk according to the IPSS-R, whereas nine 
were in the low-risk group and eight in the very low-risk 
group. Importantly, no high-risk patients were classified 
in group A (Table 4).  
Overall, our newly developed AI-assisted MDS prediction 
score improved the accuracy of MDS diagnosis, by reduc-
ing the risk of misclassification of MDS without excess 
blasts by 52.07% (P=0.004) and an absence of MDS by 
31.33% (P=0.022) compared to the Ogata score (Figure 4). 
Therefore, the sensitivity of this score for the subgroup of 

patients without excess blasts was 78.27%. These different 
subtypes could not be diagnosed by flow cytometry (using 
cytology alone) but were informative as to the ability of 
the algorithm to predict MDS.  

Discussion 
In this study, we developed an innovative model combining 
artificial intelligence and machine learning with flow cyto-
metry to improve the performance of MFC in diagnosing MDS.  

Score-based  
prediction

Pathology Performance
MDS 
N=49

No MDS 
N=40 ER Sensibility Specificity PPV  NPV

MDS 45 3 6.25% 91.8% 92.5% 93.75% 90%

No MDS 4 37 9.7% - - - -

ER 8% 7.5% 8% - - - -

Table 2. Matrix of elasticnet scoring prediction algorithm on the Amiens Hospital validation cohort.

MDS: myelodysplastic syndromes; ER: error rate based on the misclassified rate; PPV: positive predictive value; NPV: negative predictive value.

Figure 3. Elasticnet myelodysplastic syndrome model and distribution of diseases in the three risk groups. Proposed score scale 
with corresponding group breakdowns: (A) between -3 and 0, (B) between 0 and 3, and (C) between 3 and 8. MDS-EB: 
myelodysplastic syndrome with excess blasts; Pre-MDS: pre-myelodysplastic syndrome conditions; MDS: myelodysplastic 
syndromes (with single or multilineage dysplasia).
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Here, we propose an original AI-assisted prediction score 
for MDS to directly investigate the value of combining AI 
and MFC for the diagnosis of MDS. A few studies have 
used convolutional neural networks with gradient boosting 
to assess dysplasia13,14 or to distinguish aplastic anemia 
from MDS with very good sensitivity and specificity;15 but, 
up till now, AI has remained underused in the diagnosis of 
MDS, particularly in combination with MFC. Two other 
studies demonstrated a link between morphology, muta-
tional status and prognosis in MDS using machine learning 
techniques.16,17 Recent studies used unsupervised cluster 
analysis of flow cytometry  to identify new subsets in 
pathological erythropoiesis or facilitate the diagnosis of 
MDS.18,19 
The aim of this study was to distinguish patients with ac-
tual MDS from patients without MDS. Our AI-assisted MDS 
prediction score following an elasticnet model identified 
that most of the MDS patients have a score >0. By setting 
the cut-off value to 0, our diagnostic model shows high 
predictive value and strikingly outperforms the Ogata 
score by significantly increasing the sensitivity and the 
specificity of this test. If the original Ogata score performs 
well to discriminate MDS-EB (that are also usually easier 
to diagnose on BM smears), the great value of our score is 
in improving the accuracy of diagnosing MDS without ex-
cess blasts, whether they show single or multi-lineage 

dysplasia. With an error rate of 8% for both false positive 
and negative results, our MDS prediction score will in-
crease user confidence for biologists and clinicians in-
volved in the diagnostic procedure, especially when the 
presence of dysplastic features is not clear. In addition to 
its performances in the diagnosis of MDS, our model 
allowed for risk prediction, as we identified three risk 
groups (A, B and C) that correlate with the evolution of 
the disease. Nevertheless, one MDS-EB patient was clas-
sified in group A (see Figure 3.) This patient had bicytope-
nia, 6% blasts on the bone marrow aspiration with no 
cytogenetic abnormalities and no mutations found, and 
was classified in the IPSS-R category. The patient is cur-
rently being monitored and is not receiving treatment. This 
is an unusual case, and the excess of blasts on bone mar-
row smears could be reactive (this excess was not found 
on MFC analysis with an Ogata score = 0). The follow-up 
of this patient could help us to understand his classifica-
tion in group A. 
In our model, patients with pre-MDS cluster equally with 
patients without MDS. This specific distribution argues for 
a continuity between the occurrence of clonal hemato-
poiesis and the onset of MDS, as previously suggested by 
several teams.7,20-25 
Our prediction score included a few patients diagnosed 
with ICUS and CCUS; these had to be combined with CHIP 

Parameters 
Median (range)

Logistic model
PNo MDS group 

N=132
MDS low-risk group 

N=93
MDS high-risk group 

N=78
Age in years 72 (33-92) 78 (39-92) 78 (54-91) 0.13
Hemoglobin, g/dL 10.9 (6.2-17.7) 10.5 (6.6-16.3) 9.8 (6.2-15.8) 0.03
MCV, fL 95.8 (73.1-119) 95.6 (64.3-115) 95.7 (83-124) 0.55
Platelet count, x109/L 120 (11-568) 136 (14-918) 114 (14-617) 0.65
WBC, x109/L 4.2 (1.3-14.8) 5.4 (1.1-24) 3.8 (1.2-10) 0.12
ANC, x109/L 2.7 (0.5-12.7) 3.2 (0.3-23.2) 2.1 (0.3-6.4) 0.07
Monocyte count, % 0.4 (0.1-18) 0.5 (0.1-22) 0.4 (0-4.3) 0.09
Bone marrow blasts, % 2 (0-6) 2 (0-5) 3 (1-18) 0.01
CD34+ myeloid progenitors, % 0.7 (0.05-2.2) 0.7 (0.08-3.89) 2.5 (0.9-16.5) <0.001
CD34+CD38-, % 6.4 (0.1-36) 7.3 (0-26.2) 5.3 (0.24-77 0.38
CD7+ blasts, % 7.3 (0-38.5) 5.8 (0.03-82) 7.8 (0-87) 0.41
CD56+ blasts, % 0.8 (0-16.8) 0.9 (0-60.7) 1 (0-85) 0.73
HLA-DR- blasts, % 1.7 (0-30) 1.4 (0-13.3) 2.3 (0.1-77) 0.11
Total Hg, ratio 94.8 (0.99-1,172) 23.9 (0.22-465) 3.6 (0-96) <0.001
Hg Ogata, % 20.1 (0-92.4) 4.5 (0-87.6) 0.9 (0-13.9) <0.001
CD45 Ogata, ratio 6.8 (3.77-20.7) 7.4 (3.23-48) 8.2 (3.5-34.7) 0.35
SS Ogata, ratio 7.1 (4.2-15.3) 5.5 (3.3-13.82) 4.9 (2.1-9.4) <0.001

Table 3. Parameters grouped by logistic model.

MDS: myelodysplastic syndromes; MCV: mean corpuscular volume; WBC: white blood cells; ANC: absolute neutrophil count; CD34+CD38-: 
percentage of CD34+ CD38- blast cells; CD7+ blasts: median value of CD7+ blast cells; CD56+ blasts: median value of CD56+ blast cells; HLA-DR- 
blasts: median value of HLA-DR- blast cells; Total Hg: ratio Hg/CD34+ ; Hg Ogata: hematogone parameter of the Ogata score; CD45 Ogata: CD45 
lymphocytes/myeloid progenitor CD45 ratio of the Ogata score; SSC Ogata: granulocytes/lymphocytes side-scatter parameter of the Ogata score.

Haematologica | 108 September 2023 

2441

ARTICLE - AI in diagnosis of MDS by MFC V. Clichet et al.



patients to preserve the score’s performance. It would be 
interesting to further explore their behavior in our model. 
Furthermore, we could not discriminate between the dif-
ferent categories of MDS (e.g., 5q- syndrome, MDS with 
ring sideroblasts), and this could be the subject of further 
tests. It would also be interesting to know whether a posi-
tive score increases the risk of developing an overt MDS. 
Unfortunately, the cohort was not designed to answer this 
question, and more patients and a longer follow-up are 
required. 
The model has been built using the 2016 MDS WHO clas-
sification. As the recent release of the new classification 
might change the performances values, we aimed to re-
classify our patients according to the new WHO classifi-

cation. As no patient was diagnosed with MDS-EB2 with 
AML-defining cytogenetics, this update did not change the 
initial classification of the patients. 
Another potential limitation of the generalizability of the 
model is the lack of standardization between the different 
centers when assessing the Ogata score. Despite pub-
lished recommendations,26 centers either use different 
fluorochromes or different clones of antibodies. However, 
when using data with artificial intelligence, this variability 
is a real asset in helping to build the algorithm. Moreover, 
all of the three centers involved in the study passed the 
external quality controls for this panel of antibodies on 
normal BM samples through the Acute Leukemia French 
Association / French Innovative Leukemia Organization 

A

B

Figure 4. Distribution of myelody-
splastic syndrome (MDS) prediction 
on the different groups with the ela-
sticnet MDS score and Ogata score. 
Distribution of the different subty-
pes of pathologies according to the 
Ogata score and according to the 
penalized logistic score group. Dia-
gnosis of myelodysplastic syndrome 
with single lineage dysplasia (MDS-
SLD) and myelodysplastic syndrome 
with multilineage dysplasia (MDS-
MLD) was made in cytology. (A) Clas-
sification according to the Ogata 
score. (B) Classification according to 
the elasticnet score. MDS-EB2: mye-
lodysplastic syndrome with excess 
blasts between 10% and 19%; MDS-
EB1: myelodysplastic syndrome with 
excess blasts between 5% and 9%; 
pre-MDS: pre-myelodysplastic syn-
drome conditions.
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(ALFA-FILO) network. Despite using different antibodies 
and dyes, the MDS prediction score yielded excellent re-
sults in the validation cohort, suggesting our model could 
be widely used.  
Flow cytometry provides faster results than most cyto-
genetics or molecular biology techniques and is widely 
available worldwide; its standardization between labora-
tories is, therefore, of crucial importance. It relies on the 
same panel as that used in the Ogata score, which is al-
ready carried out in most laboratories. At a time when 
cost-effectiveness is becoming increasingly important, 
this AI-assisted MDS prediction score enables rapid pa-
tient diagnosis and stratification to help clinicians in their 
quest for the best patient care.    
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