
Longitudinal analysis of the evolution of cellular 
immunity to SARS-CoV-2 induced by infection and 
vaccination 

There is emerging evidence that T-cell immunity plays an 
important role in preventing severe coronavirus disease 
2019 (COVID-19) infection and disease and that cellular 
immune deficiencies render individuals at increased risk 
of disease progression and COVID-19-related death.1,2 
However, longitudinal studies that comprehensively as-
sess the quantity, quality, diversity, and stability of the T-
cell immune response induced by the currently approved 
vaccines or severe acute respiratory syndrome coronavi-
rus 2 (SARS-CoV-2) infection in healthy subjects are lack-
ing. Here we provide such an assessment of COVID-19 
T-cell responses in 27 healthy subjects with diverse HLA 
types (Table 1), five of whom were first infected and then 
vaccinated and 22 who were vaccinated. In these individ-
uals we serially assessed immunity over a 2-year period 
in order to provide a detailed characterization (through 
kinetics of emergence and expansion, magnitude, poly-
clonality, functional capacity, and longevity) of COVID-19 
T-cell responses. 
To characterize the tempo of emergence, profile (polyclon-
ality and specificity), and stability of induced cellular im-
munity over time, we investigated the frequency of 
interferon gamma (IFNγ)-producing T cells in samples 
spanning 2 years. First, we performed a single round of in 
vitro stimulation in which peripheral blood mononuclear 
cells (collected with informed consent under a Baylor Col-
lege of Medicine institutional review board-approved pro-
tocol [H-7634]) were exposed to overlapping peptide 
libraries (pepmixes) spanning four structural proteins (spike 
[S], nucleocapsid [N], membrane [M], and envelope [E]), 
and 14 non-structural proteins (NSP) (AP7a, AP7b, AP8, 
NSP1, 3, 4, 5, 6, 10, 12, 13, 14, 15, and 16) followed by culture 
in a G-Rex24 well plate in medium supplemented with the 
cytokines interleukin-4 and interleukin-7 for 10-13 days. The 
frequency and specificity of reactive cells were quantified 
by enzyme-linked immunospot analysis, while polyclonal-
ity/T-cell receptor (TCR) diversity was assessed by flow 
cytometric analysis using the IOTest Beta Mark kit. 
Five of the 27 study participants became infected with 
SARS-CoV-2 (but did not require hospitalization) and were 
subsequently vaccinated (SARS-CoV-2-infected cohort). 
At baseline these subjects exhibited minimal anti-SARS-
CoV-2 T-cell activity. However, upon infection all mounted 
potent and robust immune responses to a range of struc-
tural and non-structural antigens (Figure 1A). To identify 
which antigens were immunodominant we examined T-cell 
reactivity against these antigens individually. All five sub-

jects recognized S, as determined by spot-forming cells 
(SFC) (median: 3,892; range, 2,917-7,353 SFC/2×105 periph-
eral blood mononuclear cells; peak detection, 3-5 months 
post-infection), M (median: 1,966; range, 547-11,261), and 
N (median: 1,994; range, 1,712-6,457), while NSP4 and AP7a 
reactivity was detected in three and two subjects, re-
spectively. Activity against the other antigens was minimal 
and varied from subject to subject. The data are summar-
ized in Figure 1B and detailed for each subject and time-
point assessed in Online Supplementary Table S1.  
We next sought to understand the impact of the spike-
targeted vaccines on both spike and non-spike-specific T 
cells in infected subjects with SARS-CoV-2 memory T-cell 
responses. To do this we analyzed the frequency of reac-
tive T cells over time. Within 3-6 months of infection, all 
five subjects had been vaccinated with a primary vaccine 
series (n=2 Pfizer; n=2 Moderna; n=1 J&J), which resulted 
in a 1.4-fold increase in spike-responsive T cells (from a 
peak of 4,909 SFC/2×105 peripheral blood mononuclear 
cells post-infection to a peak of 6,706 SFC/2×105 post-
vaccination). In contrast, the vaccine had minimal impact 
on T cells reactive against non-spike SARS-CoV-2 
antigens (“bystander” T cells) (Figure 1C). Administration 
of a booster dose (n=4 Pfizer; n=1 Moderna) resulted in 
the same pattern of activity with an expansion and sub-
sequent contraction and stabilization of spike-reactive T 
cells, and minimal impact on bystander T cells. Finally, to 
assess the stability of the memory T-cell response we 
examined the frequency of reactive cells in a longitudinal 
manner. For immunity that was induced by the virus and 
not boosted thereafter (i.e., bystander cells), T-cell reac-
tivity peaked 3-5 months after the initial infection, then 
contracted and plateaued approximately 4 months later. 
Thereafter T-cell levels remained relatively stable for the 
duration of the study. In contrast, spike-specific T cells 
induced by the virus were amplified by the primary and 
booster vaccine series. Hence, proportionally, spike-di-
rected T cells induced by viral infection initially accounted 
for approximately one third of the total anti-SARS-CoV-2 
immune response, but after administration of primary and 
booster vaccines they accounted for up to 65% of the 
total anti-SARS-CoV-2 response (Figure 1D).  
We next examined T-cell immunity in the 22 infection-
naïve individuals whose first immune exposure to SARS-
CoV-2 was via vaccination (vaccine-only cohort; n=19 
Pfizer; n=3 Moderna). The magnitude, specificity, impact 
of vaccine (primary and booster), and stability of response 
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Table 1. Donors’ demographics.

over time are summarized in Figure 1E-H while Online 
Supplementary Table S1 includes detailed results for each 
subject and time-point. Prior to vaccine administration 
these healthy subjects had minimal anti-SARS-CoV-2 T-
cell activity. However, within 2 months of primary vacci-
nation all 22 patients mounted a potent and specific 
response to the spike protein (median: 7,051; range, 721-
13,334 SFC/2×105 peripheral blood mononuclear cells), 
with minimal to no evidence of response to any of the 
other structural/non-structural proteins. After the primary 
vaccine series, there was a contraction and subsequent 
stabilization of spike-reactive T cells, which increased 
with booster vaccination. In the vaccine-only cohort, age 
had no impact on magnitude or duration of response to 
vaccine (6 patients >50 years, 16 patients <50 years) (On-
line Supplementary Figure S1). 
All participants were monitored for SARS-CoV-2 infection 
for the duration of the study. Notably, one out of 22 of our 

initially infection-naïve subjects experienced an infection 
after administration of the booster dose of vaccine, re-
sulting in the amplification of memory spike-specific T 
cells as well as the induction of de novo T-cell responses 
against other immunogenic structural and non-structural 
proteins (Online Supplementary Figure S2). Hence, expo-
sure to the virus in this subject induced a broad and poly-
clonal response against multiple SARS-CoV-2 antigens 
post-vaccination. 
To investigate the magnitude and breadth of T-cell activity 
induced by the spike vaccine in infection-naïve subjects 
(n=22) and those with pre-existing immunity prior to vac-
cination (n=5), we compared spike T-cell responses be-
tween the two cohorts. As shown in Figure 2A, the peak 
magnitude of the anti-spike T-cell immune response was 
similar in the two cohorts and stabilized at similar levels 
post-infection/vaccination. Furthermore, when we com-
pared the TCR diversity by isolating spike-directed IFNγ-

Infected donors
Donor ID Age, years Gender Race HLA-A HLA-B HLA-C HLA-DR HLA-DQ Vaccine/Booster 
D#1 58 F White 02,11 18,44 05,07 04,04 03,03 Pfizer/Pfizer

D#2 34 F Asian 24,68 15,35 nd 11,15 03,05 Moderna/Moderna

D#3 28 M Hispanic 02,11 15,40 01,02 08,09 03,04 Moderna/Pfizer

D#4 34 M Asian 24,24 07,13 04,07 07,12 02,03 J &J/Pfizer

D#5 43 F African American 02,36 35,58 03,04 11,13 03,06 Pfizer/Pfizer

Vaccinated donors
Donor ID Age, years Gender Race HLA-A HLA-B HLA-C HLA-DR HLA-DQ Vaccine/Booster 
D#6 65 F White 02,03 13,35 04,04 01,01 01,01 Pfizer/Pfizer

D#7 33 F White 02,02 44,44 05,16 01,04 05,03 Pfizer/Pfizer

D#8 35 M White 26,32 38,44 05,12 01,04 03,03 Pfizer/Pfizer

D#9 66 F White 02,11 07,08 07,07 03,15 02,06 Pfizer/Pfizer

D#10 39 F Hispanic 02,33 14,15 nd 11, 11 03,03 Pfizer/Pfizer

D#11 50 M White 30,33 14,41 nd 03,13 02,06 Pfizer/Pfizer

D#12 62 F Asian 02,02 35,52 nd 15,15 06,06 Pfizer/Pfizer

D#13 48 F White 25,32 15,53 nd 11,13 03,05 Pfizer/Pfizer

D#14 54 F White 02,02 27,44 nd 11,16 03,05 Moderna/Moderna

D#15 38 M Asian 02,24 13,35 03,03 12,15 03,06 Pfizer/Pfizer

D#16 34 F Asian 02,33 13,51 04,07 04,15 03,06 Pfizer/Pfizer

D#17 46 F White 01,24 08,18 07,07 01,03 02,05 Pfizer/Pfizer

D#18 26 F Asian 32,33 15,58 03,07 03,16 02,05 Pfizer/Pfizer

D#19 37 F Asian 24,31 07,13 03,07 15,15 06,06 Pfizer/Pfizer

D#20 29 F Asian 24,33 44,54 01,14 04,13 04,06 Pfizer/Pfizer

D#21 53 F White 03,24 08,35 nd 03,04 02,03 Pfizer/Pfizer

D#22 37 F Asian 02,33 46,58 03,08 03,09 02,03 Pfizer/Pfizer

D#23 30 M Hispanic 02,68 15,35 01,04 09,15 03,06 Pfizer/Pfizer

D#24 28 M White 03,23 07,49 07,07 11,15 03,06 Pfizer/Pfizer

D#25 42 F White 02,02 07,15 01,07 09,11 03,03 Moderna/Moderna

D#26 32 M Hispanic 02,24 35,39 04,07 09,11 03,03 Moderna/Moderna

D#27 37 M Asian 11,24 08,52 02,12 03,03 02,02 Pfizer/Pfizer

F: female; M: male; nd: not done.
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Figure 1. Immunogenicity of SARS-CoV-2-derived antigens and longitudinal assessment of T-cell immunity. Reactivity against 18 
SARS-CoV-2-derived antigens pooled (A, E) and individually (B, F) tested in ex vivo-expanded SARS-CoV-2-specific T cells in 27 
healthy subjects as measured by enzyme-linked immunospot assay. Data are shown as spot-forming cells ± standard error of mean. 
The frequency of spike- and non-spike-reactive T cells is plotted longitudinally in infected+vaccinated (C) and vaccinated subjects 
(G). Data are shown as spot-forming cells ± standard error of mean; spike immunity is shown as a blue line and non-spike shown 
in gold. Proportion of anti-SARS-CoV-2 T cells reactive against spike and non-spike proteins in infected+vaccinated subjects (D) 
versus vaccinated subjects (H). SFC: spot-forming cells; PBMC: peripheral blood mononuclear cells; Pre-I: pre-infection; Mo: month; 
Post-I: post-infection; Pre-V: pre-vaccination; Post-V: post-vaccination; V1: vaccine dose 1; V2: vaccine dose 2; Pre-B: pre-booster; 
post-B: post-booster.

producing T cells (IFNγ secretion assay-detection kit, Mil-
tenyi Biotec) and examining the TCRvβ repertoire we saw 
no difference in the breadth of T-cell activity (Figure 2B). 
Considering all the data, there was no quantitative or 
qualitative difference between the spike-directed T-cell 
immune response induced by vaccine or SARS-CoV-2 
virus.  

This longitudinal T-cell study revealed that the kinetics of 
antiviral immunity induced by the anti-SARS-CoV-2 vac-
cine and the virus itself were similar. As such, the initial 
challenge induced a robust expansion in antigen-specific 
T cells, followed by contraction and then stabilization for 
≥1 year of follow-up, which is consistent with a typical T-
cell response after the effector phase.3,4 This is in contrast 
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Figure 2. Spike-specific T-cell immunity in infected versus vaccinated individuals. (A) Levels of spike-reactive T cells in infected 
and vaccinated subjects as assessed by enzyme-linked immunospot assay in serial samples. Results are presented as spot-forming 
cells ± standard error of mean. (B) T-cell receptor vβ repertoire of spike-specific T cells present in infected and vaccinated individuals. 
SFC: spot-forming cells; PBMC: peripheral blood mononuclear cells; Pre-I: pre-infection; Mo: month; Post-I: post-infection; Pre-V: 
pre-vaccination; Post-V: post-vaccination; V1: vaccine dose 1; V2: vaccine dose 2; Pre-B: pre-booster; post-B: post-booster; TCR: T-
cell receptor; Sp+: spike positive; VST: virus-specific T cells.

to neutralizing antibody levels (induced by either the vac-
cine or virus) that are associated with protective immunity 
from re-infection, which decay over time in the majority 
of individuals.5 Indeed, in a longitudinal analysis per-
formed by Chen and colleagues6 in 92 subjects after 
symptomatic COVID-19, virus-specific IgG levels decayed 
substantially in the majority of individuals over 100 days. 
Similarly, Goel and colleagues7 reported that 61 vaccine 
recipients had peak antibody levels 1 week after the sec-
ond vaccine dose and a subsequent decline thereafter 
with a half-life of ~30 days.  
Memory T-cell responses have been shown to be less af-
fected by SARS-CoV-2 viral variants than humoral immun-
ity.8-10 This is likely due to the diverse repertoire of T cells 
induced by vaccine/viral challenge, which are polyclonal 
and recognize multiple epitopes within immunogenic 
antigens. This vast repertoire of activity enables T cells to 

react to clinically important viral variants. Given the robust, 
potent, and stable T-cell activity that is induced upon ex-
posure to the virus and vaccine, as well as the growing evi-
dence of broad T-cell-mediated variant coverage, there are 
opportunities to exploit this knowledge to guide clinical 
management. For example, serial monitoring of specific T-
cell immunity (in parallel with antibody titers) might serve 
as a tool to guide the tempo of administration of booster 
vaccines, particularly in high-risk immune suppressed in-
dividuals. Furthermore, a number of groups, including ours, 
have considered harnessing virus-specific T cells as a 
COVID-19 therapeutic.11-14 Indeed, our group prepared and 
cryopreserved banks of virus-specific T cells, which were 
generated by stimulating peripheral blood mononuclear 
cells from convalescent healthy donors with pepmixes 
(overlapping peptide libraries) spanning structural and 
non-structural immunodominant antigens (based on the 
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parental strain sequence). These were administered as a 
partially HLA-matched product to hospitalized COVID-19 
patients and the outcomes are reported in Vasileiou et al.15 
We also provided emergency access to a number of inves-
tigators including Martits-Chalangari and colleagues,16 who 
used these cells to successfully treat recalcitrant COVID-
19 (delta strain) in a heart transplant recipient. These 
proof-of-concept studies provide further evidence of the 
importance of T cells in mediating protective antiviral ef-
fects and suggest the feasibility of adoptive T-cell therapy 
for the treatment of COVID-19 in high-risk patients. 
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