# Allogeneic, off-the-shelf, SARS-CoV-2-specific T cells (ALVR109) for the treatment of COVID-19 in high-risk patients

Spyridoula Vasileiou,<sup>\*</sup> LaQuisa Hill,<sup>\*</sup> Manik Kuvalekar, Aster G. Workineh, Ayumi Watanabe, Yovana Velazquez, Suhasini Lulla, Kimberly Mooney, Natalia Lapteva, Bambi J. Grilley, Helen E. Heslop, Cliona M. Rooney, Malcolm K. Brenner, Todd N. Eagar, George Carrum, Kevin A. Grimes, Ann M. Leen<sup>#</sup> and Premal Lulla<sup>#</sup>

Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA

\*SV and LH contributed equally as co-first authors. #AML and PL contributed equally as co-senior authors.

## **Correspondence:** S. Vasileiou sxvasile@texaschildrens.org

| $\mathbf{C}$     | 0                  |
|------------------|--------------------|
| <b>Received:</b> | August 16, 2022.   |
| Accepted:        | October 31, 2022.  |
| Prepublished:    | November 10, 2022. |

#### https://doi.org/10.3324/haematol.2022.281946

©2023 Ferrata Storti Foundation Published under a CC BY-NC license © 0 S

## **Supplementary Materials**

#### **Supplementary Methods**

#### Flow Cytometry

#### Surface Immunophenotyping

SARS-CoV-2-VSTs were surface-stained with monoclonal antibodies to: CD3, CD28, CD69, CD45RO, CD279 (PD-1) [Becton Dickinson (BD), Franklin Lakes, NJ], CD4, CD8, CD16, CD62L (Beckman Coulter, Brea, CA), CD56 and CD366 (TIM-3) (BioLegend, San Diego, CA). Cells were pelleted in phosphate-buffered saline (PBS) (Sigma-Aldrich), then antibodies added in saturating amounts (5µl) followed by incubation for 15mins at 4°C. Subsequently, cells were washed, resuspended in 300µl of PBS and at least 20,000 live cells acquired on a Gallios<sup>™</sup> Flow Cytometer and analyzed with Kaluza® Flow Analysis Software (Beckman Coulter).

#### Intracellular Cytokine Staining (ICS)

SARS-CoV-2-VSTs were harvested, resuspended in VST medium (2x10<sup>6</sup>/ml) and 200µl added per well of a 96-well plate. Cells were incubated overnight with 200ng of individual test or control pepmixes along with Brefeldin A (1µg/ml), monensin (1µg/ml), CD28 and CD49d (1µg/ml) (BD). Next, VSTs were washed with PBS, pelleted, surface-stained with CD8 and CD3 (5µl/antibody/tube) for 15mins at 4°C, then washed, pelleted, fixed and permeabilized with Cytofix/ Cytoperm solution (BD) for 20mins at 4°C in the dark. After washing with Perm/Wash Buffer (BD), cells were incubated with 10µl of IFNy and TNFα antibodies (BD) for 30min at 4°C in

the dark. Cells were then washed twice with Perm/Wash Buffer and at least 50,000 live cells were acquired on a Gallios<sup>™</sup> Flow Cytometer and analyzed with Kaluza<sup>®</sup> Flow Analysis Software.

#### TCR vβ immunophenotyping

TCRvβ flow cytometric analysis was performed using the IOTest® Beta Mark kit (Beckman Coulter, Brea, CA), per manufacturer's instructions. Briefly, 0.5x10<sup>6</sup> cells per tube were surfacestained with CD3 and the TCRvβ-specific monoclonal antibodies provided with the kit and incubated for 20 minutes at room temperature in the dark. Subsequently, cells were washed, resuspended in 300µl of PBS and at least 10,000 live T cells acquired on a Gallios<sup>™</sup> Flow Cytometer and analyzed with Kaluza® Flow Analysis Software (Beckman Coulter).

#### **Functional Studies**

#### Enzyme-Linked Immunospot (ELISpot)

ELISpot analysis was used to quantitate the frequency of IFN $\gamma$  and Granzyme B-secreting cells. Briefly, PBMCs and/or SARS-CoV-2-VSTs were resuspended at 5x10<sup>6</sup> or 2x10<sup>6</sup> cells/ml in VST medium and 100µl of cells was added to each ELISpot well. Antigen-specific activity was measured after direct stimulation (500ng/peptide/ml) with the individual stimulating or control pepmixes (Survivin, WT1). Staphylococcal Enterotoxin B (SEB) (1µg/ml) and PHA (1µg/ml) were used as positive controls for PBMCs and VSTs, respectively. After 16-18 hours of incubation, plates were developed as previously described, dried overnight at room temperature and then quantified using the IRIS ELISpot/FluoroSpot reader (Mabtech, Inc., Cincinnati, OH). Spotforming cells (SFC) and input cell numbers were plotted and the specificity threshold for VSTs was defined as  $\geq$ 30 SFC/2x10<sup>5</sup> input cells.

#### FluoroSpot

For the quantitation of polyfunctional cells simultaneously secreting IFNγ, Granzyme B and/or TNFα a commercial FluoroSpot assay was used (Human IFNγ/Granzyme B/TNFα FluoroSpot Plus, Mabtech, Inc., Cincinnati, OH). Briefly, SARS-CoV-2-VSTs were resuspended at 0.5 to 2x10<sup>6</sup> cells/ml in VST medium and 100µl of cells were added to each FluoroSpot well. Antigen-specific activity was measured after direct stimulation (500ng/peptide/ml) with the individual stimulating or control pepmixes. After a minimum of 18 hours of incubation, plates were developed as per manufacturer's instructions and then visualized and quantified using the IRIS ELISpot/FluoroSpot reader.

#### Multiplex

The SARS-CoV-2-VST cytokine profile was evaluated using the MILLIPLEX High Sensitivity Human Cytokine Panel (Millipore, Billerica, MA). 2x10<sup>5</sup> VSTs were stimulated with SARS-CoV-2 pepmixes (1µg/ml) overnight. Subsequently, supernatant was collected, plated in duplicate wells, incubated overnight at 4°C with antibody-immobilized beads, then washed and plated for 1 hour at room temperature with biotinylated detection antibodies. Finally, streptavidin-phycoerythrin was added for 30 minutes at room temperature. Samples were washed and analyzed on a Luminex 200 (XMAP Technology) using the xPONENT software.

#### Chromium release assay

A standard 4-6 hour chromium ( $Cr^{51}$ ) release assay was used to measure the specific cytolytic activity of SARS-CoV-2-VSTs with autologous antigen-loaded PHA blasts as targets (20ng/pepmix/1x10<sup>6</sup> target cells). Effector:Target (E:T) ratios of 80:1, 40:1, 20:1, 10:1, and 5:1 were used to analyze specific lysis. The percentage of specific isotope release was calculated [(experimental release - spontaneous release)/(maximum release - spontaneous release)] x 100.

3

In order to measure the autoreactive and alloreactive potential of SARS-CoV-2-VST lines, autologous and allogeneic PHA blasts alone were used as target cells.

#### **Clinical Trial**

Patients hospitalized with COVID-19 (PCR proven), and with at least 2 CDC-defined risk factors for progression to severe COVID-19 disease were eligible to participate in a protocol that was conducted under an FDA-cleared IND with BCM IRB approval (H-47739, NCT 04401410). Key risk factors were: age  $\geq$ 60 years, obesity (BMI $\geq$ 30), post-HSCT or solid organ transplantation, diabetes, and cancer diagnosis on active treatment (within 3 months of last therapy). Once enrolled, patients received a single infusion of a partially HLA-matched (at least 2/8 antigen match) SARS-CoV-2-specific T cell line (ALVR109) on either dose level (DL) 1 or 2 (1 x 10<sup>7</sup> or 2 x 10<sup>7</sup> cells). While hospitalized, all patients underwent daily assessment for signs or symptoms of acute graft-versus-host-disease (GVHD), cytokine release syndrome (CRS) or immune effector cell associated neurotoxicity (ICANS). Post-discharge, patients were evaluated at week 2 postinfusion, as well as months 2, 3 and 6. Development of grade  $\geq$ III GVHD, CRS or ICANS or failure of grade II toxicities to respond to standard measures were defined as dose limiting toxicities (DLTs). Accrual to the pilot (first) phase of the study began on 11/1/2020 and the last follow-up date on study is 10/15/2021. A full list of inclusion/exclusion criteria as well as a detailed schedule of clinical assessments is supplied in the submitted clinical protocol (Supplementary Materials).

As originally designed, this study was to have two parts as outlined in the clinical protocol. First, patients with COVID-19 who were at high risk of progression to mechanical ventilation were to be enrolled in a dose-finding phase in order to identify the maximum tolerated dose (MTD). Next, a randomized trial using the ALVR109 MTD was to be conducted, with approximately 40 patients randomized 1:1 to receive ALVR109 or routine treatment per institutional standards. When the

4

protocol was originally approved in May of 2020, the population of hospitalized COVID-19 was high and the expectation that enrollment goals could be quickly reached seemed reasonable. However, few hospitalized COVID-19 patients met the eligibility criteria for the study and as the population of hospitalized patients declined and COVID-19 treatments were provisionally approved, full enrollment in a reasonable time frame was no longer feasible. Eventually, we decided to halt the trial after four patients were enrolled and dosed.

#### VST in vivo persistence studies

To track the infused VSTs, high-throughput deep sequencing of TCRv $\beta$  CDR3 regions was applied (Adaptive Biotechnologies, Seattle, WA). Deep sequencing was performed on the infused lines and on peripheral blood samples collected before and after infusion. Those T cell clones identified within the product but not detected in patients' pre-infusion repertoire were coded as line-derived unique clones.

#### **Statistical Analysis**

Descriptive statistics were calculated to summarize preclinical data and clinical characteristics. Dose escalation was performed using the 3+3 design (see protocol in Supplementary Materials) to determine the maximum tolerated dose (MTD) of VSTs, with MTD defined as the highest DL at which the probability of a DLT was ≤33%. In this paper, partial trial results are presented to demonstrate feasibility and lack of toxicity.

## Supplementary Tables

## Supplementary Table 1. SARS-CoV-2 antigen hierarchy of immunodominance

## PBMCs

## VSTs

| Antigens | # responding<br>donors | SFC/5x10 <sup>5</sup> PBMCs<br>(mean±SEM) |
|----------|------------------------|-------------------------------------------|
| S        | 16                     | 197±40                                    |
| E        | 1                      | 6±2                                       |
| М        | 14                     | 90±19                                     |
| N        | 15                     | 109±25                                    |
| Nsp1     | 1                      | 4±1                                       |
| Nsp3     | 3                      | 8±2                                       |
| Nsp4     | 3                      | 8±2                                       |
| Nsp5     | 1                      | 4±1                                       |
| Nsp6     | 1                      | 5±1                                       |
| AP7A     | 5                      | 8±2                                       |
| AP7B     | 0                      | 2±1                                       |
| AP8      | 2                      | 6±1                                       |
| Nsp10    | 1                      | 4±1                                       |
| Nsp12    | 1                      | 4±1                                       |
| Nsp13    | 1                      | 6±2                                       |
| Nsp14    | 0                      | 2±1                                       |
| Nsp15    | 0                      | 2±1                                       |
| Nsp16    | 1                      | 6±2                                       |

| Antigens | # responding<br>donors | SFC/2x10e5 VST<br>(mean±SEM)<br>4700 ± 880 |  |  |  |  |
|----------|------------------------|--------------------------------------------|--|--|--|--|
| S        | 16                     |                                            |  |  |  |  |
| N        | 16                     | 2568±547                                   |  |  |  |  |
| М        | 16                     | 2300±454                                   |  |  |  |  |
| AP7a     | 10                     | 280±133                                    |  |  |  |  |
| Nsp4     | 9                      | 450±282                                    |  |  |  |  |
| AP8      | 8                      | 113±43                                     |  |  |  |  |
| E        | 7                      | 53±15                                      |  |  |  |  |
| Nsp6     | 7                      | 43±14                                      |  |  |  |  |
| Nsp16    | 5                      | 58±42                                      |  |  |  |  |
| Nsp3     | 5                      | 54±32                                      |  |  |  |  |
| Nsp5     | 5                      | 27±8                                       |  |  |  |  |
| Nsp13    | 4                      | 31±15                                      |  |  |  |  |
| Nsp12    | 4                      | 23±7                                       |  |  |  |  |
| AP7b     | 3                      | 32±19                                      |  |  |  |  |
| Nsp1     | 3                      | 21±8                                       |  |  |  |  |
| Nsp14    | 2                      | 19±8                                       |  |  |  |  |
| Nsp10    | 2                      | 14±6                                       |  |  |  |  |
| Nsp15    | 2                      | 14±6                                       |  |  |  |  |

| VST No.     | HLA Type |        |        |        | Specificity (SFC/2x10 <sup>5</sup> ) |      |      |      | Phenotype (% expression) |       |       |       |               | Alloreactivity<br>(20:1) |       |                     |
|-------------|----------|--------|--------|--------|--------------------------------------|------|------|------|--------------------------|-------|-------|-------|---------------|--------------------------|-------|---------------------|
| VOTINO.     | Α        | В      | DRB1   | DQB1   | S                                    | м    | N    | AP7a | Nsp4                     | CD3   | CD4   | CD8   | CD3-<br>CD56+ | Tcm                      | Tem   | % specific<br>lysis |
| 9587.41.BAT | 02, 68   | 35, 39 | 04, 08 | 03, 04 | 416                                  | 252  | 589  | 2    | 31                       | 99.85 | 73.60 | 23.21 | 0.11          | 36.47                    | 59.23 | -1.08               |
| 9489.42.BAT | 02, 03   | 15, 38 | 07, 15 | 02, 06 | 792                                  | 18   | 221  | 0    | 6                        | 99.64 | 91.18 | 7.33  | 0.06          | 49.82                    | 45.88 | -0.9                |
| 9526.41.BAT | 02, 25   | 18, 40 | 11, 15 | 03, 06 | 1447                                 | 941  | 376  | 8    | 59                       | 99.71 | 90.40 | 5.55  | 0.05          | 59.15                    | 35.61 | -0.9                |
| 9778.41.BAT | 11, 29   | 35, 44 | 07, 14 | 02, 05 | 3085                                 | 582  | 2613 | 24   | 1                        | 99.52 | 83.23 | 13.17 | 0.09          | 63.20                    | 31.96 | 1.1                 |
| 9526.42.BAT | 02, 25   | 18, 40 | 11, 15 | 03, 06 | 568                                  | 198  | 295  | 0    | 4                        | 99.80 | 97.13 | 1.44  | 0.06          | 49.20                    | 48.99 | -1.85               |
| 9479.41.BAT | 02, 68   | 44, 51 | 04, 07 | 02, 03 | 447                                  | 388  | 225  | 0    | 0                        | 99.56 | 96.38 | 2.06  | 0.09          | 48.52                    | 49.10 | 1.06                |
| 9479.42.BAT | 02, 68   | 44, 51 | 04, 07 | 02, 03 | 535                                  | 467  | 315  | 0    | 0                        | 99.60 | 94.68 | 3.10  | 0.09          | 34.09                    | 62.44 | -1.84               |
| 9479.43.BAT | 02, 68   | 44, 51 | 04, 07 | 02, 03 | 377                                  | 487  | 1341 | 20   | 1                        | 99.13 | 95.58 | 2.01  | 0.42          | 66.05                    | 30.79 | -0.28               |
| 9489.41.BAT | 02, 03   | 15, 38 | 07, 15 | 02, 06 | 640                                  | 20   | 151  | 0    | 10                       | 99.61 | 78.30 | 14.95 | 0.46          | 34.81                    | 51.54 | -0.19               |
| 9480.42.BAT | 24, 24   | 07, 15 | 12, 14 | 02, 03 | 1195                                 | 117  | 363  | 426  | 0                        | 99.25 | 95.59 | 2.11  | 0.02          | 67.41                    | 29.72 | 0.85                |
| 9587.42.BAT | 02, 68   | 35, 39 | 04, 08 | 03, 04 | 1967                                 | 988  | 1626 | 256  | 257                      | 99.61 | 90.10 | 7.19  | 0.12          | 42.68                    | 54.31 | -1.95               |
| 9775.41.BAT | 02, 03   | 15, 44 | 04, 12 | 03, 03 | 1043                                 | 3    | 240  | 0    | 0                        | 98.97 | 85.99 | 11.42 | 0.12          | 62.42                    | 35.05 | 1.37                |
| 9778.42.BAT | 11, 29   | 35, 44 | 07, 14 | 02, 05 | 1142                                 | 578  | 1193 | 18   | 0                        | 99.73 | 84.84 | 8.68  | 0.08          | 70.53                    | 22.40 | 0.2                 |
| 9837.41.BAT | 24, 24   | 40, 45 | 10, 16 | 03, 05 | 2135                                 | 1368 | 1000 | 35   | 0                        | 94.53 | 85.97 | 4.80  | 0.58          | 20.04                    | 69.72 | 0.13                |
| 9837.42.BAT | 24, 24   | 40, 45 | 10, 16 | 03, 05 | 3672                                 | 1145 | 1244 | 13   | 3                        | 95.24 | 86.26 | 2.62  | 0.38          | 41.85                    | 45.89 | -5.84               |

## Supplementary Table 2. VST line characteristics

|       |               | Pt HLA         |               |                |                | Infused VST line HLA |               |               |              |  |
|-------|---------------|----------------|---------------|----------------|----------------|----------------------|---------------|---------------|--------------|--|
| Pt ID | A             | В              | DR            | DQ             | Α              | В                    | DR            | DQ            | VST No.      |  |
| Pt1   | <u>02, 02</u> | <u>39</u> , 40 | <u>04, 08</u> | <u>04</u> , 06 | <u>02</u> , 68 | 35, <u>39</u>        | <u>04, 08</u> | 03, <u>04</u> | C9587.41.BAT |  |
| Pt2   | 01, <u>02</u> | 08, <u>38</u>  | 03, 13        | <u>02, 06</u>  | <u>02</u> , 03 | 15, <u>38</u>        | 07, 15        | <u>02, 06</u> | C9489.42.BAT |  |
| Pt3   | 11, 32        | 52, 57         | <u>15, 15</u> | <u>06, 06</u>  | 02, 25         | 18, 40               | 11, <u>15</u> | 03, <u>06</u> | C9526.41.BAT |  |
| Pt4   | 03, <u>11</u> | 27, <u>35</u>  | 04, 15        | 06, 03         | <u>11</u> , 29 | <u>35</u> , 44       | 07, 14        | 02, 05        | C9778.41.BAT |  |

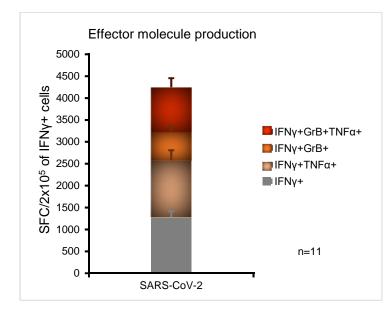
Supplementary Table 3. HLA matching between patients and infused lines

| DL  | Incident                | # of patients |                                                     |   | Treatment, if any                                                            | Status                                                                                                 |
|-----|-------------------------|---------------|-----------------------------------------------------|---|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| DL1 | Skin rash               | 1             | D+13                                                | 2 | Resumption of<br>dexamethasone at<br>doses useful in<br>COVID19 patients (6) | Resolved 2 days later                                                                                  |
| DL2 | CRS (Fever and hypoxia) | 1             | D+3 (Grade II)<br>progressed on<br>D+13 (Grade III) | 3 | Supportive measures<br>and 2 week course of<br>corticosteroids               | Stabilized over the first 2 weeks then was gradually weaned off $O_2$ supplementation within 2 months. |

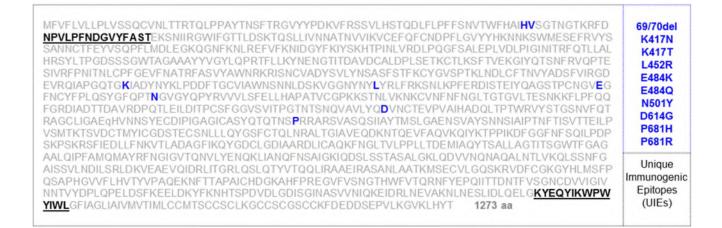
AE: adverse event, DL: dose level, Max: Maximum grade seen in any of the patients at that dose level, CRS: Cytokine release syndrome,  $O_2$ : oxygen

| Ou  | •                                                                                                                |                                                        | ine-derived ICK C                                                                                                                               |                 |                    | d in treated patients |           |     |        |     |   |
|-----|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|-----------------------|-----------|-----|--------|-----|---|
| Pt# | CDR3 nucleotide<br>sequence                                                                                      | TCR<br>Bioidentity                                     | Aminoacids                                                                                                                                      | ORF<br>coverage | HLA<br>restriction |                       | Detection |     | on     |     |   |
| 1   | GTATTTCTGTGCCA                                                                                                   | FF+TCRBV03<br>-01/03-                                  | FNDGVYFASTEKSNIIRG<br>W,LFLPFFSNVTWFHAIH<br>VSG,RFDNPVLPFNDGVY<br>FASTE,STEKSNIIRGWIF<br>GTTLDS,VSGTNGTKRFD<br>NPVLPFND,VTWFHAIHV<br>SGTNGTKRFD | Spike           | A*02               | D1                    |           | Wk2 | N      | 102 |   |
| 2   | CTTGGTGACTCTGC<br>TGTGTATTTCTGTG<br>CCAGCAGCCAAGA<br>GACCCAGTACTTC<br>GGGCCA                                     | CASSQETQY<br>F+TCRBV03-<br>01/03-<br>02+TCRBJ02<br>-05 | AFLLFLVLI,FLAFLLFLV,<br>FYLCFLAFL,FYLCFLAFL<br>L,IDFYLCFLAF,IELSLIDF<br>YL,LIDFYLCFL,LLFLVLI<br>ML,MIELSLIDFY,SLIDFY<br>LCFL,YLCFLAFLL          | ORF7a/7b        | A*02               | D1                    | D1 Wk2    |     | N      | 102 |   |
|     | AGGATCCAGCAGG<br>TAGTGCGAGGAGA<br>TTCGGCAGCTTATT<br>TCTGTGCCAGCTC<br>ACCAGGGGGGGG<br>CACTGAAGCTTTCT<br>TTGGACAA  | CASSPGGG<br>TEAFF+TCR<br>BV18-<br>01+TCRBJ01<br>-01    | DTDFVNEFYAY,NRDVDT<br>DFVNEFY                                                                                                                   |                 |                    | D1 W                  |           | Wk2 | 2 Mo2  |     |   |
| 3   | GTATTTCTGTGCCA                                                                                                   | FF+TCRBV03<br>-01/03-                                  | FNDGVYFASTEKSNIIRG<br>W,LFLPFFSNVTWFHAIH<br>VSG,RFDNPVLPFNDGVY<br>FASTE,STEKSNIIRGWIF<br>GTTLDS,VSGTNGTKRFD<br>NPVLPFND,VTWFHAIHV<br>SGTNGTKRFD | Spike           | DR*15,<br>DQ*06    | 1                     | D1        |     | D1 Wk2 |     | 2 |
| 3   | AAGATCCAGCCCT<br>CAGAACCCAGGGA<br>CTCAGCTGTGTACT<br>TCTGTGCCAGCAG<br>TTTCGGGGGGGAAC<br>TATGGCTACACCTT<br>CGGTTCG |                                                        | GAGAALQIPFAMQMAYR<br>FN,GLTVLPPLLTDEMIA<br>QYTS,LICAQKFNGLTVL<br>PPLLTD,LTDEMIAQYTS<br>ALLAGTIT,TITSGWTFGA<br>GAALQIPFA,YTSALLAG<br>TITSGWTFGAG | Spike           | DR*15,<br>DQ*06    | ]                     | D1        |     | Wk2    |     |   |
| 4   | GTGACATCGGCCC<br>AAAAGAACCCGAC<br>AGCTTTCTATCTCT<br>GTGCCAGTGGGAC<br>AGGGGATAGCAAT<br>CAGCCCCAGCATT<br>TTGGTGAT  | CASGTGDS<br>NQPQHF+TC<br>RBV19-<br>01+TCRBJ01<br>-05   | HTTDPSFLGRY                                                                                                                                     | ORF1ab          | not known          | D1                    | Wk2       | Мо3 | Mo4    | Mo6 |   |

## Supplementary Table 5. VST line-derived TCR clonotypes detected in treated patients


Detected Not detected

## Supplementary Figure Legends


**Supplementary Figure 1:** Polyfunctionality of ex vivo expanded SARS-CoV-2 VSTs. Quantitative assessment of single (IFN $\gamma$ +), dual (IFN $\gamma$ +TNF $\alpha$ +/IFN $\gamma$ +GrB+) and triple (IFN $\gamma$ +TNF $\alpha$ +GrB+) effector molecule-producing cells as measured by FluoroSpot. Data is reported as SFC ± SEM.

**Supplementary Figure 2:** Amino acid sequence of the parental Spike protein. The positions of selected mutations are highlighted in blue. Unique Immunogenic Epitopes (UIEs) representative of one donor (#7) are shown in black.

## Supplementary Figure 1



## **Supplementary Figure 2**

