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Supplementary Information  

Title: Sirtuin 3 inhibition targets fatty acid oxidation in acute myeloid leukemia stem cells 
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Supplemental Methods: 

Cell Culture 

Molm13, MV4;11 cells were maintained in RPMI-1640 media with 10% fetal bovine serum (FBS). 

TEX1 and OCI-AML-2 (obtained from Dr. Aaron Schimmer’s Lab) cells were maintained in IMDM 

with 20% and 10% of FBS, respectively. IL-3 and SCF were added to TEX media. OCI-AML-3 

were maintained in αMEM with 10% FBS. 293 T-REx cells were maintained in DMEM with 10% 

FBS. Cell lines were cultured with 100 units/mL penicillin and 100 μg/mL of streptomycin. Patient 

AML cells and healthy mobilized peripheral blood cells (MPBC) were obtained from the Princess 

Margaret Leukemia Tissue Bank and experiments were performed in accordance with UHN’s 

Research Ethics Board, under protocol 20-5031. Human umbilical cord blood (CB) samples 

were obtained from Dr. John Dick’s lab or purchased from stem cell technologies. CD34 

enriched and whole bone marrow samples were purchased from Lonza. 

Colony Forming Assays 

Colony forming assays were performing using enriched (StemCell; 04435) or classic (StemCell; 

04434) MethoCult media for primary AML or cell lines, respectively. Cells were treated for 

24 hours with YC8-02 or transfected with siRNA using the methods described below. Colonies 

were counted 10-17 days after plating. Secondary replating of primary AML CFUs occurred 

7-10 days after first plating. MethoCult containing colonies were washed and diluted with cell 

culture media. One fifth of each condition was replated into MethoCult media. Secondary 

CFUs were counted after 10-17 days. 

Flow Cytometry 

Viability was monitored using DAPI and AnnexinV-FITC (Biolegend; 640945) staining. For MPBC, 

cells were stained with DAPI, CD45-BB515 (BD564585), and CD34-PeCy7 (BD560710). Cells 

collected from engraftment studies were stained with CD45-BB515, CD34-BV421 (BD562577), 

CD38-PE-CF594 (BD562325), CD19-PE (BD555413), CD3-PECy7 (BD557749) and Live/Dead 

Far Red (Thermo Fisher; L34974). Addition of CD33-BV711 (BD563171) was used for normal 

bone marrow. All cells were sorted on Sony’s SH800, MA900, or BD FACSAria Fusion and 

analysis was performed using the BD LSRFortessa and FlowJo. Cell number was determined 



using CountBright Absolute Counting Beads (Thermo Fisher; C36950) or the integrated BD High-

Throughput Sampler on the BD LSRFortessa. 

Animal Studies 

NSG-SGM3 mice 8-12 weeks of age were conditioned with busulfan (Sigma; B2635) at 25mg/kg 

IP (10% DMSO, 90% PBS), single injection 24 hours prior to engraftment. Primary cells (AML or 

healthy donor bone marrow) were plated as described previously and treated with YC8-02 (10uM) 

or vehicle 24 hours prior to engraftment. Alternatively, primary cells were transfected with siRNA 

targeting SIRT3 or a non-targeting scrambled control 24 hours prior to engraftment. Just 

before engraftment, cells were treated with OKT3 (BioXCell; BE0001-2) at 1ug/1 million cells in 

PBS, to deplete CD3+ immune cells and reduce the occurrence of graft-versus-host disease. 

Filtered, treated cells were injected via tail vein at a concentration of 1 million cells/

mouse. After engraftment was established (8-10 weeks), mice were sacrificed and both femurs 

were dissected out. The condyle was removed, and cells harvested via centrifugation. Cells 

were then treated with red blood cell lysis buffer (Sigma; 11814389001) to remove red 

blood cell fraction and evaluated by flow cytometry. CountBright absolute counting beads 

(Thermo Fisher; C36950) or an integrated High-Throughput Sampler was used to determine cell 

numbers. 

Proximity-dependent biotin labeling (BioID) 

SIRT3 complementary DNA was fused in-frame with a C-terminus BirA R118G – FLAG 

(BirA*FLAG) into a tetracycline-inducible pcDNA5 FLP recombinase target/tetracycline operator 

(FRT/TO) expression vector2. The Flp-In T-Rex 293 cells were then stably transfected with the 

SIRT3-BirA*FLAG or control (BirA*FLAG only). Cells were incubated with 1ug/mL tetracycline 

(Sigma-Aldrich) and 50uM biotin (BioShop) in complete DMEM supplemented with 10% FBS 

and 1% antibiotics for 24hr at 37°C with 5% CO2. Cells were scraped, washed once in PBS and 

lysed in RIPA buffer. The lysates were sonicated twice for 10 sec at 35% amplitude 

(Sonic Dismembrator 500; Fischer Scientific) and centrifuged at 16,000rpm for 30min 

at 4°C. Supernatants were then passed through Micro Bio-Spin Chromatography column 

(Bio-Rad) and incubated with high-performance streptavidin packed beads (GE Healthcare) for 

3 hours at 4°C on an end-over-end rotator. Beads were collected and washed 6 times with 

50mM ammonium bicarbonate and then treated with TPCK-trypsin (Promega) for 16 hours at 

37°C on an end-over- end rotator.



The beads were further subjected to TPCK-trypsin (1uL) and incubated for 2 hours at 37°C on 

an end-over-end rotator. Supernatants were lyophilized for downstream MS analysis. 

Lyophilized samples reconstituted in 0.1% HCOOH were loaded on a pre-column (C18 Acclaim 

PepMapTM 100, 75uM x 2cm, 3um, 100Å) prior to chromatographic separation through an 

analytical column (C18 Acclaim PepMapTM RSLC, 75um x 50cm, 3um, 100Å) by HPLC over a 

reversed-phase gradient (120-minute gradient, 5-30% CH3CN in 0.1% HCOOH) at 225nL/min on 

an EASY-nLC1200 pump in-line with a Q-Exactive HF mass spectrometer operated in positive 

ESI mode. An MS1 ion scan was performed performed at 60,000 fwhm followed by MS/MS scans 

(HCD, 15,000 fwhm) of the 20 most intense parent ions (minimum ion count of 1000 for activation). 

Dynamic exclusion (10 ppm) was set at 5 seconds.  

To identify peptides and proteins, the raw files (.raw) containing information of the spectra of 

peptides was converted to .mzML format by Proteowizard (v3.0.19311). Then the spectras was 

searched by X!Tandem (v2013.06.15.1) and Comet (v2014.02.rev.2) against human RefSeqV104 

database (containing 36,113 entries) to match and assign peptide sequence. Search parameters 

specified a parent ion mass tolerance of 15ppm and an MS/MS fragment ion tolerance of 0.4Da, 

with up to two missed cleavages allowed for trypsin. No fixed modifications was set. Deamidation 

(NQ), oxidation (M), acetylation (protein N-term), and diglycine (K) was set as variable 

modifications. Data was processed through the trans-proteomic pipeline (TPP v4.7).  

Proteins were identified with an iProphet cut-off of 0.9 (corresponding to ≤1% FDR) and at least 

two unique peptides. High-confidence interactors were defined as those with a Bayesian false 

discovery rate (BFDR) of ≤0.01 following Significance Analysis of Interactome (SAINT).  SIRT3 

interactors were plotted with Cytoscape (v3.9.0).  

SIRT3 Network analysis 

Unique differentially expressed genes (DEGs) from LSCs or blasts post YC8-02 treatment were 

identified from RNA sequencing analysis (DEseq2) with adjusted p-values<0.05 (Benjamin-

Hochberg adjustment). As BioID identified SIRT3 interactors are not cell type specific, DEGs 

identified through YC8-02 treatment in LSCs and blasts were used to refine the SIRT3 

interactome based on cellular context. DEGs were cross-referenced to BioID identified SIRT3 

interactors to create a SIRT3 LSC network or SIRT3 blast network (Supplemental table 3). 

Specifically, 45 BioID identified SIRT3 interactors which were differentially expressed in YC8-

02-treated LSCs comprised an LSC-specific SIRT3 interaction network (SIRT3 LSC network),



while 9 BioID identified SIRT3 interactors which were differentially expressed in YC8-02-treated 

comprised a Blast-specific SIRT3 interaction network (SIRT3 Blast network). Enrichment for 

respective SIRT3 networks within LSCs and blast populations was scored using GSVA3 on the 

following datasets: quantile-normalized RNA-sequencing data from sorted AML fractions4; TPM-

normalized RNA-seq data collected from sorted AML fractions5; paired AML samples collected 

at diagnosis and relapse6-9; and diagnostic AML samples from three patient cohorts10-12. 

Enrichment of SIRT3 LSC and SIRT3 blast network genes was also compared against SIRT3 

gene expression in LSCs and non-LSCs represented through quantile normalized values for 

microarray data, log(TPM+1) normalized values for RNA-seq data from diagnosis and relapse 

pairs, and vst normalized values for RNA-seq data from AML fractions and AML patient cohorts. 

For correlation analysis with other biological processes, GSVA was performed on 812 diagnostic 

AML samples using GO Biological Process gene sets from the MSigDB database and compared 

against SIRT3 Network enrichment scores. 

Transfection of siRNA: 

Cell lines and primary specimens were transfected with small interfering RNA (siRNA) constructs 

targeting SIRT3, or non-targeting scrambled siRNA (Horizon Discovery). Invitrogen Neon 

electroporator as previously described13,14, using buffer T for primary cells and buffer R for cell 

lines at 1600V, 20ms, 3 pulses. 

Metabolomics 

For steady state metabolomics, primary AML and cell lines were collected post YC8-02 treatment, 

in triplicate, containing 1-2.5 x105 cells in 1.7mL microtubes. Each replicate was washed three 

times on ice with PBS. All buffer was aspirated from the cell pellet and flash frozen in liquid 

nitrogen vapors, prior to storage at -80°C.  Metabolomic analyses were performed by mass 

spectrometry. 

Thawed samples were resuspended in chilled extraction solution (methanol:acetonitrile:water 

(5:3:2 v/v)) at 2×106cells per mL of extraction solution. After vortexing for 30 min at 4°C, samples 

were centrifuged at 12,000 g for 10 min at 4°C and supernatants isolated for metabolomics 

analyses. . 10 µL of sample extract was run through a Kinetex C18 1.7 µm, 100 × 2.1 mm 

(Phenomenex) reversed phase column (Positive ion mode—phase A: water, 0.1% formic acid; B: 

acetonitrile, 0.1% formic acid; Negative ion mode—phase A: 1 mM NH4Ac 95:5 water: 



acetonitrile; phase B: 1 mM NH4Ac 95:5 acetonitrile: water) via an ultra-high performance 

chromatographic system (UHPLC—Vanquish, Thermo Fisher). UHPLC was coupled in line with 

a high-resolution quadrupole Orbitrap instrument run in both polarity modes (QExactive, Thermo 

Fisher) at 70,000 resolution (at 200 m/z) and metabolites were separated through a 5 min gradient 

with the phases described above and the mass spectrometer operated either in positive or 

negative ion mode in separate runs. To quantify metabolite peaks, the raw files (.raw) containing 

information of the spectra of metabolites were converted to .mzXML using RawConverter. 

Metabolites were then assigned names using KEGG database by Maven software. The ratio of 

the peak areas for stable isotope labeled standards and unlabeled controls were used to 

determine the metabolite quantity in the extract.  

Lipidomics 

For steady state lipidomics, primary AML and cell lines were collected post YC8-02 treatment, in 

4 replicates, containing 1-2.5 x105 cells in 1.7mL microtubes. Each replicate was washed three 

times on ice with PBS. All buffer was aspirated from the cell pellet and flash frozen in liquid 

nitrogen vapors, prior to storage at -80°C.  Lipidomics analyses were performed by mass 

spectrometry. 

Thawed samples were resuspended in chilled extraction solution (Methanol 50%) at 2×106cells 

per mL of extraction solution. Samples were incubated in the freezer at -20°C for 15 minutes prior 

to centrifugation and isolation of the supernatant for mass spectrometry. 10 µL of sample extract 

was run through a Kinetex C18 1.7 µm, 100 × 2.1 mm (Phenomenex) reversed phase column 

(Negative ion mode—phase A: 1 mM NH4Ac 95:5 water: acetonitrile; phase B: 1 mM NH4Ac 95:5 

acetonitrile: water) via an ultra-high performance chromatographic system (UHPLC—Vanquish, 

Thermo Fisher). UHPLC was coupled in line with a high-resolution quadrupole Orbitrap instrument 

run in negative polarity mode (QExactive, Thermo Fisher) at 70,000 resolution (at 200 m/z) and 

metabolites were separated through a 5 min gradient with the phases described above and the 

mass spectrometer operated in negative ion mode. To quantify metabolite peaks, the raw files 

(.raw) containing information of the spectra of metabolites were converted to. mzXML using 

RawConverter. Metabolites were then assigned names using KEGG database by Maven 

software. The ratio of the peak areas for stable isotope labeled standards and unlabeled controls 

were used to determine the metabolite quantity in the extract.  



Metabolic Flux 

For palmitic flux metabolomics, primary AML and cell lines were treated with YC8-02 10µM for 4 

hours in 4 replicates, containing 1-2.5 x105 cells in 1.7mL microtubes. Cells were introduced to 

either 16C13 Palmitate (Sigma; 605573) or 1C13 Palmitate (Sigma; 605646) at 100 µM final 

concentration. A subset was left unlabeled with heavy palmitate as biological control. Cells were 

collected after an additional 4 or 16 hours of incubation with palmitate. Each replicate was washed 

three times on ice with PBS. All buffer was aspirated from the cell pellet and flash frozen in liquid 

nitrogen vapors, prior to storage at -80°C.Cells were collected, and palmitate metabolism was 

assessed by mass spectrometry. 

Thawed samples were resuspended in chilled extraction solution (Methanol 50%, acetonitrile 

30%, and water 20% v/v) at 2×106 cells per mL of extraction solution. After vortexing for 30 min 

at 4°C, samples were centrifuged at 12,000 g for 10 min at 4°C and supernatants isolated for 

metabolomics analyses. An ultra-high-pressure liquid chromatography system was used for 

chromatographic separation using an analytical column, Kinetex 1.7μm C18 100Å, UHPLC col-

umn 150×2.1mm (Phenomenex; 00F-4475-AN) with a guard column, SecurityGuard™ ULTRA 

cartridge-UHPLC C18 for 2.1mm ID columns (Phenomenex; AJ08782). 10uL of sample extract 

was injected onto the column. (Positive ion mode—phase A: water, 0.1% formic acid; B: 

acetonitrile, 0.1% formic acid; Negative ion mode—phase A: 1 mM NH4Ac 95:5 water: 

acetonitrile; phase B: 1 mM NH4Ac 95:5 acetonitrile: water) via an ultra-high performance 

chromatographic system (UHPLC—Vanquish, Thermo Fisher). UHPLC was coupled in line with 

a high-resolution quadrupole Orbitrap instrument run in both polarity modes (QExactive, Thermo 

Fisher) at 70,000 resolution (at 200 m/z) and metabolites were separated through a 5 min gradient 

with the phases described above and the mass spectrometer operated either in positive or 

negative ion mode in separate runs. To quantify metabolite peaks, the raw files (.raw) containing 

information of the spectra of metabolites were converted to .mzXML using RawConverter. 

Metabolites were then assigned names using KEGG database by Maven software. The ratio of 

the peak areas for stable isotope labeled standards and unlabeled controls were used to 

determine the metabolite quantity in the extract.  

Seahorse 

Metabolic analysis was conducted using Agilent’s Seahorse XFe96 analyzer and the Mito Stress 

Test. Using Agilent’s FluxPak (102416-100) the microplate was treated with Cell-Tak (Corning; 



324240) prior to seeding 5 wells per condition with 1-2 × 105 of our cells of interest in Agilent’s 

DMEM supplemented with glucose, pyruvate, and glutamine (103680-100). Sensor cartridges 

were incubated overnight using Calibrant solution at 37°C and prepared with Oligomycin [6.3μM] 

(Sigma-Aldrich; 871744), FCCP [2μM] (Sigma-Aldrich; C2920), Rotenone (Sigma-Aldrich; 

R8875)/Antimycin (Sigma-Aldrich; A8774) [5μM/5μM].  

RNA Sequencing Analysis 

Short read quality control was performed using FastQC v0.11.5  

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The sequencing adapters and low-

quality end reads were trimmed using Trim Galore v0.6.6 

(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/). STAR v.2.7.9a15 was used to 

align the raw reads to GENCODE human reference genome v3816. After removing low quality 

alignments, (mapq < 15), featureCounts v2.0.117 was used for gene expression quantification. 

After removing genes with less than 10 counts across all samples, DESeq2 v1.32.018  was used 

to identify differentially expressed genes between treatment and control groups, considering the 

primary sample batch in the model. Gene set enrichment analysis (GSEA)19 was performed using 

fgsea v1.18.020 and Bader lab gene sets, updated August 2021 

(http://baderlab.org/GeneSets)21. Limma v3.48.322 was used for gene expression batch 

correction. All p-values were adjusted using the Benjamin-Hochberg method23. 

https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/


Supplemental Tables: 

Supplemental Table 1: Patient Characteristics

PB is peripheral blood; N/A is not available. 

Code Sample 
Source Status Age at 

Diagnosis Sex Diagnosis FAB Classification Cytogenetics Mutated Genes

AML1 PB Relapse 79 Male AML 46,XY,t(6;9) (p21;q34) FLT3 ITD, FLT3 TKD, IDH2
AML2 PB Relapse 69 Female AML 46,XX,add(14)(q22)[4] FLT3, IDH1, NPM1

AML3 PB Refractory 47 Male AML

46,XY,del(7)(q21)[8]/46,sl,
del(5)(q31q35),add(12)(p1
3)[7]/46,sl,add(12)(p13),de
l(17)(q21)[3]/46,XY,del(9)(q
22q32)[2] IDH1 Arg132; CKIT D816V

AML4 PB Relapse 49 Female AML 46,XX[21] FLT3 ITD+

AML5 PB Diagnosis 49 Female AML Normal Karyotype (46,XX)
FLT3-IDT+, WT for CEBPA, 
NPM1, IDH1, IDH2, and JAK2

AML6 PB Diagnosis 87 Male AML 46,XY[20] WT for NPM1 and FLT3

AML7 PB Diagnosis 77 Female AML M5a
46,XX,del(5)(q13q31)[6]/47
,idem,+11[14]

DNMT3A Arg326Cys, FLT3-
ITD, IDH2 Arg140Gln, KRAS 
Thr58Ile, TP53 Cys275Arg, 
NPM1 Mutant 

AML8 PB Diagnosis 82 Female AML, NOS M4 46,XX[20] N/A
AML9 PB Diagnosis 70 Female AML, NOS M1 46,XX[20] N/A

AML10 PB Diagnosis 94 Female

AML with 
t(8;21)(q22;
q22) M2 46,XX,t(8;21)(q22;q22)[8] N/A

AML11 PB Diagnosis 77 Male AML, NOS M5a 46,XY[20]

ASXL1 Gly658Ter, NRAS 
Gly13Arg, RUNX1 Arg201Gln, 
SRSF2_MFSD Arg94dup, 
STAG2 Thr918SerfsTer11, 
TET2 Gln232Ter, TET2 
Met1701Ile

AML12 PB Diagnosis 74 Female AML M4
46,XX,t(3;21)(q26.2;q22)[2
0] N/A

AML13 PB Diagnosis 74 Male

AML with 
myelodyspla
sia related 
changes

45,XY,-7[6]/45,XY,-
7,der(15)t(7;15)(p12;p11.2
)[10]/46,XY[5] N/A

AML14 PB Diagnosis 52 Male AML

45,XY,-
7[3]/46,sl,+r(7)(p11q21)[11
] 
/46,sdl1,der(5)t(1;5)(q31;p
14)[5]/46,XY[1]

ASXL1, DNMT3a, NOTCH, 
NRAS

AML15 PB Diagnosis 51 Male AML

46,XY,add(1)(p11),del(5)(q
15q33),del(7)(q22q36),der
(11)t(1;11)(p31;p12-
14)[20] , Loss of 5q31 and 
7q31 FLT3 ITD, BCOR, NOTCH1

AML16 PB Diagnosis 85 Male
AML with 
inv(16) M4Eo

45,X,-
Y,inv(16)(p13.1q22)[10] N/A

AML17 PB Diagnosis 74 Female AML 46,XX[20]
AML18 PB Diagnosis 74 Female AML 46,XX[20]

AML19 PB Diagnosis 77 Female

AML with 
NPM1 
mutation 46,XX[20] NPM1

AML20 PB Relapse
49~53,XY,+3,+8,+10,+12,+
14,+15,+19[cp8]/46,XY[5] N/A

AML21 PB Diagnosis 86 Female AML
46,XX,del(5)(q13q33),+12,
der(12;17)(q10;q10)[3] N/A

AML22 PB Diagnosis 83 Female t-AML
46,XX,t(5;15)(p15;q15)[16]/
46,XX[4] N/A

AML23 PB Diagnosis 84 Female

AML with 
myelodyspla
sia related 
changes

46,XX,del(5)(q13q33),add(
7)(p11.2),+8,t(11;12)(q11;p
12),
-16,-
17,?add(17)(q25),add(20)(
q11.2),+mar[cp10] N/A

AML24 PB Diagnosis 81 Female

AML with 
NPM1 
mutation 46,XX[11] NPM1, FLT3-ITD

AML25 BM Refractory
45,X,-
Y,t(11;19)(q23;p13.1)[20]

AML28 PB Diagnosis 26 Female

AML with 
monocytic 
differentiatio
n 46,XX [20] FLT3-ITD 

AML26 BM Diagnosis 61 Male

Acute 
Monocytic 
Leukemia 46,XY[20] n/a

AML27 BM Relapse 61 Male

Acute 
Monocytic 
Leukemia 46,XY[20] n/a



Supplemental Table 2 (see excel file): Complete list of SIRT3 interactors identified by BioID and 

corresponding cellular localization, function, and comparison to published data. Tab 1: SIRT3 

BioID Result: peptide counts of SIRT3 interactors compared to negative control with a 

significant SAINT score. Tab 2: SIRT3 and ClpP/NLN comparison. Data lists all SIRT3 

interactors and indicated common interactors with ClpP or NLN identified in previous studies 

(Ishizawa et al., 2019 and Mirali et al., 2020). An interactor is a protein identified as a SIRT3 

interactor that does not interact with ClpP and NLN. Background indicates that the prey protein 

interacts with ClpP, NLN, and SIRT3. A SIRT3 unique interactor, interacts only with SIRT3. Tab 

3 SIRT3 interactor detail: lists all SIRT3 interactors, indicates cellular localization as indicated by 

the Human MitoCarta 3.0 database, previously reported de-acetylation by SIRT3 (Rardin et al. 

2013) or interaction (Yang et al. 2016) and the protein function. BFDR is Bayesian False 

Discovery Rate; TechRep is technical replicate; #N/A is not available; Y is yes; MIM is 

mitochondrial inner membrane; SAINT is Significance Analysis of interactome.

  Supplemental Table 3: Genes comprising the SIRT3 LSC and SIRT3 AML blasts gene 
signatures. 

SIRT3 LSC SIRT3 AML Blast 
TMEM165 TOP3A 

THNSL1 TARS2 

TFAM PNPLA8 

SDHB NT5DC3 

PTCD3 NMNAT3 

NFU1 GCDH 

NDUFS6 FECH 

NDUFS1 DLD 

NDUFAF1 ALAS1 

NDUFA6 

MRRF 

MRPS9 

MRPS7 

MRPS5 

MRPS30 

MRPS25 



MRPL50 

MRPL45 

MRPL43 

MRPL23 

MRPL15 

MRPL10 

LYRM7 

LYRM2 

HADHA 

GRPEL1 

GLRX5 

GADD45GIP1 

FASTKD5 

DNAJC28 

DHX30 

DDX28 

CRAT 

COX6C 

COX5B 

COX5A 

COQ5 

BCKDHA 

ALDH9A1 

ALDH1B1 

AARS2 

PRDX3 

NDUFAB1 

ECH1 

DARS2 
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Supplemental Figure Legends: 

Supplemental Figure 1: SIRT3 knockdown targets AML but not HSPCs. 

(A) mRNA levels of SIRT1-7 in 4 primary AML specimens (AML1-4) 24 hours post scrambled or 

sirtuin targeting siRNA transfection. Statistical significance was determined by two-way ANOVA 

analysis. Each dot represents a primary AML specimen. (B) Viability of four primary AML 

specimens upon SIRT1-7 knockdown at 24-, 48-, and 72-hours post siRNA transfection. Viability 

is relative to control scrambled siRNA transfected cells. Statistical significance was determined 

by two-way ANOVA analysis. (C) SIRT3 mRNA 24 hours post scrambled or SIRT3 targeting 

siRNA transfection in seven primary AML specimens (AML1-5, 14 and 15). Statistical significance 

was determined using a paired t-test. Each dot represents a primary AML specimen. (D) 

Representative western blot of SIRT3 and GAPDH 48 hours scrambled control or SIRT3 targeting 

siRNA transfection in Molm13 cells. (E) Relative colony forming potential of Molm13 cells post 

scrambled or SIRT3 targeting siRNA transfection. The experiment was repeated three times. 

Each dot represents a biological replicate. Statistical significance was determined using an 

unpaired t-test. (F) mRNA expression of SIRT3 relative to GAPDH in CD34 enriched cells from 

two cord blood samples. Statistical significance was determined by unpaired t-test. (G) mRNA 

expression of SIRT3 relative to GAPDH in AML samples 9, 10, 11, and 24 post transfection. 

Statistical significance was determined by unpaired t-test. (H) Colony forming ability of bulk AML 

samples 9, 10, 11, and 24 post transfection and subsequent secondary replating of colonies. 

Statistical significance was determined by Ordinary one-way ANOVA analysis. Each dot 

represents a primary AML specimen. (I) mRNA expression of SIRT3 relative to GAPDH in normal 

bone marrow post transfection. Statistical significance was determined by unpaired t-test. (J) 

Colony forming ability of normal bone marrow samples post transfection and subsequent 

secondary replating of colonies. Statistical significance was determined by Ordinary one-way 

ANOVA analysis. Each dot represents a technical replicate. (K) Relative colony forming ability of 

ROS low and ROS high cells enriched from three primary AMLs. Statistical significance was 

determined using unpaired t-tests. (L) Relationship between CD34 expression and ROS levels in 

primary AML8, AML11, AML12, AML13, AML19, and AML20. Each dot represents a unique 

primary AML. Statistical significance was determined using paired t-tests. Representative 

histograms of CellROX staining across bulk, CD34+, and CD34-, cohorts of AML8. (M) mRNA 

expression of SIRT3 relative to GAPDH in AML sample 10 post transfection. Statistical 

significance was determined by two-way ANOVA. (N) Colony forming ability of an AML sample 

sorted into ROS High and ROS low populations and transfected with siRNA. CFU assay was



performed immediately post transfection. (O) Outline of engraftment assay. To assess the 

function of LSCs upon transfection or YC8-02 treatment, we treated primary specimens with 10uM 

of YC8-02 for 24 hours, or transfected cells with siRNA targeting SIRT3 or an unscrambled non-

targeting control 24 hours prior to injecting approximately 1million cells via tail vein into 

mice. Engrafted cells were assessed via flow cytometry. (P) mRNA expression of SIRT3 

relative to GAPDH in AML sample 24 used for engraftment, post transfection. Statistical 

significance was determined by unpaired t-test. (Q) mRNA expression of SIRT3 relative to 

GAPDH in normal bone marrow used for engraftment, post transfection. Statistical 

significance was determined by unpaired t-test. (R) Percentage of CD33 and CD19 cells 

collected from normal human bone marrow engraftment assay using transfected bone marrow 

samples. Statistical significance was determined using unpaired t-tests. All error bars represent 

standard deviation. *p<0.05, **p<0.01, ***p<0.005, ****p<0.001, ns indicates not significant 
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Supplemental Figure 2: SIRT3 inhibition perturbs LSCs function and spares normal 
HSPCs.  

(A) Viability of five AML cell lines treated with YC8-02 for 48 hours. Viability shown is relative to 

control for each cell lines. Statistical significance was determined using two-way ANOVA. (B) 

Colony forming ability of three AML cell lines treated with YC8-02 for 24 hours at increasing doses 

prior to performing the colony forming assay. The experiment was repeated three times and dot 

represents the mean of three technical replicates. Statistical significance was determined using 

ordinary one-way ANOVA. (C) Apoptosis in four AML cell lines, measured with Annexin V and

DAPI, as a result of 48 hours of YC8-02 treatments. Statistical significance was determined using 

two-way ANOVA. (D) Viability of ROS low LSCs and ROS high Blasts enriched from ten 

primary AMLs (AML 4-8 and 10-14) and treated with YC8-02 for 48 hours. Viability is relative 

to control. Statistical significance was determined using Ordinary one-way ANOVA. (E) CD34+ 

CD45+ fraction of mobilized peripheral blood cells (MPBCs) collected from three healthy donors 

following treatment with YC8-02 for 48 hours. Statistical significance was determined using two-

way ANOVA. (F) Percentage of CD33 and CD19 cells collected from normal human bone 

marrow engraftment assay. Statistical significance was determined using unpaired t-tests. All 

error bars represent standard deviation. *p<0.05, **p<0.01, ***p<0.005, ****p<0.001, ns 

indicates not significant.
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Supplemental Figure 3: SIRT3 regulates mitochondrial energy metabolism in AML. 

(A) Expression of BirA*FLAG. BirA*FLAG (control), and SIRT3-BirA*Flag vector. T-Rex cells were 

lysed and immunoblot was performed with an anti-FLAG antibody 24 hours post induction. (B) 

Mitochondrial interactions of SIRT3 in T-REx cells found by BioID, grouped based on functional 

pathways. Interactors outlined in red have been previously described as SIRT3 interactors 

through IP-MS, and interactors within rectangles have been previously described as de-

acetylation targets of SIRT3. (C) Dotplot visualization of top metabolic pathways determined by 

GSEA. Analysis was performed on RNA-sequencing data from LSCs and AML blasts enriched 

from three primary AML specimens (AMLs 10, 16 and 17) and treated with 25µM YC8-02 for 4 

hours. The color of each dot represents the normalized enrichment score (NES) red (increased) 

or blue (decreased). The size of each dot represents the significance of the enrichment by –log10 

of the adjusted p-value. GSEA of (D) oxidative phosphorylation gene set signature and (E) fatty 

acid oxidation gene set signature performed on LSCs and AML blasts enriched from three primary 
AMLs (AMLs 10, 16 and 17) treated with 25µM YC8-02. (F) Schematic of derivation of SIRT3 LSC 

and SIRT3 blast networks. Overlapping genes identified from unique differentially expressed 

genes in the YC8-02 treated RNA-seq ROS low or ROS high datasets with SIRT3 interactors 

identified using BioID were used to create the SIRT3-LSC and SIRT3 blast networks, respectively.
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Supplemental Figure 4: SIRT3 regulates oxidative phosphorylation. 

(A) mRNA expression of SIRT3 relative to GAPDH in Molm13, MV4;11, and OCI-AML3 cell lines

post transfection. Statistical significance was determined by unpaired t-test. (B) Basal respiration

of Molm13 cells, MV4;11 and OCI-AML3 cells transfected with siRNA targeting SIRT3 or a non-

targeting scrambled siRNA. Measurements taken using n=1, 24 hours post electroporation

Statistical significance was determined using two-way ANOVA. Mito stress test profile of (C)

Molm13 cells, (D) MV4;11 cells and (E) TEX cells treated with YC8-02 for 8 hours. Parameters of

mitochondrial function, basal respiration and spare capacity are reported for each treatment of

YC8-02 (0, 1, 5, 10, and 25µM) at three treatment timepoints (4, 8 and 24 hours). Statistical

significance was determined using Ordinary one-way ANOVA. (F) ECAR of three bulk primary

AML specimens (AMLs 2, 3, and 4) transfected with siRNA targeting SIRT3 or a non-targeting

scrambled siRNA. Statistical significance was determined using unpaired t-test. (G) ECAR of

LSCs enriched from three primary AML specimens (AMLs 14, 5, and 4) and treated with 10µM of

YC8-02. Statistical significance was determined using unpaired t-test. (H) ECAR of Molm13,

MV4;11, and OCI-AML3 cells transfected with siRNA targeting SIRT3 or a non-targeting

scrambled siRNA. Statistical significance was determined using unpaired t-test. (I) ECAR of

Molm13, MV4;11, and TEX cell lines treated with YC8-02 (0, 10, and 25µM) at three treatment

timepoints (4, 8 and 24 hours). Statistical significance was determined using two-way ANOVA.

(J) ECAR of normal bone marrow transfected with siRNA targeting SIRT3 or a non-

targeting scrambled siRNA. Statistical significance was determined using unpaired t-test.

(K) ECAR of HSPCs enriched from three mobilized peripheral blood samples and 

treated with 10µM of YC8-02. Statistical significance was determined using unpaired 
t-test. Statistical significance was determined using Ordinary one-way ANOVA. All

error bars represent standard deviation. *p<0.05, **p<0.01, ***p<0.005, ****p<0.001, ns

indicates not significant.
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Supplemental Figure 5: SIRT3 inhibition results in fatty acid accumulation in LSCs. 

(A) Fatty acids quantities detected by steady state mass-spectrometry lipidomic analysis on three 

AML cell lines (OCI-AML-3, Molm13, and MV4;11) treated with 10µM YC8-02 for 8 hours. The 

quantity of each fatty acid detected is represented by color (blue, row minimum, and red, row 

maximum). Statistical significance was determined using a paired t-test. (B) Experimental design 

of stable isotope tracing experiments. Briefly, primary AMLs were AMLs treated with 10µM 

YC8-02 for 4 hours or transfected with siRNA targeting SIRT3 or a non-targeting scrambled 

siRNA for 24 hours, prior to introduction of U-13C16-palmitate. Cells were incubated an 

additional 16 hours prior to collection and analysis. Analysis was focused on the change in 

accumulation of TCA intermediates containing 13C from fatty acid catabolism. (C) Stable 

isotope tracing analysis of Molm13 cells transfected with siRNA targeting SIRT3 or a non-
targeting scrambled siRNA 24 hours prior to introduction of 13C16-palmitate. Significance was 

determined using a paired t-test. Stable isotope tracing analysis of (D) Molm13 cells and treated 

with vehicle or 10µM YC8-02 for 4 hours prior to introduction of 13C1-palmitate. Cells were 

incubated for an additional 4 or 16 hours before cells were collected and analyzed. Five TCA 

intermediates were detected from this analysis. Statistical significance was determined using 

two-way ANOVA. (E) Stable isotope tracing analysis of a bulk AML specimen and treated 

with vehicle or 10µM YC8-02 for 4 hours prior to introduction of U-13C16-palmitate. Cells 

were incubated an additional 16 hours before cells were collected and analyzed. Three TCA 

intermediates were detected from this analysis. Statistical significance was determined using 

unpaired t-test. (F) Stable isotope tracing analysis of AML blasts enriched from two primary 

(AMLs 10 and 12) and treated with vehicle or 10µM YC8-02 for 4 hours prior to introduction of 

U-13C16-palmitate. Cells were incubated an additional 16 hours before cells were collected and 

analyzed. Three TCA intermediates were detected from this analysis. Statistical significance was 

determined using unpaired t-test.  All error bars represent standard deviation. *p<0.05, 

**p<0.01, ***p<0.005, ****p<0.001, ns indicates not significant. (G) Result of TCA cycle rescue 

on viability using 3 AML cell lines (Molm13, MV4;11, and OCI-AML3). Cells were treated with 

dimethyl-2-oxoglutarate (DMKG) at 0 or 2.5mM for 1 hour prior to introduction of 

increasing doses of YC8-02. Cells were incubated for 48 hours prior to analysis. Statistical 

significance was determined using an unpaired t-test.
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Supplemental Figure 6: Elevated cholesterol metabolism protects LSCs from lipid 
accumulation 

(A) Cholesterol levels detected by steady state mass-spectrometry lipidomic analysis in three AML 

cell lines (OCI-AML-3, Molm13, and MV4;11) and treated with 10µM YC8-02 for 8 hours. 

Statistical significance was determined using unpaired t-test. (B) Cholesteryl-ester levels detected 

by steady state mass-spectrometry lipidomic analysis in three AML cell lines (OCI-AML3, Molm13, 

and MV4;11) and treated with 10µM YC8-02 for 8 hours. Statistical significance was determined 

using unpaired t-test. Quantities are normalized to baseline control. (C) mRNA expression of 

SIRT3 relative to GAPDH in AML sample 9 post transfection. Statistical significance was 

determined by unpaired t-test. (D) Viability of CD34+ or CD34- cells from bulk AML transfected 

with siRNA targeting SIRT3 or a non-targeting scrambled siRNA for 24 hours and then treated 

with 0.5µM dipyridamole. CD34 expression was determined by flow cytometry. Statistical 

significance was determined using two-way ANOVA.  (E) Viability of CB treated with YC8-02 alone 

or in combination with dipyridamole. Statistical significance was determined using two-way 

ANOVA. Each normalized Statistical significance was determined using paired t-test. All error 

bars represent standard deviation. *p<0.05, **p<0.01, ***p<0.005, ****p<0.001, ns indicates not 

significant.




