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Methods 

Sample processing and quality control. All RNA was extracted from whole blood in PAXgene (Qiagen) 

tubes using the Maxwell (Promega) system and was analyzed for quality and quantity using Ribogreen 

(Thermo Fisher Scientific) and TapeStation (Agilent) quality control (QC) assays. 

 

Genomic analysis. Normalized aliquots of extracted RNA were treated with GLOBINclear (Invitrogen) 

according to the manufacturer’s protocol to deplete α and β globin mRNA from the total RNA 

preparation. The globin-depleted RNA was evaluated for content and integrity and then used in a TruSeq 

RNA v2 (Illumina) preparation for RNA sequencing (RNA-seq) library construction. Constructed RNA-seq 

libraries were evaluated for yield and average size of library fragments. Libraries were then loaded onto 

the HiSeq 2500 (Illumina) rapid run for 2 × 100–base pair sequencing to a target depth of 50 million single 

reads per sample. Libraries were originally processed in 6 batches, each containing a process control (cell 

line K562) and 2 replicate samples with sufficient RNA to be included in all batches. Batches were also 

matched from arm and response groups, and samples from the same patient were sequenced in the 

same batch when possible. Table S1 and Figures S6-S8 show QC information for processed samples and 

sequenced libraries. 

 

Sequence analysis pipeline. Raw sequence data were quality controlled using the FastQC package 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). A number of QC metrics were assessed 

to ensure high-quality data, including data quality and guanine-cytosine content on per-base and per-

sequence levels, sequence length distribution and duplication levels, and insert size distribution. Reads 

were aligned to the reference human genome (build hg19) using STAR.(1) Next, mapped reads were 

assembled into transcripts, and transcript abundances were estimated and normalized using Cufflinks.(2) 

Finally, HTSeq was used to count the number of reads mapping to each gene.(3) 
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Quality control of RNA-seq data. We assessed key quality metrics of the sequencing data before 

performing downstream analyses. Almost all of the libraries achieved the target read depth of 50 million 

reads (Figure S6). We assessed the evenness of coverage across transcripts to detect 3' biases that could 

be indicative of RNA degradation (Figure S7). As expected, we observed that libraries with lower RNA 

integrity number (RIN) tended to have slightly more 3' bias. We observed 1 library with a strong 3' bias 

that seemed unrelated to RIN; this library was reconstructed and the bias corrected. We also confirmed 

that the proportion of reads aligning to the α- and β-globin genes was low. 

 

Assessment for potential library construction batch effects. The library construction was performed in 7 

automated batches. We included a process control and 2 replicate samples in the first 6 batches (the 

seventh batch consisted of library construction rework for only 3 samples). To determine whether there 

were large batch effects, we compared the global gene expression pattern across the replicate samples 

and observed high correlations (Figure S8). In addition, we clustered the sequenced samples based on 

the expression of the top 500 most-variable genes. The replicate samples cluster together suggested no 

strong batch effects. 

 

Quality control of gene expression data. Kernel density plots of all samples (i.e., expression profiles from 

individual patients) were inspected to verify acceptable gene expression distributions (Figure S9). The 

density of undetected transcripts (i.e., expression of 0) was <20% for nearly all samples such that there 

were no immediate concerns regarding the sensitivity of the RNA-seq experiments. Principal components 

analysis (PCA) of the gene expression data was performed to confirm or deny the presence of any distinct 

populations (unidentified batch effects) and quantify the overall structure of the data. The remaining 

clinical data were filtered for predictive analysis to include only variables that were reported at baseline. 
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All noncontinuous variables were one-hot encoded such that they had values of 0 or 1. The clinical 

features were compared against responder status using either a χ2 or Wilcoxon rank-sum test, as 

appropriate. Sex exhibited the most significant stratification of responder status among the clinical 

variables, with women significantly more likely to be responders (P<.001) (Table 2). The treatment type 

also influenced prognosis, with nilotinib treatment yielding better outcomes than imatinib (P=.056). 

Quality control analysis of the ENESTnd gene expression data exhibited sufficiently high quality for 

downstream analysis. We confirmed that the mean expression of genes on the Y chromosome were 

bimodally distributed and that the labels provided for sex agreed with the expectation of higher 

expression in men (Figure S10). PCA indicated that the data possessed underlying structure (i.e., not just 

noise) (Figure S11) and did not cluster into batches requiring correction (Figure S12). The variance 

explained by the first PC was larger than typically observed (observed, 28%; typical, 22%-26%) but not 

sufficiently high to raise concern of unidentified batch effects. The first 10 PCs were compared against 

clinical features using a Spearman correlation, Kruskal-Wallis, or Wilcoxon rank-sum test as appropriate 

to investigate whether these features underlaid specific structure within the gene expression. Significant 

associations between PC1 and PC2 with race, PC2 and PC3 with previous treatment with imatinib, and 

PC4 with Sokal risk score at diagnosis were identified (Figure S13). The most significant association was 

between race and PC1, but a labeled PCA plot did not suggest sufficient separation to warrant batch 

correction to the expression data (Figure S14). The PC were then compared against the inferred cell type 

scores from MCP-counter, revealing strong associations between immune cells and PC1 and PC2 (Figure 

S15). Finally, the first 10 PCs were compared against responder status using a Wilcoxon rank-sum test, 

revealing that PC6 (P<.01) and PC9 (P<.001) were significantly associated with response (Figure S16). 

 

Bootstrapped prediction of responder status. Penalized logistic regression models were constructed 

from gene expression, clinical variables, normalized enrichment scores of biological pathways, and 
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inferred cell type compositions using the glmnet library in the R programming language. For each 

iteration of predictive analysis, bootstrapping (i.e., random sampling with replacement) of the input 

samples was performed to create a random subset of data on which the model was trained, and the 

remaining samples were held out as a test set to evaluate the model’s performance via area under the 

curve (AUC). Each input data set was subject to 250 iterations of this procedure. The significance of the 

model performance was evaluated by comparing the 95% CI of the AUC distribution to AUC = 0.5, which 

corresponds to a random model. If the lower bound of the 95% CI was >0.5, the model performance was 

determined to be significant. Normal distributions were fitted to the bootstrap AUC values to estimate 

the proportion of bootstrap iterations expected to have random-or-worse performance. These 

proportions are given as empirical P-value estimates. A final predictive model was trained on all of the 

ENESTnd samples using logistic ridge regression.  

 

Prediction of responder status in validation cohort. A final logistic ridge regression model was trained on 

the gene expression data of all 112 ENESTnd samples. The Branford et al. validation data set was batch-

corrected via Combat to align with ENESTnd, then the ENESTnd-trained model was applied to the batch-

corrected validation data. A random AUC distribution was generated by repeatedly shuffling the 

responder labels of the validation data, then applying the ENESTnd-trained model. The performance of 

the ENESTnd-trained model on the validation data was determined by AUC, and an empirical P value was 

calculated as the proportion of random AUC values that performed as well or better than the observed 

AUC. 
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Supplemental Tables and Figures 
 
Table S1. RNA-seq quality control metrics summary. Max, maximum; min, minimum; UTR, 
untranslated region. 
 

 Mean SD Min Max 

Total reads, n 9.96E+07 2.83E+07 4.56E+07 2.34E+08 

Proportion coding bases 0.49 0.03 0.43 0.62 

Proportion UTR bases 0.32 0.02 0.27 0.40 

Proportion intronic bases 0.12 0.03 0.03 0.20 

Proportion intergenic bases 0.08 0.01 0.05 0.12 

Proportion of reads mapping to 

globin genes 

4.88E−03 6.66E−03 1.82E−04 6.05E−02 

 
Table S2:  
https://drive.google.com/file/d/1FASei9Cl6j3iH8xtg0P0aIJvJkEgtndO/view?usp=sharing 
 
Table S3: 
https://drive.google.com/file/d/1ugTG2eqGuWHqo7kQG8Inm0cKqypgO40Z/view?usp=sharing  
 
Table S4:  
https://drive.google.com/file/d/1Ah67P7RzMDflN-DL0f6Tjs4lkWMKk9iT/view?usp=sharing  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://drive.google.com/file/d/1FASei9Cl6j3iH8xtg0P0aIJvJkEgtndO/view?usp=sharing
https://drive.google.com/file/d/1ugTG2eqGuWHqo7kQG8Inm0cKqypgO40Z/view?usp=sharing
https://drive.google.com/file/d/1Ah67P7RzMDflN-DL0f6Tjs4lkWMKk9iT/view?usp=sharing
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Table S5. Summary statistics of blood cell count data versus responder status. 
 

Cell Type 

Welch's t-
test 

statistic 
Welch's t-

test p-value 
Wilcoxon p-

value 
Wilcoxon 

FDR 
Absolute Bands -1.725 0.092 0.095 0.212 
Absolute Basophils -0.515 0.608 0.301 0.387 
Absolute Blasts -2.011 0.047 0.042 0.212 
Other Absolute -0.589 0.558 0.343 0.387 
Absolute Eosinophils -1.434 0.155 0.668 0.668 
Absolute Lymphocytes -1.725 0.088 0.568 0.590 
Absolute Metamyelocytes -1.990 0.050 0.061 0.212 
Absolute Monocytes -3.659 0.0004 0.006 0.149 
Absolute Myelocytes -2.273 0.026 0.065 0.212 
Absolute Neutrophils -2.530 0.013 0.151 0.262 
Absolute Promyelocytes -1.669 0.100 0.040 0.212 
Bands (%) -1.760 0.083 0.098 0.212 
Basophils (%) 0.844 0.401 0.313 0.387 
Blasts (%) -0.508 0.613 0.098 0.212 
Other (%) -0.651 0.517 0.343 0.387 
Platelets 1.610 0.112 0.070 0.212 
Eosinophils (%) 0.692 0.491 0.305 0.387 
Hematocrit 1.027 0.307 0.332 0.387 
Hemoglobin 0.948 0.346 0.312 0.387 
Lymphocytes (%) 1.452 0.151 0.184 0.299 
Metamyelocytes (%) -1.085 0.281 0.148 0.262 
Monocytes (%) -2.906 0.005 0.089 0.212 
Myelocytes (%) -1.630 0.106 0.108 0.217 
Neutrophils (%) 0.844 0.401 0.467 0.506 
Promyelocytes (%) -1.517 0.133 0.042 0.212 
WBC Total -3.069 0.003 0.063 0.212 

 
Table S6: 
https://drive.google.com/file/d/1SOCrQHAa1z8635Dwc3fre1yOYnPJPlJi/view?usp=sharing 
 
Table S7: 
https://drive.google.com/file/d/1VHn4h2ucFZydoF3dUS6zOQAlVRAJe_s1/view?usp=sharing 
 
Table S8:  
https://drive.google.com/file/d/1qMHPwmA5IJvZ252lUeJQzQlZOFbJdN4m/view?usp=sharing  
 
Table S9:  
https://drive.google.com/file/d/1y74dnz0iVOptZcsC8MtlRc0ZEdtRHLMH/view?usp=sharing  

https://drive.google.com/file/d/1SOCrQHAa1z8635Dwc3fre1yOYnPJPlJi/view?usp=sharing
https://drive.google.com/file/d/1VHn4h2ucFZydoF3dUS6zOQAlVRAJe_s1/view?usp=sharing
https://drive.google.com/file/d/1qMHPwmA5IJvZ252lUeJQzQlZOFbJdN4m/view?usp=sharing
https://drive.google.com/file/d/1y74dnz0iVOptZcsC8MtlRc0ZEdtRHLMH/view?usp=sharing
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Table S10:  
https://drive.google.com/file/d/1s3Vjb5EeUr3tZNkVjfgrnts7DhLFEi44/view?usp=sharing  
 
Table S11:  
https://drive.google.com/file/d/17SqOH5IGMTx3-oEMIdxsbnJQE3Izxw2b/view?usp=sharing  
 
Table S12:  
https://drive.google.com/file/d/1wxlJ-JD6ZuAK16cIhPa8g8qVupNdHADH/view?usp=sharing 
 
 
 

 

 

 

 

 

  
 
 
 
 
 
 
 
 
 
 
 

https://drive.google.com/file/d/1s3Vjb5EeUr3tZNkVjfgrnts7DhLFEi44/view?usp=sharing
https://drive.google.com/file/d/17SqOH5IGMTx3-oEMIdxsbnJQE3Izxw2b/view?usp=sharing
https://drive.google.com/file/d/1wxlJ-JD6ZuAK16cIhPa8g8qVupNdHADH/view?usp=sharing
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Figure S1. Summary of patient randomization in the ENESTnd trial. BID, twice daily; DMR, deep molecular 
response; ICF, informed consent form; MMR, major molecular response; NA, not available; QD, once daily; 
RNA-seq, RNA sequencing. 
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Figure S2. Labeled PCA plots. A-B, PCA plots labeled by (A) responder status and (B) inferred T cell 
abundance via MCP-counter. 
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Figure S3. Volcano plot of differentially expressed genes from ENESTnd. Genes that were differentially 
expressed at a level satisfying P<.05 and |log2(FC)| >1 are highlighted by red circles. FC, fold change. 
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Figure S4. PD-1 and PD-L1 were overexpressed in good responders. Good responders exhibited 
significantly higher expression of PD-1 (P=8.4 × 10-4) and PD-L1 (P=1.4 × 10-3) than did poor responders.  
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Figure S5. Decision tree predictor of response based on genetic program activity.  The activity status 

(i.e., active or inactive) of the genetic programs Pr-63, Pr-80, and Pr-85 can be used to predict responder 

status. The leaf node on the bottom left (all three programs inactive) predicts good response, all other 

leaf nodes predict poor response. Parentheses denote observed number of good and poor responders 

(Good, Poor). 
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Figure S6. Total number of sequencing reads per library. Each vertical bar is a library (including controls). 
Libraries are colored by library construction (LC) batch. The horizontal line represents 50 million reads.  
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Figure S7. Coverage across transcripts for sequenced libraries. Normalized coverage (y axis) was plotted 
vs percentile normalized positions (5' to 3') across transcripts for each library generated and sequenced. 
Lines are colored by RIN score; we observed a slightly stronger 3' bias in samples with lower RIN, as 
would be expected. One library showed a strong 3' bias, but this bias was corrected by library 
reconstruction. RIN, RNA integrity number. 
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Figure S8. Correlation of expression values in replicate samples. Correlation of gene expression between 
across-batch replicates as measured by fragments per kilobase per million reads is shown for both 
replicated samples. Below the diagonal, the correlations are plotted for each pair of samples. Above the 
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diagonal are the correlation coefficients. There are 5 replicates per sample due to library construction 
failures in batch 3. Stars denote significance level: *** P<.001; ** P<.01; * P<.05. 
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Figure S9. Kernel density plot of ENESTnd log2(cpm + 1) gene expression. The gene expression profiles 
overlapped across samples. cpm, counts per million.  
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Figure S10. Mean Y chromosome gene expression vs sex. The mean expression of genes on the Y 
chromosome clearly separated men and women, as expected, although 2 male-labeled samples exhibited 
unusually low expression.  
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Figure S11. Variance explained by PC of gene expression. The variance explained by each principal 
component (PC) showed that most of the signal in the data was represented in the first 10 PC.  
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Figure S12. PCA plot of ENESTnd gene expression. The PCA plot did not suggest the presence of batch 
effects. Good responders are labeled by blue triangles, and poor responders are labeled by black circles. 
PCA, principal components analysis. 
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Figure S13. Clinical data vs PC. The −log10(p) of associations between each clinical variable and the first 10 
PCs are shown. Values >1.3 correspond to P<.05. CML, chronic myeloid leukemia; MMR, major molecular 
response; MR4.5, BCR::ABL1IS ≤ 0.0032%; PC, principal component. 
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Figure S14. Race vs PC1. Race significantly associated with the first PC but did not generate sufficient 
differences to warrant batch correction. PC, principal component. 
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Figure S15. Inferred cell populations vs PC. The signed −log10(p) of associations between each of the 
inferred proportions of various cell types and the first 10 PCs are shown. Values with a magnitude >1.3 
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correspond to P<.05. Positive values are correlated, and negative values are inversely correlated. NK, 
natural killer; PC, principal component. 
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Figure S16. PC vs responder status. The rotated values of the first 10 PCs are shown for good and poor 
responders. PC6 and PC9 showed significant differences. ** P<.01; *** P<.001. PC, principal component. 
 


