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Supplement

Supplemental Methods
RNA sequencing

We selected 184 CLL patient samples for RN A-sequencing. Patients were recruited from 2011 to 2017
with informed consent. We used data from 123 of these patients in a prior study [5]. The current
study is an extension, designed specifically to increase sample sizes of major molecular subgroups
and focus on gene expression. The population was broadly representative of a tertiary referral center.
The majority of patients (177 out of 184) showed the typical CLL phenotype, and 5 patients were
diagnosed with atypical CLL. 92 patients had undergone prior treatment. Patient characteristics
are shown in Supplemental Table S1. Total RNA was isolated from blood samples (CD19+ purified
n=161) using the RNA RNeasy mini kit (Qiagen). RNA quantification was performed with a Qubit
2.0 Fluorometer. RNA integrity was evaluated with an Agilent 2100 Bioanalyzer, and samples with
RNA integrity number (RIN) ;8 were excluded. Sequencing libraries were prepared according to
the Illumina TruSeq RNA sample preparation v2 protocol. Samples were paired-end sequenced at
the DKFZ Genomics and Proteomics Core Facility. Two to three samples were multiplexed per
lane on Illumina HiSeq 2000, Illumina HiSeq3000/4000 or Illumina HiSeqX machines. Raw RNA-
sequencing reads were demultiplexed, and quality control was performed using FastQC [13] version
0.11.5. STAR [6] version 2.5.2a was used to remove adapter sequences and map the reads to the
Ensembl human reference genome release 75 (Homo sapiens GRCh37.75). All 184 samples passed
quality control thresholds and were retained for analysis. STAR was run in default mode with internal
adapter trimming using the clip3pAdapterSeq option. Mapped reads were summarized into per
gene counts using htseq-count [3] version 0.9.0 with default parameters and union mode. Thus,
only reads unambiguously mapping to a single gene were counted. The count data were imported
into R (version 3.6) for subsequent analysis.

Somatic variants

Mutation calls for 66 distinct gene mutations and 22 structural variants had been generated in
a previous study for 143 out of the 184 CLL samples through targeted sequencing, whole-exome
sequencing and whole-genome sequencing [5]. For the remaining 41 samples, we generated additional
targeted and whole-genome sequencing data and called variants using the same pipeline.

Exploratory data analysis: PCA and clustering

Statistical analyses were performed using R version 3.6. The exploratory data analysis was performed
on data normalized and transformed using the variance stabilizing transformation (VST) provided by
the DESeq2 package [10]. The 500 most variable genes were used in a principal component analysis
(PCA) and hierarchical clustering. PCA was performed using the prcomp function with scale.
Hierarchical clustering with the ward.D2 method was performed on sample Euclidean distances
computed on the scaled gene expression values. The complexHeatmaps package [7] was used to
visualize results.

Batch effect estimation

Transcriptome data were generated over a period of four years and platforms were changed with
technological development during the period of sequencing, which led to changes in sequencing depth
and read length (101, 125 and 151 nucleotides). Therefore, we considered the possibility of batch
effects in the data due to platform differences [8]. Before adapter trimming we found a higher
fraction of reads that contained adapter sequences in batches with longer reads. These resulted in
batch dependent mapping to pseudogenes. After adapter trimming we did not detect differences in
mapping towards pseudogenes or any associations between the top 10 principal components or the
investigated genetic variants and different batches (Supplemental Figure S1).



Differential expression analysis

For each of the 23 genetic alterations (14 gene mutations, 9 CNAs) and the IGHV mutation status,
differentially expressed genes were identified using the Gamma-Poisson generalized linear modeling
(GLM) approach of DESeq2, version 1.16.129, [10, 2]. Because of the large effects of IGHV mutation
status and trisomy 12 on gene expression (as seen in the exploratory data analysis), these two
variables were used as blocking factors in the models for each of the 22 remaining variants. In the
model for IGHV mutation status, trisomy 12 was used as a blocking factor, and vice versa. In
addition, pretreatment status was included as a blocking factor in all models.

Epistatic interaction testing

Genetic interactions were identified by testing for an interaction term in the regression of the gene ex-
pression data on the two variables IGHV mutation status and trisomy 12 using DESeq2. DESeq2 uses
a generalized linear model of the Gamma-Poisson family that includes a logarithmic link function.
Hence, the additive null-model (no interaction) of the two variables corresponds to a multiplicative
effect on the scale of the observed counts (log(a)+log(b)=log(ab)). For the validation study, we
used the dataset of Abruzzo et al. [1], which reports data from an Illumina microarray with 47,231
probes on samples from 47 patients with known IGHV hypermutation and trisomy12 status. The R
package limma version 3.50.1 [11] was used to perform probewise tests using the same model with
an interaction term as above.

Multiple testing
Separately, in each of these 25 DESeq2 analyses, the method of Benjamini and Hochberg [4] was
applied to account for multiple testing and control FDR of 0.05.

Gene set enrichment analysis

Gene set enrichment analysis34 was performed using the R package clusterProfiler [14] version
3.12.0 based on ranked gene statistics from DESeq2. Hallmark and KEGG gene set collections version
4.0 were downloaded from MSigDB [9]. Transcription factor target genes sets were downloaded from
Harmonizome [12]. The significance of gene sets was determined using a permutation null (B=1000).
P-values were adjusted for multiple testing using the method of Benjamini and Hochberg [4].

Additional Files
Supplement Table S1: table_S1_patient_information.xlsx

Supplement Table S2: table_S2_genomic_information.xlsx
Supplement Table S3: table_S3_SF3B1_differential_exon_usage.xlsx
Supplement Table S4: table_S4_de_genes_all_pretreatment.xlsx

Supplement Table S5: table_S5_epistasis.xlsx



Supplemental Figures
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Supplemental Figure S1: Effect of adapter trimming on sequencing batches: A) The number
of reads with a part of their sequence mapping to the adapter sequences increases by read length.
B) PC1 and PC2 are related to batch differences due to differences in read length, but not C) after

adapter trimming.



A Overlap cl/c2 genes and top variable genes B Standard deviation c1c2 genes compared to top variable genes
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Supplemental Figure S2: DE genes of cl/c2 groups as observed by Ferreira et al.'?: A)
Overlap of DE genes between c¢1/c2 groups and the 10000 resp. 5000, 1000 and 500 most variable
genes. Only 51 DE genes between c1/c2 groups are in the 1000 most variable genes. B) Standard
deviation of most variable genes compared to clc2 genes.
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Supplemental Figure S3: Mutational load by sample: The number of mutations (including
genetic variations) by sample. On average M-CLL samples have 2.6 and U-CLL samples 4 genetic

aberrations. B) Number of samples per genetic variant explored included in this study by IGHV
status.
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Supplemental Figure S4: Gene expression associated with SF3B1: A) Differentially expressed
genes in enriched KEGG pathways of SF3BI. B-E) Normalized gene counts of UQCC1, PSD2,
SRRM5 and TNXB.
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Supplemental Figure S5: Differential exon usage related to SF3B1 mutations: A) A Venn
diagram showing the overlap between genes with significant differential exon usage and significant
differential gene expression. B,C) Differential exon usage for UQCC?(C) and BRDI(E) detected
by DEXSeq. The upper panels show the normalized counts for each sample. Samples with SF3B1
mutations are colored in yellow. The lower panels show the flattened gene model. Each block is an
exonic region and the ones colored in purple are significantly differentially expressed (1% FDR). D)
Beeswarm plots showing the normalized RNAseq counts of BRD9 in samples with SF3B1 mutations
(yellow) or without SF$B1 mutations (blue).
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Supplemental Figure S6: Gene expression associated with TP53: A) Differentially expressed
genes in enriched KEGG pathways of TP53. B) Overlap of differentially expressed genes associated
with del17pl3 and TP53. C-E) Normalized gene counts of CDK12, PGBD2, HYPK.
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Supplemental Figure S8: Protein expression signature in trisomy12: Similar as observed in
gene expression data, proteins VAV and ITGB2 are significantly up-regulated in trisomy 12 CLLs.
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Supplemental Figure S10: Epistatic interaction in gene expression data from Abruzzo
et al.’> A) Gene expression of the top 100 probes with epistatic interaction. In line with the
expression data from the cohort presented in this paper probes can be grouped by epistasis type.
B-E) Types of gene expression epistasis: EML6G (synergy), FGF2 (suppression), SYBU (inversion),
LEF1 (buffering). Types are stable between cohorts (see Figure 4)
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samples from treatment-naive patients.
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