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Supplementary Methods 

Patient samples 

Patients enrolled in the COG trials CCG-2961, AAML03P1, AAML0531 and AAML1031 were eligible for 

this study. Details of these studies have been previously described1-4. In total, 3,493 patients were 

included in these studies, of which 2,235 were eligible for inclusion due to availability of 

comprehensive NUP98 fusion, molecular, and clinical data (Supplementary Table 1, 2). Eligible 

patients for each study included 13% (121/901) of all patients enrolled in CCG-2961, 34% (116/339) in 

AAML03P1, 84% (854/1022) in AAML0531 and 93% (1144/1231) in AAML1031. For the remaining 

patients, these data were unavailable. Eligible patients for each analysis performed in this manuscript 

are depicted in Supplementary Fig. 1. Sixteen of the 32 total NUP98-KDM5A patients in this study have 

been previously described by Noort et al, Haematologica (2021)5. In addition, we sent out an I-BFM 

AML study group proposal to include pediatric AML patients with a NUP98-X translocation from other 

study groups. Consent, in accordance with the Declaration of Helsinki, was obtained from all study 

participants. The Fred Hutchinson Cancer Research Center Institutional Review Board and the COG 

Myeloid Biology Committee approved and oversaw the conduct of this study. Adult AML patients from 

the Beat AML study, The Cancer Genome Atlas AML (TCGA LAML), and Southwestern Oncology Group 

(SWOG) AML studies were included as comparators for NUP98 fusion analysis and details were 

reported accordingly in references6-11.  

 

Transcriptome sequencing 

Pediatric patients with de novo AML (N=1,482) enrolled on COG trials CCG-2961, AAML03P1, 

AAML0531, and AAML1031, were included for RNA-sequencing (RNA-seq) when biological samples 

were available; samples included in transcriptome analyses are reported in Supplementary Table 2. 

Total RNA from diagnostic peripheral blood or bone marrow was extracted and purified using the 

QIAcube automated system with AllPrep DNA/RNA/miRNA Universal Kits (QIAGEN, Valencia, CA). 
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Libraries were prepared for 75-bp strand-specific paired-end sequencing using the ribodepletion v2.0 

protocol by the British Columbia Genome Sciences Center (BCGSC, Vancouver, BC). Libraries were 

sequenced on the Illumina HiSeq 2000/2500 and aligned to the hg19 (GRCh37-lite) reference genome 

using BWA v0.5.7 with default parameters, except the addition of "-s" option, and duplicate reads were 

marked with Picard Tools. Gene level quantification was performed using the BCGSC-pipeline v1.1 with 

Ensembl v69 annotations. MicroRNA-sequencing was completed as previously reported12. 

 

Adult AML RNA-seq protocols were described previously for the Beat AML Study and TCGA LAML 

cohort6, 7. RNA-seq from SWOG AML was completed as follows: RNA was extracted from diagnostic 

specimens collected from participants on trials S9031, S9333, S0112, and S0106 with the AllPrep 

DNA/RNA Mini kit (Qiagen). Libraries were prepared for paired-end 75-bp sequencing using RiboErase 

(Roche, Wilmington, MA) and KAPA Stranded RNA-Seq Library Preparation Kit (KAPA Biosystems, 

Wilmington, MA) and reads were sequenced on Illumina NovaSeq 6000 instruments (Illumina, San 

Diego, CA) at Fred Hutchinson Cancer Research Center (Seattle, WA). 

 

Screening of NUP98 fusions 

The NUP98 fusions were detected by either karyotype or combined fusion detection algorithms STAR-

fusion v1.8.1, TransAbyss v1.4.10, and CICERO v0.1.813-15 completed on RNA-seq. Patients’ fusion 

annotations from prior studies were incorporated for additional coverage of cryptic fusions where 

available for protocols AAML0531, AAML03P1, and CCG-296116. Differences in NUP98 fusion detection 

per COG trial cohort were as follows. AAML1031 was screened by RNA-seq and checked by reverse 

transcription PCR (RT-PCR). Most patients from AAML0531 were screened by RNA-seq. For AAML03P1, 

all patients were screened for NUP98-KDM5A, and in addition all patients with FLT3-ITD were screened 

for other NUP98 fusions. Lastly, all patients from CCG-2961 were screened for NUP98-NSD1, while only 

a small (unselected) subset was screened for other NUP98 fusions. The majority (94%) of NUP98-

translocated patients had RNA-seq evidence of their fusion. STAR-fusion was run using default 
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parameters with the pre-made GRCh37 resource library with Gencode v19 annotations 

(https://data.broadinstitute.org/Trinity/CTAT_RESOURCE_LIB/). The TransAbyss software was 

executed with the GRCh37-lite reference genome with the following parameters included: fusion 

breakpoint reads ≥ 1, flanking pairs and spanning reads ≥ 2 counts. CICERO fusion detection was 

performed with default parameters with GRCh37-lite. Fusions detected computationally were verified 

using Fusion Inspector v.1.8.1 (Broad Institute, Cambridge, MA) and visualized on IGV17-20 and 

BAMBINO21. Beat AML (N=440) and SWOG AML (N=206) transcriptome sequence reads were analyzed 

using STAR-fusion v1.8.1 with the same reference resource library and parameters as above13. TCGA 

LAML (N=179) RNA-seq fusion data were downloaded from supplementary materials7. 

 

Immunophenotype analysis methods 

Flow cytometry data was analyzed for immunophenotypic markers from 93 NUP98-NSD1, 30 NUP98-

KDM5A, and 20 NUP98-X patients. Mean fluorescence was measured for each patient and each 

marker. The presence and absence of all markers that were measured with fluorophores PE or FITC 

(HLA_DR, CD11B, CD13, CD33, CD36, CD49D, CD56, CD64, and CD117) was defined as Mean 

Fluorescence Index (MFI) greater than 14.84. This is a conservative threshold of three standard 

deviations above the mean autofluorescence in an unselected group of pediatric AML patients. This 

threshold covers the autofluorescence in 99% of cases (i.e., 1% of unstained cases pass the cutoff). 

Presence or absence of markers measured with the fluorophore APC (CD34) was defined as MFI greater 

than 20, as has been used in past analyses. Marker assignments were then hand-validated by experts 

at Hematologics, Inc. (Seattle, WA). 

 

Differential expression, clustering, and Gene-set Enrichment Analysis 

Differential expression analyses were completed in the R v4.0.2 statistical environment. Differences in 

gene expression were identified with trimmed mean of M-values (TMM) normalized counts per million 

(CPM) using Limma voom v.3.44.3 and edgeR v3.30.3 packages. DEGs were considered significant with 
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absolute log2 fold-change > 1 and Benjamini–Hochberg adjusted p-values <0.05. DEGs per NUP98 

fusion subtype are listed in Supplementary Tables 2-7. 

 

Unsupervised hierarchical clustering was performed using Euclidean distance matrices derived from 

log2 TMM-normalized CPM expression matrices, with a count of 1 added to avoid taking the log of 

zero, with the ward.D2 linkage algorithm using the stats R package. Samples were clustered based on 

the expression of highly variable genes across the dataset (988 heterogenous AML samples), selected 

using the mean versus dispersion parametric model trend (total 6858 genes selected) using SeqGlue 

v0.1. Heatmaps were constructed with ComplexHeatmap v2.4.3.  

 

Unsupervised uniform manifold approximation and projection (UMAP)22 was completed with term 

frequency–inverse document frequency (TF-IDF) transformed counts. TF-IDF transformation (SeqGlue 

v0.1) was carried out on the normalized counts matrix (total of 38,247 genes included in TF-IDF 

transformation); gene counts were size-factor normalized by the geometric mean of the total read 

counts. Input genes for the UMAP model were selected by identifying genes that showed the highest 

dispersion (CV^2) across a range of mean expression using a parametric model with the non-

transformed counts matrix. Input genes were further refined by jackstraw principal component 

analysis using the jackstraw v1.323 package. UMAP was carried out with UWOT v0.1.524 and clusters 

were assigned by the Leiden clustering algorithm25 applied to the UMAP reduced dimensional data 

(Supplementary Table 8). UMAP parameters used: cosine distance metric with a size of 

n_neighbors=15 using the “annoy” nearest neighbors method with 200 trees for constructing the 

nearest neighbor index and search_k=15000 nodes. 

 

Gene-set enrichment analysis (GSEA) was completed with log2(x+1) TMM normalized CPM. GSEA was 

performed using the GAGE v2.30.0 R-package26, which tests for differential expression of gene-sets by 

contrasting all possible combinations of fusion-positive to reference samples. Gene-sets from the 
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KEGG pathway database were used and non-redundant gene-sets were extracted for further analysis 

and identification of genes that most contribute to pathway enrichment. 

 

Gene-set enrichment scores per patient were calculated using the single sample GSEA (ssGSEA) 

method27 (GSVA v1.32.0), which transforms the normalized count data from a gene by sample matrix 

to a gene-set by sample matrix28. Transcription factor and microRNA regulatory target genes-sets were 

curated from Pathway Commons v11 database (www.pathwaycommons.org), and curated miRNA 

targets from the Molecular Signatures database (MSigDB v7.2, gsea-msigdb.org). Transcription factor 

motif enrichment was completed with RcisTarget v1.10.0 with the hg19 transcript start site (TSS) 

centered motifs +/- 5kbp v9 database29. 

 

DNA methylation analysis methods 

DNA methylation was measured using 334,934 high-quality CpG probes shared by specimens run on 

HumanMethylation450 & HumanMethylationEPIC platforms. The methylation data was analyzed 

using RcppML30, singlet31 and sesame32. Non-negative matrix factorization (NMF) was performed at an 

optimal rank (ascertained by 5-fold cross-validation with automatic rank determination based on 

reconstruction error). Data from the HumanMethylation450 and HumanMethylationEPIC platforms 

were merged, mapped to human chromosomes 1-22, and compressed into 11 nonnegative factors. A 

multivariate linear model with empirical Bayes shrinkage was then used to test association of each 

factor with HOX-activating fusions (NSD1, HOXA9, HOXA13, HOXD13, and PRRX1) and epigenetic 

“reader-like” fusions (KDM5A, BPTF, BRWD3, DDX10, HMGB3, KAT7, PHF15, PHF23, SET and TOP1), 

with or without abnormal chr13. Benjamini-Hochberg correction was applied to the resulting matrix 

of p-values (predictor by factor). Hypermethylation signatures significant at an FDR of less than 0.1 

were plotted. Locus-level (CpG) weights for actors associated with one or more biological features 

were then tested for enrichment against chromHMM state33, histone mark ChIPseq (HM), JASPAR 

transcription factor binding sites (TFBS) [Castro-Mondragon, 2022], and CpG island locations (CGI) by 
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selecting the highest 2% of weights (98th percentile; robust from 90th to 99.9th) as driving features, 

using the full array of shared CpG loci as the background distribution. The factor-level heatmap of 

sample clustering was likewise plotted on normalized (x/max(x)) NMF signal strengths across NUP98 

fusion samples as well as pediatric, adolescent, and young adult normal bone marrow (NBM) samples 

from the Heimfeld lab at FHCRC and from AllCells, which were included in the NMF model fit and 

regression analyses as referents. 

 

Statistical methods  

Data were current as of March 31, 2019. The Kaplan-Meier method was used to estimate overall 

survival (OS, defined as time from study entry to death) and event-free survival (EFS, time from study 

entry until failure to achieve CR during induction, relapse, or death). Relapse risk (RR) was calculated 

by cumulative incidence methods defined as time from the end of induction I for patients in CR to 

relapse or death, where deaths without a relapse were considered competing events. Patients who 

withdrew from therapy due to relapse, persistent central nervous system (CNS) disease, or refractory 

disease with >20% bone marrow blasts by the end of induction I were defined as induction I failures. 

The significance of predictor variables was tested with the log-rank statistic for OS, EFS and with Gray’s 

statistic34 for RR. All estimates were reported with two times the Greenwood standard errors. Children 

lost to follow-up were censored at their date of last known contact. Cox proportional hazards models 

were used to estimate the hazard ratio (HR) for defined groups of patients in univariate and 

multivariable analyses of OS and EFS. Competing risk regression models were used to estimate HRs for 

univariate and multivariable analyses of RR. NUP98 translocation partner, cytogenetic/mutational risk 

group, age group, white blood cell count (WBC) and hematopoietic stem cell transplantation (HSCT) 

status were used as covariates. Three cytogenetic/mutational risk groups were defined: standard risk, 

low risk and high risk, based on the COG risk group stratification4. 
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Comparison of clinical characteristics between different subgroups of NUP98-translocated patients 

and the reference cohort was carried out. The chi-squared test was used to test the significance of 

observed differences in proportions, and Fisher’s exact test was used when data were sparse. 

Differences in medians were compared by the Mann-Whitney test. A P-value <0.05 was considered 

statistically significant. Measurable residual disease (MRD) was defined at the end of course one using 

flowcytometry with a cut-off of 0.1% detection of disease. The I-BFM patients were excluded from 

survival analyses due to variation in study groups and treatment protocols. 

 

Data Availability 

RNA-seq and DNA methylation array data on primary patient samples, as well as associated 

clinical/outcome data, are deposited in Genomic Data Commons (GDC, https://portal.gdc.cancer.gov/) 

and the Target Data Matrix (https://ocg.cancer.gov/programs/target/data-matrix) under project ID 

"TARGET-AML". Access to protected files hosted on the Sequence Read Archive (SRA), such as raw 

sequencing data in bam or fastq format, are available through dbGaP TARGET: Acute Myeloid 

Leukemia study (Accession: phs000465.v20.p8). Additional DNA methylation data are hosted on the 

Gene Expression Omnibus (GEO) under accessions GSE190931 and GSE124413. The Beat AML Study 

controlled access RNA-seq data were downloaded from the Genomic Data Commons (GDC) portal and 

are available through the Functional Genomic Landscape of Acute Myeloid Leukemia study on dbGaP 

(Accession: phs001657.v1.p1). TCGA LAML RNA-seq fusion data were accessed from the GDC Data 

Portal (https://gdc.cancer.gov/about-data/publications/laml_2012)7. 
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Supplementary Data 

 

Supplementary Figure 1. Patient inclusion per analysis. 

Flowchart depicting the patient samples that are used per analysis performed. For RNA-sequencing 

(RNA-seq), methylation and flowcytometry analyses, patients with available data were included.  

 

Patients in COG trials
• CCG-2961 (N = 901)
• AAML03P1 (N = 339)
• AAML0531 (N = 1,022) 
• AAML1031 (N = 1,231)

N = 3,493

Excluded: not all data available

N = 1,258

N = 2,235

Eligible for analysis
• CCG-2961 (N = 121)
• AAML03P1 (N = 116)
• AAML0531 (N = 854) 
• AAML1031 (N = 1,144)

RNA-seq

N = 1,482

Methylation

N = 57

Flow cytometry

N = 144

Statistical analysis

N = 2,235

Supplementary Figure 1
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Supplementary Figure 2. NUP98 fusion partners, their prevalence and breakpoints 

a) Prevalence of different NUP98 fusion gene partners within our cohort of NUP98-translocated 

pediatric AML patients. b,c) NUP98-translocated subgroup frequencies within age categories. d) 
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Prevalence of NUP98 fusions in adult and pediatric AML. e) Distribution of NUP98 exon breakpoint 

junctions across all NUP98 fusions identified by RNA-sequencing (N=156).  

 

 

Supplementary Figure 3. Frequencies of NUP98 breakpoint junctions. a) Prevalence of NUP98 

breakpoints per exon for all NUP98 translocated patients. b) Frequencies of NUP98 breakpoints per 

exon within each NUP98-translocated subtype (NUP98-KDM5A, NUP98-NSD1, and NUP98-X).  

 

NUP98 Exon 
Junctions Identified

Number  of 
Patients

Perce nt of 
Patients

Ensem bl Transcr ipt 
ID

RefSeq 
Access ion

Exon13 70 44.87 ENST00000324932

Lorem ipsum

NM_016320
Exon12 62 39.74 ENST00000324932 NM_016320
Exon14 14 8.97 ENST00000324932 NM_016320
Exon11 3 1.92 ENST00000324932 NM_016320
Exon16 2 1.28 ENST00000324932 NM_016320
Exon9 1 0.64 ENST00000324932 NM_016320

Exon29 1 0.64 ENST00000324932 NM_016320
Exon26 1 0.64 ENST00000324932 NM_016320
Exon17 1 0.64 ENST00000324932 NM_016320
Exon15 1 0.64 ENST00000324932 NM_016320

NUP98-
Rearr anged 

Groups
NUP98 Exon 

Junctions Identified
Number of Patients 

in NUP98 Group
Perce nt of Patients 

in NUP98 Group
Ensem bl Transcr ipt 

ID
RefSeq 

Access ion
NUP98-KDM5A Exon13 20 62.5 ENST00000324932 NM_016320
NUP98-KDM5A Exon14 12 37.5 ENST00000324932 NM_016320
NUP98-NSD1 Exon13 45 43.27 ENST00000324932 NM_016320
NUP98-NSD1 Exon12 55 52.88 ENST00000324932 NM_016320
NUP98-NSD1 Exon16 1 0.96 ENST00000324932 NM_016320
NUP98-NSD1 Exon17 1 0.96 ENST00000324932 NM_016320
NUP98-NSD1 Exon26 1 0.96 ENST00000324932 NM_016320
NUP98-NSD1 Exon29 1 0.96 ENST00000324932 NM_016320

NUP98-X Exon13 5 25 ENST00000324932 NM_016320
NUP98-X Exon12 7 35 ENST00000324932 NM_016320
NUP98-X Exon14 2 10 ENST00000324932 NM_016320
NUP98-X Exon11 3 15 ENST00000324932 NM_016320
NUP98-X Exon16 1 5 ENST00000324932 NM_016320
NUP98-X Exon15 1 5 ENST00000324932 NM_016320
NUP98-X Exon9 1 5 ENST00000324932 NM_016320

b

a

Supplementary Figure 3
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Supplementary Figure 4. NUP98 fusion immunophenotypes defined by the identity of the fusion 

partner and co-occurring mutations. Representative examples of the immunophenotype at diagnosis 

in patients with either NUP98-KDM5A or NUP98-NSD1 fusions. a,b) Leukemias harboring NUP98-

KDM5A were defined by a lack of cell surface CD34, CD11b, CD13, and CD64 but consistently 

expressed CD36 and CD33. CD38 and CD123 were also frequently decreased or absent. c,d) All 

Supplementary Figure 4
a b

c d
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NUP98-NSD1 leukemias consistently expressed the immature markers CD34 and CD117. When co-

occurring with FLT3-ITD mutations, tumors also typically expressed the monocytic markers CD36 and 

CD64; however, the expression of these markers was not seen when FLT3-ITD was absent. 
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Supplementary Figure 5. Genomic positions of del(13q) alterations in NUP98-translocated cases. 

a) Ideogram and genome track depicting the location of del(13q) alterations identified in NUP98-

KDM5A patients (N=13) and a single NUP98-SET case (N=1). b) Representation of the minimally 

deleted region found in NUP98-translocated patients in 13q14.2 to 13q14.3, and the genes which 

reside in this locus, including RB1. 
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Supplementary Figure 6. Gene Expression patterns of NUP98-translocated patients with chr13 

abnormalities. a) Unsupervised clustering by uniform manifold approximation and projection 

(UMAP) of NUP98-rearranged AML patients (N=156) illustrating NUP98-KDM5A cases cluster based 

on the presence of chr13 abnormalities (deletions, monosomy 13, or chr13 translocations). b) UMAP 

clustering with NUP98-translocated cases and a heterogenous AML reference cohort (other AML). 

NUP98-KDM5A cases with chr13 abnormalities (dark purple) are shown in comparison to patients 

with del(13q) but lacking NUP98 fusions (teal). c) Down-regulated genes which reside in the 

minimally deleted region del(13)(q14.2q14.3) in NUP98-KDM5A (dark purple) compared to a 

heterogenous reference cohort of patients lacking chr13 deletions and NUP98 translocations (grey). 

AML without NUP98 translocations but harboring del(13q) alterations are also depicted (teal). Violin 

plots display the median (center), and points represent the expression of individual samples.  
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Supplementary Figure 7. Unsupervised hierarchical clustering of NUP98-X. Clustering of NUP98-X 

(N=20) and the reference AML cohort with various fusions and mutations (N=1,326) based on genes 

found to be differentially expressed in the NUP98-X cohort. 

 

G
en

es
Cytogenetic Category

Fusions

NUP98 rearrangement

IRX3

LIN28B
CACNG4
MECOM
RP11−357H14.19

RP11−359N11.2

HOXA9

HOXB8
RP11−388P9.2
HOXB9

HOXB6
HOXB5

RP1−170O19.20
ST7−AS1
NCR2

HOXB7

Cytogenetic Category
Inv(16)
KMT2A
Normal
Other
T(8;21)
Unknown

Fusions
CBFA2T3−GLIS2
FUS−ERG
KMT2A−MLLT1
KMT2A−MLLT3
KMT2A−X
RUNX1−CBFA2T3

DEK−NUP214
KAT6A−CREBBP
KMT2A−MLLT10
KMT2A−MLLT4
OtherAML

ETV6−MNX1
KMT2A−ELL
KMT2A−MLLT11
KMT2A−SEPT6
RBM15−MKL1

NUP98 rearrangement
NUP98−X
OtherAML−4 −2 0 2 4

Z-Scores

Supplementary Figure 7



20 
 

 

Supplementary Figure 8. Gene expression patterns in NUP98-X. Expression of HOX homeobox genes 

found to be upregulated in NUP98-X compared to the reference AML cohort.  
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Supplementary Figure 9 

 

Supplementary Figure 9. Outcome in NUP98-translocated patients. Outcome for patients in 

complete remission (CR) after induction 1 was examined for a) disease-free survival (DFS) compared 

to the reference cohort. b) Overall survival (OS) within NUP98-KDM5A by NUP98 exon breakpoint 

junction.  
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Supplementary Table 1. Clinical characteristics and outcome of pediatric AML patients with and without NUP98 
translocations 
 No NUP98 

fusion 
N = 2075 

NUP98-NSD1 
 

N=108 

P-value1 NUP98-
KDM5A 
N = 32 

P-value1 NUP98-X 
 

N = 20 

P-value1 

Median age 
(range) 

10.0 
(0.01-29.8) 

10.2 
(1.19-19.89) 

0.228 2.7 
(0.98-15.92) 

<0.001   7.9 
(0.43-16.9) 

0.300 

Sex male N (%) 1056 (50.9) 70 (64.8) 0.005 18 (56.3) 0.547 10 (50.0) 0.937 
Age category N (%) 
   <3 years 
   3-10 years 
   >10 years 

 
502 (24.2) 
529 (25.5) 
1044 (50.3) 

 
7 (6.5) 
45 (41.7) 
56 (51.9) 

 
<0.001 
<0.001 
0.755 

 
18 (56.3) 
10 (31.3) 
4 (12.5) 

 
<0.001  
0.459 
<0.001 

 
8 (40.0) 
2 (10.0) 
10 (50.0) 

 
0.116 
0.113 
0.978 

FAB M6/M7 N (%) 107 (5.5) 3 (2.9) 0.259 15 (46.9) <0.001  2 (10.5) 0.283 
CNS disease, N (%) 385 (18.9) 19 (18.1) 0.830 1 (3.1) 0.023 5 (25.0) 0.564 
WBC x 103 ul median 
(range) 

23.9 
(0.2-918.5) 

169 
(1.1-860) 

<0.001   11.4 
(1.8-237.3) 

0.008 14.65 
(3.5-445.7) 

0.701 

Blasts, % (range) 
   BM 
   PB 

 
69 (0-100) 
41 (0-99) 

 
81 (20-98) 
68.9 (0-100) 

 
<0.001  
<0.001   

 
42 (4-99) 
9.5 (0-93) 

 
0.007 
<0.001   

 
54 (20-91) 
35 (0-93) 

 
0.521 
0.909 

Chromosomal aberrations 
  Normal 
  t(6;9) 
  t(8;21) 
  inv(16) 
  Monosomy 5/del5q 
  Del7q 
  Monosomy 7  
  Trisomy 8 

 
474 (23.5) 
43 (2.1) 
294 (14.5) 
224 (11.1) 
25 (1.2) 
30 (1.5) 
49 (2.4) 
108 (5.3) 

 
55 (57.3) 
0 (0) 
0 (0) 
0 (0) 
4 (4.2) 
1 (1.0) 
0 (0) 
18 (18.8) 

 
<0.001 
0.261 
<0.001 
<0.001 
0.040 
1.000 
0.168 
<0.001 

 
6 (20.7) 
0 (0) 
0 (0) 
0 (0) 
0 (0) 
0 (0) 
0 (0) 
4 (13.8) 

 
0.727 
1.000 
0.016 
0.066 
1.000 
1.000 
1.000 
0.070 

 
1 (5.0) 
0 (0) 
0 (0) 
0 (0) 
0 (0) 
0 (0) 
0 (0) 
1 (5.0) 

 
0.061 
1.000 
0.100 
0.156 
1.000 
1.000 
1.000 
1.000 

Chromosome 13, N (%) 
  Abnormal chr132 

  Chr13 deletion (del13q) 

 
47 (2.3) 
18 (0.9) 

 
0 (0) 
0 (0) 

 
0.271 
1.000 

 
19 (65.3) 
13 (43.3) 

 
<0.001 
<0.001 

 
1 (5.0) 
1 (5.0) 

 
0.383 
0.173 

Molecular genetics 
   FLT3-ITD 
   WT1 
   NPM1 
   CEBPA 

 
301 (14.7) 
192 (9.6) 
189 (9.3) 
126 (6.2) 

 
80 (74.1) 
47 (43.5) 
0 (0) 
0 (0) 

 
<0.001  
<0.001  
0.001 
0.008 

 
1 (3.1) 
1 (3.1) 
0 (0) 
0 (0) 

 
0.075 
0.358 
0.111 
0.258 

 
2 (10.0) 
5 (25.0) 
1 (5.0) 
0 (0) 

 
0.756 
0.039 
0.512 
0.630 

SCT yes, N (%) 353(17.0) 39 (36.1) <0.001 8 (25.0) 0.230 2 (10.0) 0.630 
CR end course 1, N (%) 
MRD+ end course 1, N (%) 

1575 (78.0) 
477 (27.3) 

39 (38.2) 
57 (73.1) 

<0.001 
<0.001 

25 (80.6) 
14 (51.9) 

0.729 
0.005 

13 (65.0) 
4 (22.2) 

0.176 
0.793 

Survival 
  5-y O3, % (+ 2SE) 
  5-y EFS3, % (+ 2SE) 
  5-y RR4, % (+ 2SE) 

 
64 (+ 2%) 
47 (+ 2%) 
42 (+ 3%) 

 
36 (+ 10%) 
17( + 7%) 
64 (+ 16%) 

 
<0.001 
<0.001 
0.001 

 
30 (+ 18%) 
25(+ 16%) 
68 (+ 21%) 

 
<0.001 
0.010 
0.010 

 
35 (+ 21%) 
35 (+ 21%) 
69 (+ 28%) 

 
0.009 
0.333 
0.071 

1 P-value represents a comparison with the reference cohort. 2Including del13q, monosomy 13, and translocations 
involving chromosome 13. 3Time from study entry. 4Time from end of induction 1. 
AML: acute myeloid leukemia; BM: bone marrow; CNS: central nervous system; CNV: copy number variation; CR: 
complete remission (measured by morphology); CR1: first complete remission; EFS: event-free survival; FAB: 
French-American-British classification; MRD+: measurable residual disease positivity (measured by flow 
cytometry); OS: overall survival; RR: relapse rate; SCT: stem cell transplantation; SE: standard error; WBC: white 
blood cell count; y: year. Not all data was available from all included patients, percentages are adjusted to unknown 
values.  

 

Supplementary Table 2. RNA-sequencing sample manifest 

Separate Excel file.  
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Supplementary Table 3. Characteristics of NUP98-other translocated pediatric AML patients 

Patient 
Study 
Group 

Se
x 

Age 
(y) 

NUP98 translocation  
by karyotype 

Abnormal chr13 
by karyotype 

WBC 
(x10^9/l) X =  

Molecular 
genetics 

SCT 
in 
CR1 Outcome 

PAXJFS COG M 0.4 t(11;17)(p15;q23) 
 

14 BPTF   No Relapse, died 

PAMYMA COG M 1.2 t(X;11)(q13;p15.1) 
 

237 BRWD3   N/A 
Induction 
failure, died 

PAUYZY COG M 1.3 
der(11)ins(11;11)(p15;
q21q23) 

 
6.1 DDX10   No Relapse, died 

PANLXM COG F 10.3 
cryptic - partner 
telomeric 

 
11.2 HMGB3 

FLT3, 
WT1 No Relapse, died 

PAVCNU COG F 5.6 t(7;11)(p15;p15) 
 

4.8 HOXA13   No Death, died 

PARGDB COG F 16.8 t(7;11)(p15;p15) 
 

79 HOXA9 WT1 No Relapse, died 

PAXAFS COG M 13.6 t(7;11)(p15;p15) 
 

26.8 HOXA9   Yes Relapse, died 

PARIEG COG F 13.4 t(7;11)(p15;p15) 
 

50.2 HOXA9   No Relapse, died 

PARDRM COG F 12.5 t(7;11;9)(p15;p15;q22) 
 

286 HOXA9   Yes Relapse, died 

PATELT COG F 12 t(2;11)(q31;p15) 
 

46.7 HOXD13   N/A 
Censored, 
alive 

PAUPDK COG M 4.1 t(2;11)(q31;p15) 

 

444.7 HOXD13 WT1 No 

Death without 
remission, 
died 

PATETC COG M 1.7 t(2;11)(q31;p15) 
 

9.8 HOXD13   No 
Censored, 
alive 

PASSBI COG M 1.2 t(11;17)(p15;q21) 
 

9.1 KAT7   No 
Censored, 
alive 

PAXFSI COG M 2 t(5;11)(q31;p15.5) 
 

9.7 PHF15   No 
Censored, 
alive 

PAWRUF COG F 1.4 t(5;11)(q31;p15) 
 

8.9 PHF15   No 
Censored, 
alive 

PARSAN COG M 14.8 cryptic 
 

5.3 PHF23   No Relapse, died 

PAVCPM COG F 13.5 t(11;17)(p15;p13) 
 

3.5 PHF23   No Relapse, died 

PAWNBB COG M 16.9 t(1;11)(q23;p15) 
 

65 PRRX1 
FLT3, 
WT1 No Relapse, died 

PATESX COG F 2.3 cryptic 
del(13)(q12q22) 

21.1 SET   No 
Censored, 
alive 

PASPIX COG F 16.3 t(11;20)(p15;q11.2) 
 

15.3 TOP1 
NPM1, 
WT1 No 

Censored, 
alive 

IBFM01 
BFM-
Austria M 3.3  t(11;20)(p15;q11) 

 
9.25 TOP1   No Relapse, died 

IBFM02 
BFM-
Italy1 F 5.2  t(9;11)(p22;p15) 

 
207 LEDGF   N/A Toxicity, died 

IBFM03 
BFM-
Italy2 M 11.8  inv(11)(p15q22) 

 
29.7 DDX10   Yes Relapse 

IBFM04 
BFM-
Germany F 2.3  t(7;11)(p13;p15) 

 
152 HOXA13 N/A No Alive 

IBFM05 BFM-NL F 12.9 
t(11;20)(p15;q12).ish 
t(11;20) 

 

214 TOP1 WT1 

Yes, 
in 
CR2 Infection, died 

IBFM06 
NOPHO-
DBH F 9.8 t(11;20)(p15;q11) 

 
248 TOP1 RUNX1  Yes Alive 

BFM: Berlin-Frankfurt-Münster; COG: Children’s Oncology Group; CR: complete remission; F: female; M: male; N/A: data not available; NL: 
Netherlands; SCT: stem cell transplantation; WBC: white blood cell count; y: years. 1) C.Morerio et al, Leukemia Res 2005. 2) C.Morerio et al, Cancer 
Genet Cytogenet 2006. 
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Supplementary Table 4. NUP98-X fusion genomic breakpoints and corresponding exon junctions. The NUP98 transcript 
identifiers are ENST00000324932 and NM_016320.  
Patient NUP98 fusion Breakpoint Exon 

breakpoint 
NUP98 

Partner 
gene 

Exon 
breakpoint 
partner gene 

Ensembl Transcript ID 
partner gene 

RefSeq 
Accession 
partner gene 

PARDRM NUP98-HOXA9 11:3765739|7:27204586 12 HOXA9 1 ENST00000343483 NM_152739 

PARGDB NUP98-HOXA9 11:3765739|7:27204586 12 HOXA9 1 ENST00000343483 NM_152739 

PARIEG NUP98-HOXA9 11:3765739|7:27204586 12 HOXA9 1 ENST00000343483 NM_152739 

PAXAFS NUP98-HOXA9 11:3774546|7:27204586 11 HOXA9 1 ENST00000343483 NM_152739 

PATELT NUP98-HOXD13 11:3744387|2:176959208 16 HOXD13 2 ENST00000392539 NM_000523 

PATETC NUP98-HOXD13 11:3765739|2:176959208 12 HOXD13 2 ENST00000392539 NM_000523 

PAUPDK NUP98-HOXD13 11:3765739|2:176959208 12 HOXD13 2 ENST00000392539 NM_000523 

PAXFSI NUP98-PHF15 11:3756421|5:133871548 13 PHF15 2 ENST00000395003 NM_015288 

PARSAN NUP98-PHF23 11:3756421|17:7140086 13 PHF23 4 ENST00000320316 NM_024297 

PAVCPM NUP98-PHF23 11:3756421|17:7140086 13 PHF23 4 ENST00000320316 NM_024297 

PAWRUF NUP98-PHF15 11:3756421|5:133871548 13 PHF15 2 ENST00000395003 NM_015288 

PAMYMA NUP98-BRWD3 11:3765739|X:79973258 12 BRWD3 19 ENST00000373275 NM_153252 

PAVCNU NUP98-HOXA13 11:3765739|7:27238061 12 HOXA13 2 ENST00000222753 NM_000522 

PASSBI NUP98-KAT7 11:3784132|17:47869248 9 KAT7 2 ENST00000259021 NM_007067 

PATESX NUP98-SET 11:3774546|9:131453449 11 SET 2 ENST00000372692 NM_001122821 

PASPIX NUP98-TOP1 11:3756421|20:39713102 13 TOP1 8 ENST00000361337 NM_003286 

PAUYZY NUP98-DDX10 11:3752621|11:108559663 14 DDX10 7 ENST00000322536 NM_004398 

PAWNBB NUP98-PRRX1 11:3774546|1:170688867 11 PRRX1 2 ENST00000367760 NM_006902 

PANLXM NUP98-HMGB3 11:3746435|X:150151833 15 HMGB3 1 ENST00000325307 NM_005342 

PAXJFS NUP98-BPTF 11:3752808|17:65944422 14 BPTF 23 ENST00000306378 NM_182641 
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Supplementary Table 5. Chromosome 13 abnormalities identified in NUP98-KDM5A by karyotype. 
Patient NUP98 translocation Deletion chr13 Monosomy 13 Translocation 13 

PAVXNZ NUP98-KDM5A del(13)(q12.3q14.3)   t(1;13)(p12;q12) 

PASWTG NUP98-KDM5A del(13)(q12q14)     

PATABK NUP98-KDM5A del(13)(q12q14)     

PASJGZ NUP98-KDM5A del(13)(q12q14)     

PAUVZD NUP98-KDM5A del(13)(q12q14)     

PAVWPW NUP98-KDM5A del(13)(q12q14)     

PAWEKU NUP98-KDM5A del(13)(q12q14)     

PAWRYC NUP98-KDM5A del(13)(q12q14)     

PAKVGI NUP98-KDM5A del(13)(q12q21)     

PAVAWS NUP98-KDM5A del(13)(q12q22)     

PAVYNF NUP98-KDM5A del(13)(q12q22)     

PAXEEY NUP98-KDM5A del(13)(q12q22)     

PAWWWM NUP98-KDM5A del(13)(q14.2q14.3)     

PAWPLE NUP98-KDM5A 
 

Monosomy 13 t(13;22) (q21;p11.2) 

PARKLC NUP98-KDM5A 
 

Monosomy 13   

PASDTY NUP98-KDM5A     t(10;13)(p11.2;q21) 

PAWJIM NUP98-KDM5A     t(13;17)(q22;q25) 

PAVAFA NUP98-KDM5A     t(2;13)(q31;q14) 

PARXMP NUP98-KDM5A     t(6;13)(q 23;q12) 

PATKMB NUP98-KDM5A       

PARDLW NUP98-KDM5A      

PANGTF NUP98-KDM5A       

PARDYG NUP98-KDM5A       

PARMHD NUP98-KDM5A       

PATLFJ NUP98-KDM5A       

PATKJB NUP98-KDM5A       

PAUYCB NUP98-KDM5A       

PAVULK NUP98-KDM5A       

PAWDNM NUP98-KDM5A       

PAWPDC NUP98-KDM5A       

PAKERZ NUP98-KDM5A       

PAEMCF NUP98-KDM5A       
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Supplementary Table 6. NUP98 fusion immunophenotypes identified by multidimensional flow cytometry.  
 

NUP98-KDM5A (N=31) 
 CD34- HLA-

DR+ 
11b- CD38 

dim/- 
CD36 
het/+ 

CD13- CD33- CD14+ Some 
CD56+ 

Some 
CD7+ 

CD17- CD64- 123 
dim/- 

# 28 15 29 19 25 26 8 0 7 2 14 13 15 

% 90.3 48.4 93.5 61.3 80.6 83.9 25.8 0.0 22.6 6.5 45.2 81.3 83.3 
N 31 31 31 31 31 31 31 31 31 31 31 16 18 

 
NUP98-X (N=20) 

 CD34- HLA-
DR+ 

11b- CD38 
dim/- 

CD36 
het/+ 

CD13- CD33- CD14+ Some 
CD56+ 

Some 
CD7+ 

CD17- CD64- 123 
dim/- 

# 7 12 20 3 4 5 2 0 3 1 5 3 3 

% 35.00 60.0 
100.
00 15.00 20.00 25.00 10.00 0.00 15.00 5.00 25.00 37.50 33.33 

N 20 20 20 20 20 20 20 20 20 20 20 8 9 
 

NUP98-NSD1 (N=92) 
 CD34- HLA-

DR+ 
11b- CD38 

dim/- 
CD36 
het/+ 

CD13- CD33- CD14+ Some 
CD56+ 

Some 
CD7+ 

CD17- CD64- 123 
dim/- 

# 15 90 29 16 42 13 6 2 4 19 6 17 0 

% 16.30 97.83 31.5
2 

17.39 45.65 14.13 6.52 2.17 4.35 20.65 6.59 37.78 0.00 

N 92 92 92 92 92 92 92 92 92 92 91 45 54 
 

NUP98-NSD1 FLT3-ITD pos (N=67) 
 CD34- HLA-

DR+ 
11b- CD38 

dim/- 
CD36 
het/+ 

CD13- CD33- CD14+ Some 
CD56+ 

Some 
CD7+ 

CD17- CD64- 123 
dim/- 

# 11 65 11 13 37 11 5 2 3 15 4 10 0 

% 16.42 97.01 16.4
2 19.40 55.22 16.42 7.46 2.99 4.48 22.39 5.97 29.41 0 

N 67 67 67 67 67 67 67 67 67 67 67 34 41 
 

NUP98-NSD1 FLT3-ITD neg (N=23) 
 CD34- HLA-

DR+ 
11b- CD38 

dim/- 
CD36 
het/+ 

CD13- CD33- CD14+ Some 
CD56+ 

Some 
CD7+ 

CD17- CD64- 123 
dim/- 

# 2 23 16 3 3 2 1 0 1 4 2 7 0 

% 8.70 100.00 
69.5

7 13.04 13.04 8.70 4.35 0.00 4.35 17.39 9.09 63.64 0 

N 23 23 23 23 23 23 23 23 23 23 22 11 13 
#: number of patients; %: percentage of patients; het: heterogeneous; N: number of assessed patients 

 

Supplementary Table 7. RCIS-Target analysis results 

Separate Excel file. 
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Supplementary Table 8. Univariable and multivariable analyses for OS and RR of NUP98-translocated AML 
Univariable analyses 
Variables Overall survival 

HR (95% CI), p-value 
Relapse risk 
HR (95% CI), p-value 

NUP98-NSD1 2.17 (1.68-2.8); <0.001 2.04 (1.34-3.11); 0.001 
NUP98-KDM5A 2.26 (1.43-3.56); 0.001  1.99 (1.21-3.26); 0.007 
NUP98-X 2.05 (1.19-3.55); 0.010 1.86 (1.06-3.27); 0.031 
 
Multivariable analyses 
NUP98 fusion partner 
     NUP98-NSD1 
     NUP98-KDM5A 
     NUP98-X 

 
1.46 (1.1-1.94); 0.009 
1.83 (1.13-2.96); 0.015 
1.75 (1.01-3.04); 0.046 

 
1.74 (1.1-2.76); 0.018 
1.42 (0.84-2.42); 0.193 
1.43 (0.82-2.51); 0.208 

Low risk cytogenetics 
High risk cytogenetics 

0.37 (0.3-0.45); <0.001 
1.20 (0.99-1.45); 0.069 

0.47 (0.39-0.56); <0.001 
0.61 (0.47-0.8); <0.001 

WBC > 100 (x10^3/ul) 1.09 (0.91-1.29); 0.354 1.31 (1.08-1.59); 0.006 
Overall survival (OS; from study entry) and relapse risk (RR; from end of induction 1) for different NUP98-
translocated subgroups in univariable and multivariable analysis. Shown are Hazard ratio (HR) with a 95% 
confidence interval (95% CI) and p-value. In univariable analyses, the reference is the reference cohort with non-
NUP98 translocated patients. In multivariable analysis, cytogenetic risk group and white blood cell count (WBC) are 
taken into account, references are non-NUP98-translocated patients, standard risk cytogenetics and WBC <100 
(x10^3/ul), respectively. 

 


