Overexpression of the key metabolic protein CPT1A defines mantle cell lymphoma patients with poor response to standard high-dose chemotherapy independent of MIPI and complement established highrisk factors

Anna Sandström Gerdtsson,¹ Joana de Matos Rodrigues,¹ Christian Winther Eskelund,² Simon Husby,² Kirsten Grønbæk,² Riikka Räty,³ Arne Kolstad,⁴ Christian Geisler,² Anna Porwit,⁵ Mats Jerkeman⁶ and Sara Ek¹

¹Department of Immunotechnology, Lund University, Lund, Sweden; ²Department of Hematology, Rigshospitalet, Copenhagen, Denmark; ³Department of Hematology, Helsinki University Hospital, Helsinki, Finland; ⁴Department of Oncology, Oslo University Hospital, Oslo, Norway; Department of Clinical Sciences, Oncology and Pathology, Lund University, Lund, Sweden and ⁶Department of Oncology, Lund University Hospital, Lund, Sweden

Correspondence: S. EK sara.ek@immun.lth.se

Received: May 24, 2022. Accepted: November 28, 2022. Early view: December 15, 2022.

https://doi.org/10.3324/haematol.2022.281420

©2023 Ferrata Storti Foundation Published under a CC BY-NC license © ① ③

Supplementary Tables

Table S1. Multivariate Cox regression for CPT1A protein expression in the N-MCL2/3 cohort considering *TP53*.

Variable	MR cut-off	HR (95% CI)	Outcome	
CTP1A	≥ 15%	11.43 (2.10 – 62.17)**	- - - TTP -	25
MIPI	Intermediate ¹	1.44 (0.39 – 5.31)		
	High ¹	6.44 (0.93 – 44.71)		
Morphology	Blastoid/pleomorphic	1.88 (0.07 – 3.84)		
Ki-67	≥ 30%	1.23 (0.19 - 3.40)		
TP53	Mutated	0.4 (0.38 – 15.79)		
CTP1A	≥ 69%	15.61 (1.20 – 203.70)*	- - - OS -	25
MIPI	Intermediate ¹	5.15 (0.74 – 35.83)		
	High ¹	8.19 (0.99 – 67.46)		
Morphology	Blastoid/pleomorphic	5.00 (0.63 – 40.07)		
Ki-67	≥ 30%	0.28 (0.03 – 2.43)		
TP53	Mutated	0.72(0.09 - 5.54)		

¹MIPI low risk was used as reference category.

CI: Confidence Interval; HR: Hazard Ratio; MIPI: Mantle cell lymphoma International Prognostic Index; MR cut-off, maximally selected ranked statistics cut-off values; OS: Overall Survival; TTP: Time to progression

Supplementary Figure legends

Figure S1. Kaplan-Meier estimate and log-rank test for OS in the N-MCL2/3 cohort stratified by 15% of CPT1A positive cells evaluated by IHC.

Figure S2. IHC analysis demonstrated significant association of dichotomized CPT1A protein expression in relation to proliferation (Ki-67%) and morphology in both clinical trial N-MCL2/3 and the population-based BLISS cohorts, but not in relation to SOX11 expression. Top row: N-MCL3/3 cohort; Bottom row: BLISS cohort.

Figure S3. Differential expression analysis of A) cases with high and low proliferation, B) cases with non-classic vs classic MCL, and C) cases carrying *TP53* mutations vs wt. Top panel shows p-value distribution, bottom panel volcano plot.

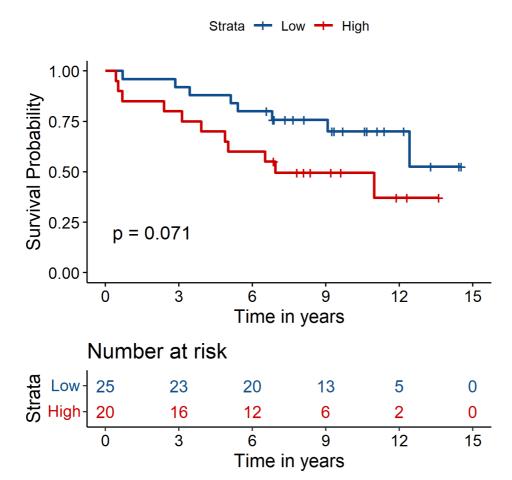
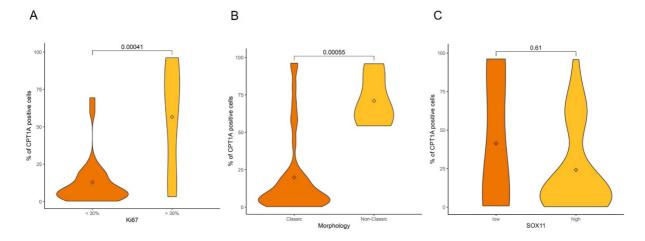
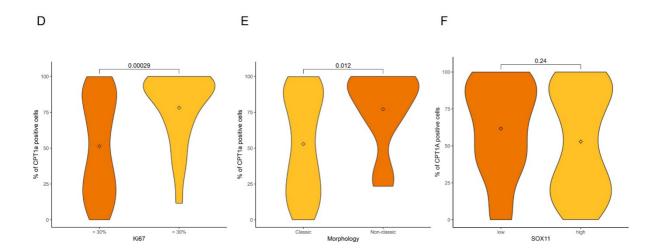
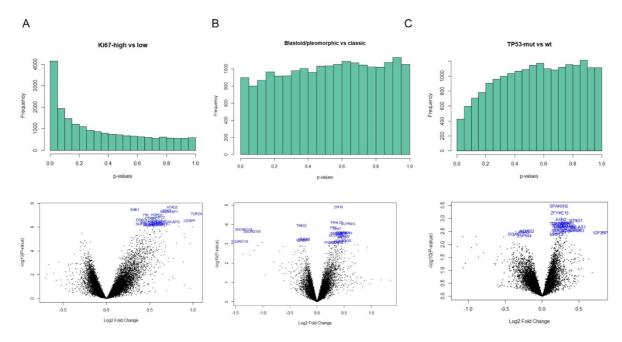

Figure S4. Pathway overview showing cell cycle regulatory genes with genes upregulated in cases with high proliferation shown in red and down-regulated genes in green.

Figure S5. FEN1 and WEE1 expression levels are associated with high-risk MCL phenotypes, as assessed in the population-based BLISS cohort. IHC analysis demonstrated significant association of dichotomized A) WEE1 in relation to Ki-67 level, and B) WEE1 in relation to histological groups. C) WEE1 protein levels were not correlated to OS (same for *WEE1* gene). D) Dichotomized FEN1 expression was associated to Ki-67 high and E) non-classic morphology. F) FEN1 expression was significantly correlated to shorter OS, using a threshold of 39% as determined by maximally selected ranked statistics.

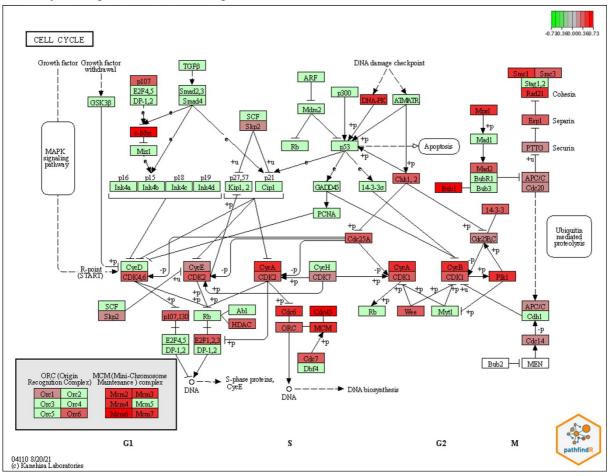

Figure S6. Deregulated genes in *TP53* and *ATM* mutated MCL. With a threshold of p<0.05, 23 enriched pathways were identified for TP53. A) UpSet plot of the top 10 significantly (p<6E-3)

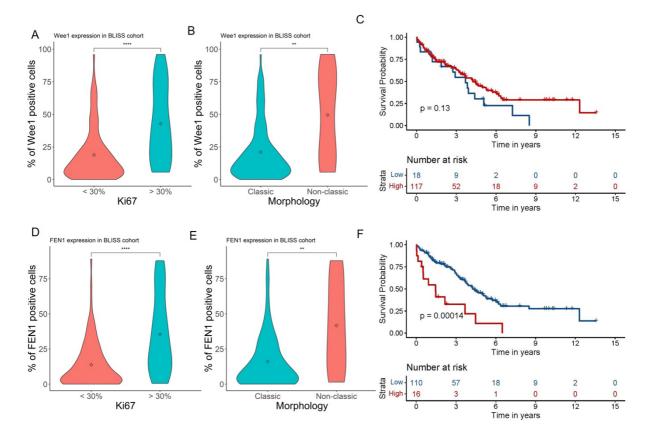

^{*} p-value < 0.05, ** p-value < 0.01

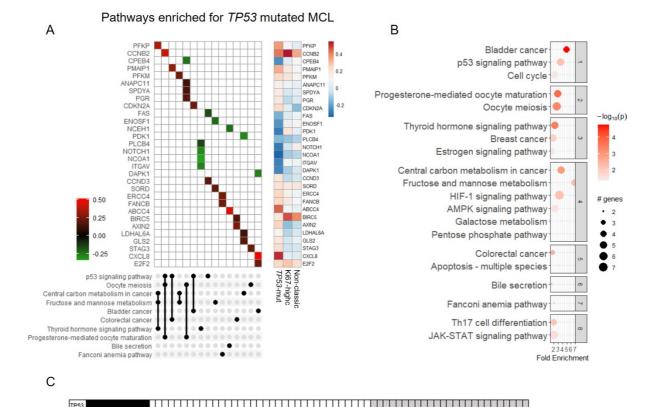
enriched pathways for *TP53* mutated vs wt, colored by relative expression with red and green denoting up- and downregulation in *TP53* mutated MCL, respectively. Heatmap with log FCs for *TP53* mutated vs wt, with log FCs for Ki-67 high vs low, and non-classic (blastoid) vs classic MCL added for comparison. B) Top eight clusters of significantly enriched pathways for *TP53* mutated vs wt. C) *TP53* and *ATM* mutations were mutually exclusive in the selected MCL cohort. Each column represents one sample, with black=mutated, white=wt, and grey=unknown. D) Top 20 significantly enriched pathways for *ATM* mutated vs wt, clustered by involved genes. E) Deregulated genes in steroid biosynthesis, and pathway cluster 2, including e.g., *TP53*, *PTEN*, and genes related to apoptosis (*CASP3*, *TUBA1C*, *MAPK8*, *MAPK9*, and *FASLG*)

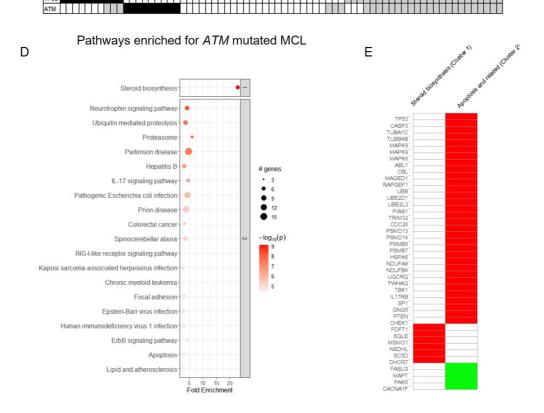


SFig2.




SFig3.




Cell cycle regulation in Ki67 high vs low MCL

SFig 5.

