# Translational readthrough at F8 nonsense variants in the factor VIII B domain contributes to residual expression and lowers inhibitor association

Maria Francesca Testa,<sup>1</sup> Silvia Lombardi,<sup>1°</sup> Francesco Bernardi,<sup>1</sup> Mattia Ferrarese,<sup>1</sup> Donata Belvini,<sup>2</sup> Paolo Radossi,<sup>3</sup> Giancarlo Castaman,<sup>4</sup> Mirko Pinotti<sup>1</sup> and Alessio Branchini<sup>1</sup>

<sup>1</sup>Department of Life Sciences and Biotechnology and LTTA Center, University of Ferrara, Ferrara; <sup>2</sup>Transfusion Service, Hemophilia Center and Hematology, Castelfranco Veneto Hospital, Castelfranco Veneto; <sup>3</sup>Oncohematology-Oncologic Institute of Veneto, Castelfranco Veneto Hospital, Castelfranco Veneto and <sup>4</sup>Center for Bleeding Disorders and Coagulation, Careggi University Hospital, Florence, Italy.

°Current address: Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.

Correspondence: A. Branchini brnlss@unife.it M. Pinotti pnm@unife.it

**Received:** Accepted:

April 20, 2022. July 29, 2022. Prepublished: August 4, 2022.

https://doi.org/10.3324/haematol.2022.281279

©2023 Ferrata Storti Foundation Published under a CC BY-NC license 😇 🛈 S

#### Testa et al. – Supplementary Data

#### **Supplementary Methods**

### Variant databases

The inspected databases were the European Association of Hemophilia and Allied Disorders (EAHAD) FVIII Gene Variant Database (<u>https://f8-db.eahad.org/index.php</u>),<sup>37</sup> the CDC Hemophilia Project (CHAMP, <u>https://www.cdc.gov/ncbddd/hemophilia/champs.html</u>),<sup>38</sup> and the Human Genome Mutation Database (HGMD, <u>http://www.hgmd.cf.ac.uk/ac/all.php</u>).<sup>11</sup> Additional inspections for nucleotide missense changes in the *F8* gene were performed in the genome aggregation database (gnomAD, <u>https://gnomad.broadinstitute.org/</u>).

#### **Cloning strategy**

All oligonucleotides used to generate the constructs used in this study are listed in Supplementary Table S1.

The human *F8* (h*F8*) cDNA was cloned (*Sall-Nhe*l restriction) from the pBS-hF8 construct (Supplementary Figure S1A) to the pCMV6XL4-MCS plasmid with the designed multicloning site (MCS) (Supplementary Figure S1B), generated by self-annealing and PCR amplification, and inserted (*Not*l restriction) as a *Not*l-MCS-*Not*l segment into an empty pCMV6XL4 vector to obtain the pCMV6XL4-hF8 expression plasmid (Supplementary Figure S1C). For modification purposes, by taking advantage of the two h*F8* natural *Kpn*l and *EcoRV* restriction sites, the h*F8* sequence was cleaved in three segments (F8A, *Sall-Kpn*l; F8B, *Kpnl-Eco*RV; F8C, *Eco*RV-*Nhe*l) that were subcloned into the pCMV6XL4-HCS plasmid (Supplementary Figure S1B) to create the pCMV6XL4-F8A, pCMV6XL4-F8B, and pCMV6XL4-F8C plasmids (Supplementary Figure S1D). The F8C segment, containing the natural h*F8* termination codon (NTC, position 2352), was then modified by two mutagenesis steps, which included removal of the NTC (NTCsup), followed by cloning (Supplementary

Figure S1E). The F8 NTC (TGA) and the downstream Nhel and Not restriction sites were removed and the AsiSI restriction site inserted to obtain the pCMV6XL4-C1 construct (Supplementary Figure S1E, panel i). The *Mlul* restriction site, designed to introduce the Gaussia cDNA, as well as the surrounding *Pml* and *Nhel* sites, were inserted downstream of the F8C1 segment, also by adding an additional nucleotide downstream of the AsiSI restriction site (GCGAT<sub>1</sub>CGC) to maintain the reading frame, to create the pCMV6XL4-C2 construct (Supplementary Figure S1E, panel ii). The modified F8C2 segment was then cloned (*Eco*RV-AsiSI) into the pCMV6XL4-hF8 vector to replace the original F8C segment. and generate the pCMV6XL4-F8D plasmid containing the whole hF8 sequence and the downstream restriction sites (AsiSI, Pml and Mlul) designed to allow production of the chimeric constructs (Supplementary Figure S1E, panel iii). The Gaussia sequence was then cloned (*Mlul* sites) downstream of hF8 to obtain the pCMV6XL4-hF8-GL chimeric construct encoding the factor VIII (FVIII)-Gaussia (GL) (FVIII-GL) fusion protein (Supplementary Figure S1F). For comparison analysis, a second version of the FVIII-GL construct was produced by cloning the Gaussia sequence including the signal peptide (SP) downstream of hF8 (Supplementary Figure S1G). Further, a glycine-serine (GS) linker, known to improve secretion efficiency of chimeric proteins containing coagulation factors by separating fusion partners,<sup>43,44</sup> was added between hF8 and Gaussia sequences by self-annealing oligonucleotides with flanking Pml restriction sites to obtain the pCMV6XL4-hF8-linker-GL expression plasmid (Supplementary Figure S1H). Finally, the pCMV6XL4-hF8-Stop-GL plasmid (Supplementary Figure S1I), designed as negative control, was produced by reintroducing the hF8 NTC between hF8 and Gaussia.

Nonsense/missense nucleotide changes were introduced in the pCMVXL4-F8A, pCMVXL4-F8B or pCMVXL4-F8C2 plasmids by site-directed mutagenesis, and then sub-cloned into the pCMV6XL4-hF8-GL construct, through *Sal*I-*Kpn*I (F8A), *Kpn*I-*Eco*RV (F8B) or *Eco*RV-

*Asi*SI (F8C2) restriction sites, by replacing the corresponding wild-type segment. All constructs were validated by sequencing.

#### Optimization of the luciferase-based expression system

The Gaussia-based assay provides a highly sensitive system for detecting intracellular and secreted luciferase activity by oxidation of the coelenterazine substrate to the coelenteramide product. The light output of the FVIII-GL fusion protein in the assay is related to the level of readthrough over the PTC inserted in the F8-coding region (Supplementary Figure S2).

To optimize the luciferase-based system we first compared expression levels of the FVIII-GL fusion protein containing the sequence encoding mature Gaussia luciferase, with or without the signal peptide (SP), which drives targeting to endoplasmic reticulum and the subsequent intracellular cleavage. As expected, the FVIII-GL chimera with the SP produced higher luciferase activity and a remarkable dispersion of replicate values as compared to the FVIII-GL protein containing only mature Gaussia (Supplementary Figure S3A), which was selected as fusion partner for this study. We then evaluated expression levels at different time points of FVIII-GL, which showed time-dependent secreted luciferase activity (Supplementary Figure S3B). Subsequently, based on the knowledge of the effects of linker sequences on fusion protein features,<sup>43,44</sup> we compared the expression at 48 hours of FVIII-GL, in which FVIII and Gaussia are directly fused, with that of FVIII-linker-GL, containing an interposed glycine-serine linker. The secretion efficiency of the two chimeric proteins was similar (Supplementary Figure S3C), which prompted us to select the direct FVIII-GL fusion protein as scaffold for the insertion of the designed nonsense/missense changes. To this purpose, and based on our hypothesis, we also evaluated expression levels at different time points of the FVIII-GL scaffold bearing two paradigmatic F8 PTCs differing in features and localization. These studies (Supplementary Figure S3D), where fusion proteins showed a

time-dependent expression, allowed us to select the time point at 48 hours to magnify signal detection for those *F8* PTCs associated with low or very low secreted protein levels, as in the case of Arg15\*. Aware of potential background confounding effects for detection of very low levels, as further controls we also produced FVIII-GL constructs containing the *F8* natural termination codon, two or three stop codons between FVIII and Gaussia. We observed an inverse relationship between the levels of detected readthrough and the number of stop codons (Supplementary Figure S3E), which validated our expression system and indicated a very low background useful to detect very low levels.

## Supplementary Table S1.

## Oligonucleotides used to design the FVIII-GL constructs and introduce nonsense and

## missense changes in the *h*F8 sequence.

| Oligonucleotide    | Use                                                                                                                                 | Sequence (5'-3')                                                                        |  |  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--|--|
| MCS-F              | multi-cloning site generated by self-annealing and cloning ( <i>Not</i> I) in pCMV6XL4                                              | tatatGCGGCCGCGTCGACGAATTCGGATTCGGT<br>ACCAAGCTTAGATCTGATATC                             |  |  |
| MCS-R              | multi-cloning site generated by self-annealing and cloning ( <i>Nott</i> ) in pCMV6XL4                                              | atataGCGGCCGCAAGCTAGCCTCGAGTCTAGAG                                                      |  |  |
| MutNTCdel-insAsiSI | Deletion of h <i>F</i> 8 TGA and of<br>downstream Nhel and Notl sites,<br>and insertion of AsiSI site                               | GCACAGGACCTCTAC <mark>GCGATCGC</mark> TCATAGCTG<br>TTTCCTG                              |  |  |
| MutF8C2MluPmlNhe   | Insertion of <mark>Mlul</mark> site (Gaussia<br>cloning) and flanking <mark>Pmll</mark> and<br>Nhel restriction sites               | GACCTCTACGCGATCGC <u>7<mark>CACGTG</mark>ACGCGTGC</u><br>TAGCTCATAGCTGTTTCCTG           |  |  |
| Gaussia-Mlu-F      | Amplification of cDNA sequence<br>encoding mature Gaussia for<br>cloning ( <i>Mlu</i> I) downstream of h <i>F8</i>                  | aa <mark>ACGCGT</mark> AAGCCCACCGAGAACAACGAAG                                           |  |  |
| GaussiaSP-Mlu-F    | Amplification of cDNA sequence<br>including Gaussia signal peptide<br>(SP) for cloning ( <i>Mlul</i> ) downstream<br>of h <i>F8</i> | aa <mark>ACGCGT</mark> ATGGGAGTCAAAGTTCTGTTTGCCC                                        |  |  |
| Gaussia-Mlu-R      | Amplification of cDNA Gaussia<br>terminal sequence for cloning<br>( <i>Mlul</i> ) downstream of h <i>F8</i>                         | aa <mark>ACGCG</mark> TTAGTCACCACCGGCCCC                                                |  |  |
| GS-Linker-F        | Insertion ( <i>PmI</i> I) of the glycine-<br>serine (GSSGGSGGSSGSSGG)<br>linker between h <i>F8</i> and Gaussia                     | aaa <mark>GTG</mark> gggtcttctgggggggtctggggggtcttctgggtcttct                           |  |  |
| GS-Linker-R        | Insertion ( <i>PmI</i> I) of the glycine-<br>serine (GSSGGSGGSSGSSGG)<br>linker between h <i>F8</i> and Gaussia                     | aaa <mark>GTG</mark> ccccccagaagacccagaagaccccccagacccccc<br>agaagaccc <mark>CAC</mark> |  |  |
| MutInsF8NTC2352    | Insertion of h <i>F8</i> natural stop codon between h <i>F8</i> and Gaussia                                                         | CAGGACCTCTACTGAGCGATCGCTCAC                                                             |  |  |
| MutR15X            | R15X nonsense variant                                                                                                               | CTGTGCCTTTTGTGATTCTGCTTTAGTG                                                            |  |  |
| MutW157X           | W157X nonsense variant                                                                                                              | CATACATATGTCTGACAGGTCCTGAAAGAG                                                          |  |  |
| MutS229X           | S229X nonsense variant                                                                                                              | GAAAAGTTGGCACTGAGAAACAAAGAAC                                                            |  |  |
| MutW247X           | W247X nonsense variant                                                                                                              | CATCTGCTCGGGCCTGACCTAAAATGCACAC                                                         |  |  |
| MutR355X           | R355X nonsense variant                                                                                                              | GGAACCCCAACTATGAATGAAAAAATAATG                                                          |  |  |
| MutR446X           | R446X nonsense variant                                                                                                              | GTACAAAAAGTCTGATTTATGGCATACAC                                                           |  |  |
| MutS507X           | S507X nonsense variant                                                                                                              | CGTCCTTTGTATTGAAGGAGATTACC                                                              |  |  |

| MutR602X       | R602X nonsense variant       | GTATTTGATGAGAACTGAAGCTGGTACCAAG   |  |
|----------------|------------------------------|-----------------------------------|--|
| MutQ611X       | Q611X nonsense variant       | CTCACAGAGAATATATAACGCTTTCTCCC     |  |
| MutQ645X       | Q645X nonsense variant       | GTTTTTGATAGTTTGTAGTTGTCAGTTTGTTTG |  |
| MutQ772X       | Q772X nonsense variant       | CCTAGCACTAGGTAAAAGCAATTTAATG      |  |
| MutW791X       | W791X nonsense variant       | GACTGACCCTTGATTTGCACACAGAAC       |  |
| MutR814X       | R814X nonsense variant       | GTTGATGCTCTTGTGACAGAGTCCTACTC     |  |
| MutQ815X       | Q815X nonsense variant       | GATGCTCTTGCGATAGAGTCCTACTCCAC     |  |
| MutS872X       | S872X nonsense variant       | GTATTTACCCCTGAGTGAGGCCTCCAATTAAG  |  |
| MutL878X       | L878X nonsense variant       | CTCCAATTAAGATGAAATGAGAAACTG       |  |
| MutW979Xtga    | W979X(tga) nonsense variant  | CAAGAAAGTTCATGAGGAAAAAATGTATC     |  |
| MutW979Xtag    | W979X(tag) nonsense variant  | CTCCAATTAAGATGAAATGAGAAACTG       |  |
| MutW1048X      | W1048X nonsense variant      | GTCCATCAGTCTAGCAAAATATATTAG       |  |
| MutK1059X      | K1059X nonsense variant      | GTGACACTGAGTTTTAAAAAGTGACACC      |  |
| MutQ1098X      | Q1098X nonsense variant      | GAAATGGTCCAATAGAAAAAAGAGGGC       |  |
| MutQ1109X      | Q1109X nonsense variant      | CCACCAGATGCATAAAATCCAGATATG       |  |
| MutW1127X      | W1127X nonsense variant      | GAATCAGCAAGGTGAATACAAAGGACTC      |  |
| MutE1165X      | E1165X nonsense variant      | GAATTTCTTGTCTTAGAAAAACAAAG        |  |
| MutQ1232X      | Q1232X nonsense variant      | GTAGTTTTGCCTTAGATACATACAGTG       |  |
| MutK1289X      | K1289X nonsense variant      | CAGCTCATTTCTCATAAAAAGGGGAGGAAG    |  |
| MutQ1336X      | Q1336X nonsense variant      | GAGCTTTGAAATAATTCAGACTCCC         |  |
| MutQ1386X      | Q1386X nonsense variant      | CCATTACTTAGTCTCCCTTATC            |  |
| MutE1597X      | E1597X nonsense variant      | CCAAAAGAATAGTGGAAATCC             |  |
| MutE1634X      | E1634X nonsense variant      | TAGCAGCAATAAATTAGGGACAAAATAAGCC   |  |
| MutW1645X      | W1645X nonsense variant      | GAAGTCACCTGAGCAAAGCAAGGTAG        |  |
| MutQ1705X      | Q1705X nonsense variant      | GATGAGGATGAAAATTAGAGCCCCCGCAGC    |  |
| MutR1715X      | R1715X nonsense variant      | CTTTCAAAAGAAAACATGACACTATTTATTG   |  |
| MutW1726X(tga) | W1726X(tga) nonsense variant | CAGTGGAGAGGCTCTGAGATTATGGGATGAG   |  |
| MutW1726X(tag) | W1726X(tag) nonsense variant | CAGTGGAGAGGCTCTAGGATTATGGGATGAG   |  |
| MutW1836X      | W1836X nonsense variant      | CAAAACTTACTTTTGAAAAGTGCAACATC     |  |
| MutR1960X      | R1960X nonsense variant      | GATCAAAGGATTTGATGGTATCTGCTC       |  |
| MutR1985X      | R1985X nonsense variant      | CATGTGTTCACTGTATGAAAAAAAGAGGAG    |  |
| MutG2076X      | G2076X nonsense variant      | GACTTCATTATTCCTGATCAATCAATGCCTG   |  |
| MutW2081X      | W2081X nonsense variant      | CAATCAATGCCTGAAGCACCAAGGAGC       |  |
| MutR2135X      | R2135X nonsense variant      | GTGGCAGACTTATTGAGGAAATTCCAC       |  |

| MutR2166X | R2166X nonsense variant | CTCCAATTATTGCTTGATACATCCGTTTGC  |  |
|-----------|-------------------------|---------------------------------|--|
| MutL2197X | L2197X nonsense variant | GTTGCAGCATGCCATAGGGAATGGAGAG    |  |
| MutR2228X | R2228X nonsense variant | CTCCTTCAAAAGCTTGACTTCACCTCCAAG  |  |
| MutE2247X | E2247X nonsense variant | GTGAATAATCCAAAATAGTGGCTGCAAGTG  |  |
| MutQ2303X | Q2303X nonsense variant | CAAAGTAAAGGTTTTTTAGGGAAATCAAGAC |  |
| MutR2326X | R2326X nonsense variant | GACTCGCTACCTTTGAATTCACCCCC      |  |
| MutR446W  | R446W missense variant  | AAGTCTGGTTTATGGCATAC            |  |
| MutR814W  | R814W missense variant  | TCTTGTGGCAGAGTCCTA              |  |
| MutK1289Y | K1289Y missense variant | ATTTCTCATATAAAGGGGAGG           |  |
| MutK1289Q | K1289Q missense variant | TTTCTCACAAAAAGGGGAGGA           |  |
| MutW1726Y | W1726Y missense variant | AGGCTCTATGATTATGGGAT            |  |
| MutR1985W | R1985W missense variant | ACTGTATGGAAAAAAGAGGAG           |  |
| MutR2135W | R2135W missense variant | GACTTATTGGGGAAATTCCA            |  |

For oligonucleotides used in PCR, forward (F) and reverse (R) sequences are indicated. For oligonucleotides used in site-directed mutagenesis (indicated as Mut), in which forward and reverse primers are designed to be complementary, only the forward sequence is indicated.

#### Supplementary Table S2.

Comparison of secreted levels of HA plasma and recombinantly expressed FVIII variants.

| Patients' PTCs           |                                       |                          |                           |                                       |
|--------------------------|---------------------------------------|--------------------------|---------------------------|---------------------------------------|
| Protein variant (levels) | p.Arg446*<br>(0.2 <del>±</del> 0.04%) | p.Trp1726*<br>(0.7±0.2%) | p.Arg1985*<br>(0.4±0.1%)  | p.Arg2135*<br>(0.3 <del>±</del> 0.1%) |
| p.Arg814* (1.5±0.2%)     | <0.0001                               | 0.0019                   | 0.0001                    | <0.0001                               |
| p.Lys1289* (2.1±0.1%)    | <0.0001                               | <0.0001                  | <0.0001                   | <0.0001                               |
| Recombinant PTCs         |                                       |                          |                           |                                       |
| Protein variant (levels) | Arg446*<br>(1.2±0.3%)                 | Trp1726*<br>(0.4±0.1%)   | Arg1985*<br>(0.6±0.2%)    | Arg2135*<br>(0.4±0.1%)                |
| Arg814* (1.9±0.3%)       | 0.0148                                | 0.0002                   | 0.0008                    | 0.0002                                |
| Lys1289* (2.1±0.2%)      | 0.0009                                | <0.0001                  | <0.0001                   | <0.0001                               |
|                          |                                       |                          |                           |                                       |
| Missense variants        |                                       |                          |                           |                                       |
| Protein variant (levels) | Arg446Trp<br>(35.1±6.1%)              | Trp1726Tyr<br>(4.8±1.1%) | Arg1985Trp<br>(11.2±4.9%) | Arg2135Trp<br>(15.5±3.2%)             |
| Arg814Trp (57.1±8.7%)    | 0.006                                 | <0.0001                  | <0.0001                   | <0.0001                               |
| Lys1289Tyr (63.1±6.35)   | 0.0007                                | <0.0001                  | <0.0001                   | <0.0001                               |
| Lys1289Gln (99.8±16.9%)  | 0.0004                                | <0.0001                  | <0.0001                   | <0.0001                               |

The Table compares antigen levels of i) nonsense variants measured in HA patients' plasma (patients' PTCs), ii) nonsense variants expressed through our luciferase-based system (Recombinant PTCs), and iii) missense variants predicted to arise from readthrough of patients' PTCs. The secreted levels (indicated in parenthesis) of variants in each column are compared with secreted levels of variants in each row, with the relative p value reported for each comparison.

Protein levels are expressed as percentage of the reference (pooled normal plasma, PNP, for patients' plasma) or wild-type FVIII-GL for expression studies (n=4 replicates) and are indicated as mean ± standard deviation.



## Supplementary Figure S1. Cloning strategy to generate the FVIII-GL chimera.

Cloning/mutagenesis steps to generate the chimeric FVIII-GL constructs. Full description is

provided in Supplemental Methods.



Supplementary Figure S2. The FVIII-GL fusion protein and the luciferase-based assay.

Schematic representation of the optimized fusion protein joining FVIII and the Gaussia (GL) luciferase (FVIII-GL). In the scheme is depicted the expected protein output resulting from premature termination of translation (upper part) or translational readthrough leading to insertion of a subset of amino acids resulting in the production of full-length proteins (middle part), in turn remaining in the intracellular compartment or being secreted (lower part).



## Supplementary Figure S3. Optimization of the luciferase-based expression system.

A) Comparison of expression levels (24 hours) of the FVIII-GL fusion protein containing the Gaussia luciferase sequence with (SP) or without (mature) the signal peptide.

B) Expression studies on the FVIII-GL fusion protein at different time points.

C) Comparison of FVIII-GL (direct fusion) with FVIII-linker-GL (interposed GS linker) fusion proteins at the selected 48-hour time point.

Top, schematic representation of fusion proteins directly fuses or through the GS linker.

D) Comparison of secreted levels of the selected FVIII-GL scaffold bearing the Arg15\* and Gln1386\* *F8* PTCs.

E) Evaluation of residual expression levels from the FVIII-GL construct bearing *F8* natural termination codon (NTC), two (2TC) or three (3TC) termination codons between FVIII and Gaussia.

Results (mean ± standard deviation) are expressed as Relative Luminescence Units (RLU) or percentage of WT FVIII-GL (panels B-E, n=4).



## Supplementary Figure S4. Predicted readthrough score of *F8* PTCs.

Schematic representation of FVIII domain organization and predicted readthrough score (according to Manuvakhova et al.<sup>22</sup>) of *F8* PTCs indicated for each domain. The mean readthrough score for each domain is indicated as dotted line. Red bars represent PTC variants expressed in the FVIII-GL chimera.



## Supplementary Figure S5. Missense variants bearing the non-conservative arginineto-tryptophan substitution arising from readthrough of TGA PTCs.

Comparison of luciferase activity levels of missense variants bearing the arginine-totryptophan substitution as predicted for readthrough at TGA PTCs (Arg446\*, Arg814\*, Arg1985\* and Arg2135\*). The B-domain Arg814\* variant is highlighted in red. Results (mean ± standard deviation; n=4) are expressed as percentage of WT FVIII-GL. \*\*,

p<0.01; \*\*\*, p<0.001; \*\*\*\*, p<0.0001.