# **ARID5B** influences B-cell development and function in mouse

Charnise Goodings,<sup>1\*</sup> Xujie Zhao,<sup>1\*</sup> Shannon McKinney-Freeman,<sup>2</sup> Hui Zhang<sup>3</sup> and Jun J. Yang<sup>1,4</sup>

<sup>1</sup>Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA; <sup>2</sup>Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA; <sup>3</sup>Department of Hematology/Oncology, Shanghai Children's Medical Center, Shanghai, China and <sup>4</sup>Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA.

\*CG and XZ contributed equally as co-first authors.

#### Correspondence: J. J. Yang jun.yang@stjude.org

**Received:** Accepted: Prepublished: August 4, 2022.

## March 29, 2022. July 29, 2022.

#### https://doi.org/10.3324/haematol.2022.281157

©2023 Ferrata Storti Foundation Published under a CC BY-NC license 😇 💽 🕅

#### Histology

Following euthanasia, tissues were collected and fixed in 10% neutral buffered formalin, embedded in paraffin, and 4-μm sections were used for IHC analysis. All assay steps for CD3 (Santa Cruz #sc-1127, 1:1000, TX, USA), including deparaffinization, rehydration, and epitope retrieval (using CC1, Ventana Medical Systems, AZ, USA), were performed on the Ventana Discovery Ultra autostainer. All assay steps for B220/CD45R (PharMingen #553084, 1:8000, CA, USA) were performed on the Leica BOND-MAX automated stainer, using epitope retrieval solution ER2 (Leica Biosystems Inc., IL, USA). Tissue sections were examined by a boardcertified veterinary pathologist (J.L.) who was blinded to the study design.

#### Mitochondria respiration analysis

The Seahorse analyzer XF24 (Agilent, CA, USA) was used to continuously monitor OCR as previously described(32). Briefly, cells were attached to CellTak-coated plates and then incubated with XF Base medium. Basal OCR were assessed, followed by oligomycin (final concentration 1  $\mu$ M), FCCP (1  $\mu$ M), and rotenone/antimycin A (0.5  $\mu$ M each).

#### **Statistical analyses**

All the plots and statistical analyses were performed using Graphpad Prism (version 9). The student's *t*-test (2-sided) was used to calculate the *P-value* for all analyses unless otherwise indicated. All experiments were generally repeated with at least three mice. In all figures, a single data point represents an individual mouse, and bars indicate the mean ± SEM.

| Supplementary table 1. Primers for genotyping |                             |                               |  |  |  |
|-----------------------------------------------|-----------------------------|-------------------------------|--|--|--|
| Gene                                          | Forward                     | Reverse                       |  |  |  |
| Vav1-tTA                                      | TGCCAACAAGGTTTTTCACTAGAGA   | CTCTTGATCTTCCAATACGCAACCTA    |  |  |  |
| Arid5b-tetO                                   | ACAAGTTTGGAGAGAATGTTGAGTTCA | TTTTCTCTATCACTGATAGGGAGTGGTAA |  |  |  |
| Arid5b-wildtype                               | CAATCCATTCAAGCCAACAAGTTTG   | AGCGAAATACCTGGAGTGAGTTG       |  |  |  |

| Supplementary table 2. Primers for quantitative real-time PCR |                      |                      |  |  |  |
|---------------------------------------------------------------|----------------------|----------------------|--|--|--|
| Gene                                                          | Forward              | Reverse              |  |  |  |
| ACTB                                                          | GTTGTCGACGACGAGCG    | GCACAGAGCCTCGCCTT    |  |  |  |
| Arid5b                                                        | AATCTTGTCCCTTGGCGACT | CAGAATGCGCCCATTTGACA |  |  |  |

| Supplementary table | e 3. Antibodies for t | flow |
|---------------------|-----------------------|------|
|                     |                       |      |

| Antibodies            | Clones    | Supplier              |
|-----------------------|-----------|-----------------------|
| CD117 (c-kit)         | 2B8       | <b>BD Biosciences</b> |
| CD11b (Mac1)          | M1/70     | <b>BD Biosciences</b> |
| CD127-APC             | SB/199    | <b>BD Biosciences</b> |
| CD135                 | A2F10.1   | <b>BD Biosciences</b> |
| CD138                 | 281-2     | <b>BD Biosciences</b> |
| CD150                 | mShad150  | eBiosciences          |
| CD179a                | R3/VpreB  | <b>BD Biosciences</b> |
| CD179b                | LM34      | <b>BD Biosciences</b> |
| CD19                  | 1D3       | <b>BD Biosciences</b> |
| CD21/35               | 7G6       | <b>BD Biosciences</b> |
| CD23                  | B3B4      | BD Biosciences        |
| CD24                  | M1/69     | <b>BD Biosciences</b> |
| CD249 (BP-1)          | BP-1      | <b>BD Biosciences</b> |
| CD3                   | 145-2C11  | BD Biosciences        |
| CD34-Alexa700         | RAM34     | BD Biosciences        |
| CD38                  | 90/CD38   | BD Biosciences        |
| CD4                   | GK1.5     | BD Biosciences        |
| CD43                  | S7        | BD Biosciences        |
| CD45R (B220)          | RA3-6B2   | BD Biosciences        |
| CD48                  | HM48-1    | BD Biosciences        |
| CD5                   | 53-7.3    | BD Biosciences        |
| CD69                  | H1.2F3    | BD Biosciences        |
| CD71                  | C2        | BD Biosciences        |
| CD86                  | GL1       | BD Biosciences        |
| CD8a                  | 53-6.7    | BD Biosciences        |
| CD93                  | AA4.1     | <b>BD Biosciences</b> |
| FcR II/III (CD16/32)  | 2.4G2     | BD Biosciences        |
| GL7                   | GL7       | BD Biosciences        |
| lgD                   | 11-26c.2a | BD Biosciences        |
| lgM                   | R6-60.2   | BD Biosciences        |
| Ly-6A/E (Sca-1)       | D7        | BD Biosciences        |
| Ly-6G and Ly-6C (Gr1) | RB6-8C5   | BD Biosciences        |
| streptavidin          |           | BD Biosciences        |
| TCR-B                 | H57-597   | <b>BD Biosciences</b> |
| Ter119                | TER-119   | BD Biosciences        |



**Supplementary Figure 1. Generation of** *Arid5b* **overexpression mice.** (**A**) Schematic diagram of the *Vav1*-tTA driven overexpression of *Arid5b* mouse model. (**B**) Relative *Arid5b* expression in *Arid5b*<sup>OE</sup> mice (solid bars) and wildtype littermates (open bars).



Supplementary Figure 2. Representative flow cytometry plots of B cell subset. (A) Representative flow cytometry plots of B220/CD19 B cell subsets in bone marrow, peripheral blood, and spleen. (B) Representative flow cytometry plots of MZ, FO, T1, and T2 B cell subsets in spleen.



Supplementary Figure 3. Representative flow cytometry plots of Hardy fraction B cells. (A) Representative flow cytometry plots of Hardy fraction B cell subsets in bone marrow. (B) Representative flow cytometry plots of apoptotic Hardy fraction B cells in bone marrow. (C) Representative flow cytometry plots of cell cycle distribution of Hardy fraction B cells in bone marrow.



Supplementary Figure 4. Representative flow cytometry plots of surface markers of B cells. (A) Representative flow cytometry plots of B cell activation markers (CD69 and CD86) expression in response to stimulation by IgM+IL-4. (B) Representative flow cytometry plots of expressions of pBTK, pSYK, and pATK in B cells. (C) Representative flow cytometry plots of expressions of  $\lambda 5$  and VpreB on CD19<sup>+</sup> B cells.



Supplementary Figure 5. Bone marrow and spleen cellularity of *Arid5b*<sup>oE</sup> mice. (A) Total cellularity in the bone marrow of *Arid5b*<sup>oE</sup> mice (solid bars, n=16) and wildtype littermates (open bars, n=15). (B) Total cellularity in the spleen of *Arid5b*<sup>oE</sup> mice (solid bars, n=16) and wildtype littermates (open bars, n=15). *P* value was estimated by two-tail *t* test. \*: *P*<0.05.



Supplementary Figure 6. Effects of *Arid5b<sup>oE</sup>* on lymphoid, myeloid, and erythroid lineage maturation in the bone marrow and spleen. (**A**, **E**) Total B220<sup>+</sup> and CD19<sup>+</sup> B cells in the bone marrow and spleen of *Arid5b<sup>oE</sup>* mice (solid bars, n=10) compared to wildtype littermates (open bars, n=8). (**B**, **F**) Total CD4<sup>+</sup> and CD8<sup>+</sup> T cells in the bone marrow and spleen of *Arid5b<sup>oE</sup>* mice (solid bars, n=10) compared to wildtype littermates (open bars, n=8). (**C**, **G**) Total Mac1<sup>+</sup> and Gr1<sup>+</sup> myeloid cells in the bone marrow and spleen of *Arid5b<sup>oE</sup>* mice (solid bars, n=10) compared to wildtype littermates (open bars, n=8). (**C**, **G**) Total Mac1<sup>+</sup> and Gr1<sup>+</sup> myeloid cells in the bone marrow and spleen of *Arid5b<sup>oE</sup>* mice (solid bars, n=6) compared to wildtype littermates (open bars, n=7). *P* value was estimated by two-tail *t* test. \*: *P*<0.05; \*\*: *P*<0.01; \*\*\*: *P*<0.001.



Supplementary Figure 7. Total number and frequency of hematopoietic stem and/or progenitor cells in *Arid5b*<sup>oE</sup> mice. (A) Total number of hematopoietic stem and progenitor cells in the bone marrow of *Arid5b*<sup>oE</sup> mice (solid bars, n=8) and wildtype littermates (open bars, n=6). (B) Percentage of hematopoietic stem and progenitor cells in the bone marrow of *Arid5b*<sup>oE</sup> mice (solid bars, n=8) and wildtype littermates (open bars, n=6). (B) Percentage of hematopoietic stem and progenitor cells in the bone marrow of *Arid5b*<sup>oE</sup> mice (solid bars, n=8) and wildtype littermates (open bars, n=6). (C) Myeloid colony-forming unite per 20,000 bone marrow cells from *Arid5b*<sup>oE</sup> (n=20) or wildtype (n=8) mice done in replicate, using MethoCult M3434. *P* value was estimated by two-tail *t* test. \*: *P*<0.05; \*\*: *P*<0.01; \*\*\*: *P*<0.001.



**Supplementary Figure 8. Cell cycle distribution of bone marrow B cell subsets from** *Arid5b*<sup>*oE*</sup> **mice.** (A) Cell cycle profile of Hardy fraction A-C in the bone marrow of *Arid5b*<sup>*oE*</sup> mice (solid bars, n=4) and wildtype littermates (open bars, n=5). (B) Cell cycle profile of Hardy fraction D-F in the bone marrow of *Arid5b*<sup>*oE*</sup> mice (solid bars, n=4) and wildtype littermates (open bars, n=5). *P* value was estimated by two-tail *t* test.



Supplementary Figure 9. Generation of *Arid5b* knock-out mouse models. Schematic diagram of *Vav1* or *Mb1*-driven *Arid5b* knock-out mouse models.



Supplementary Figure 10. Hematopoietic phenotype of bone marrow cells from *Mb1*- and *Vav1*- driven *Arid5b<sup>Ko</sup>* mice. (A-C) Percentage of B-cell subsets (Hardy fractions), hematopoietic stem cells (HSCLT and HSCST) and multi-potent progenitors (MPP2, MPP3, and MPP4), and total Gr1<sup>+</sup> and Mac1<sup>+</sup> myeloid cells in the bone marrow of *Mb1*-driven *Arid5b<sup>Ko</sup>* mice (solid bars, n>6) were compared to that of wildtype littermates (open bars, n>5). (**D-F**) Percentage of B-cell subsets (Hardy fractions), hematopoietic stem cells (HSCLT and HSCST) and multi-potent progenitors (MPP2, MPP3, and MPP4), and total Gr1<sup>+</sup> and Mac1<sup>+</sup> myeloid cells in the bone marrow of *Vav1*-driven *Arid5b<sup>Ko</sup>* mice (solid bars, n=3) were compared to that of wildtype littermates (open bars, n=4). *P* value was estimated by two-tail *t* test. \*: *P*<0.05; \*\*: *P*<0.01.

Figure S11



Supplementary Figure 11. Hematopoietic phenotypes of peripheral blood and spleen cells from *Mb1*- and *Vav1*-driven *Arid5b<sup>Ko</sup>* mice. (A-B) Total B220<sup>+</sup> and CD19<sup>+</sup> B cells in the peripheral blood and spleen of *Mb1*-*Arid5b<sup>Ko</sup>* mice (solid bars, n=4) compared to wildtype littermates (open bars, n=4). (C-D) Total Gr1<sup>+</sup> and Mac1<sup>+</sup> myeloid cells in the peripheral blood and spleen of *Mb1*-*Arid5b<sup>Ko</sup>* mice (solid bars, n=4) compared to wildtype littermates (open bars, n=4). (E-F) Total B220<sup>+</sup> and CD19<sup>+</sup> B cells in the peripheral blood and spleen of *Vav1*-*Arid5b<sup>Ko</sup>* mice (solid bars, n=3) compared to wildtype littermates (open bars, n=4). (G-H) Total Gr1<sup>+</sup> and Mac1<sup>+</sup> myeloid cells in the peripheral blood and spleen of *Vav1*-*Arid5b<sup>Ko</sup>* mice (solid bars, n=3) compared to wildtype littermates (open bars, n=4). (G-H) Total Gr1<sup>+</sup> and Mac1<sup>+</sup> myeloid cells in the peripheral blood and spleen of *Vav1*-*Arid5b<sup>Ko</sup>* mice (solid bars, n=3) compared to wildtype littermates (open bars, n=4). (G-H) Total Gr1<sup>+</sup> and Mac1<sup>+</sup> myeloid cells in the peripheral blood and spleen of *Vav1*-*Arid5b<sup>Ko</sup>* mice (solid bars, n=3) compared to wildtype littermates (open bars, n=4). (G-H) Total Gr1<sup>+</sup> and Mac1<sup>+</sup> myeloid cells in the peripheral blood and spleen of *Vav1*-*Arid5b<sup>Ko</sup>* mice (solid bars, n=3) compared to wildtype littermates (open bars, n=4). (G-H) Total Gr1<sup>+</sup> and Mac1<sup>+</sup> myeloid cells in the peripheral blood and spleen of *Vav1*-*Arid5b<sup>Ko</sup>* mice (solid bars, n=3) compared to wildtype littermates (open bars, n=4). *P* value was estimated by two-tail *t* test.



**Supplementary Figure 12. Overexpression of** *Arid5b* results in increased OXPHOS of B cells. (A) Seahorse extracellular flux analysis measurement of oxygen consumption rate (OCR) in naive B cells. Naive B cells isolated from *Arid5b*<sup>OE</sup> mice had increased OCR when compared to naive B cells from wildtype littermates (P<0.001). (B) Seahorse extracellular flux analysis measurement of OCR in B cells stimulated by LPS and IgM F(ab')<sub>2</sub> fragment and IL-4. The baseline OCR of *Arid5b*<sup>OE</sup> stimulated B cells were higher than wildtype and showed greater maximum mitochondrial respiration capacity, after stimulation with either LPS or IgM F(ab')<sub>2</sub> fragment and IL-4 (P<0.001). P values were estimated using two-way ANOVA.