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Supplemental data and methods 

Somatic structural variant and copy number alterations 

Allele-specific and total copy number was inferred by Sequenza (3.0.0)1 using matched germline 

control samples. Sequenza was also used to infer tumor ploidy and purity for all samples. The 

solution resulting in the highest purity estimate was chosen. Structural variants and large indels 

were called using Manta (1.6.0). The annotables package was used to obtain hg19 gene symbols 

and coordinates (https://github.com/stephenturner/annotables). Reported copy number events 

include those across chromosomes 1-22. Gene level analysis was reported based on 52,955 

annotated genes on those chromosomes. To evaluate genes impacted by somatic copy number 

events, Sequenza output was merged with gene coordinates to obtain a list of genes impacted by 

amplifications or deletions for each sample.  

 

Visualization of putative ancestral, shared and private mutations  

Based on mutation, CNA and SV calls, putative ancestral somatic events were described as those 

that were successfully identified across all samples in a given patient. For SNVs and indels, these 

included events that were found in the same position with the same alternative allele. For CNAs, 

we visualized these events in multiple ways. First, we visualized the percentage of the genome 

altered across each patient using genome wide Sequenza CNA calls. Next, we merged copy 

number amplification and deletion call coordinates across samples in each patient to identify 

regions altered in all samples. Lastly, we also looked at the overlap of genes altered by copy 

number amplification and deletions across samples in each patient. For SVs, we first also 

summarized the number of Manta calls for each sample. Putative ancestral translocations found 

across all samples in a patient were identified as those affected the same chromosomes and genes. 
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Circos plots were generated using the R package BioCircos 

(https://github.com/lvulliard/BioCircos.R). All visualizations were created in R version 4.0.0.  

 

ctDNA sample collection and sequencing 

Plasma samples were collected ante-mortem (Patient 1) or at autopsy (Patients 2 and 3). ctDNA 

was extracted using the QIAamp Circulating Nucleic Acid Kit (Cat# 55114, Qiagen) and 150 ng 

were used as input for library preparation and capture using IDT LockDown probes targeting the 

entire coding or hotspot sequences of 80 genes recurrently mutated in lymphoma (158 kB). Unique 

molecular identifiers (UMIs, 4 mer DNA sequence followed by a T) were incorporated during 

library construction. Resulting libraries were then deep-sequenced using 2 x 100 bp paired-end 

reads. 

 

ctDNA data processing and variant calling 

FASTQ files were processed through ConsensusCruncher.2 UMIs were used to obtain consensus 

DNA sequences. ConsensusCruncher was run with default parameters and the distribution of read 

depth across families was evaluated. Duplex and single strand consensus and singleton corrections 

were generated in the form of mapped and corrected bam files in each ConsensusCruncher 

category (dcs_SC, sscs_SC, dcs_sc_uniq). Read depth in panel regions was evaluated using 

CollectTargetedPcrMetrics (GATK4.1.8.1). The corrected bam files were adopted as reads input 

with matched normal controls and gnomad population control to call the somatic SNVs and indels 

by Mutect2 (GATK4.1.8.1) in each ConsensusCruncher category, and then followed with a 

filtering step suggested by GATK Best Practices Workflows (GetPileupSummaries; 
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CalculateContamination; FilterMutectCalls). Only those variants with the ‘PASS’ flag were kept 

in the final call set. 

  

ctDNA and bulk tumor comparison 

Mutations identified in ctDNA samples were compared to mutations identified from bulk tumor 

sequences across WGS samples in each patient. To minimize the bias between these two variant 

call sets, the WGS somatic variants were re-called by Mutect2 restricted in the same interval bed 

regions as ctDNA panel used, the parameters and filtering steps were the same as ctDNA dataset. 

We calculated the number of overlapped variants between ctDNA and WGS call sets and also the 

variants presented only in one type of samples but not another by the tool vcf-compare (vcftools 

v0.1.15).3 Furthermore, we generated a merged VCF file to report the per-site genotypes among 

the samples with distinct backgrounds for each patient. The single sample VCF files were first 

created for three ctDNA classes and all WGS tumor samples in each patient, then merged into a 

multi-sample VCF file by bcftools (samtools v1.10).4 

 

Phylogeny reconstruction using mutations patterns from spatially distinct samples  

We used Treeomics to reconstruct the phylogeny of inter-regional tumor samples in each patient.5 

Treeomics infers robust phylogenetic trees while accounting for artifacts in sequencing and 

mutation calls, aiming to infer ancestral subclones that gave rise to tumors at various anatomical 

regions. Importantly, Treeomics assumes monoclonal seeding where polyclonal seeding and 

reseeding of metastases occur rarely. The maximum number of mutation patterns was set to five 

and whole exome filtering was applied to reduce run time for patients 2 and 3. 
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Estimating mutation cellular prevalence and clustering 

We evaluated all mutations called in at least one sample in Patient 1 and a subset of mutations 

(non-synonymous) from Patient 2 and Patient 3 based on several criteria to improve efficiency of 

the analysis. Only mutations with major copy number greater than 0 and total copy number greater 

or equal to 2 were included for all patients. Bam-readcount was used to identify the reference and 

alternative alleles for each mutation across each sample in a given individual as well as their 

associated read counts.6 SNVs and allele-specific copy number and purity were used to estimate 

cancer cell fractions for each mutation and these were clustered to infer tumor clones that had 

similar cellular prevalence. This analysis allowed for estimating clusters of similarly prevalent 

mutations while also highlighting likely ancestral mutations that were missed during the merging 

of mutations called by Strelka and Mutect2. The final numbers of unique mutations evaluated in 

this analysis for each patient were 3,146, 22,402 and 12,024 for patients 1, 2 and 3, respectively. 

Pyclone-VI7 was then used to infer the clonal population structure in each patient. ‘Pyclone-vi fit’ 

was run with a maximum number of clusters set to 20 with beta-binomial probability density and 

with 50 restarts. Cellular prevalence values were estimated for each mutation across predicted 

clusters.    

 

Clonal evolution reconstruction  

Once clusters of mutations with similar cellular prevalence were determined by Pyclone-VI, 

Pairtree8 was implemented to reconstruct each patient’s clonal evolutionary history. Clusters with 

at least 50 (patient 1) or 100 mutations (patient 2 and 3) were considered and Pairtree was run with 

4,000 trees per chain on Pyclone-VI clusters. Tree solutions were investigated and if the top 

scoring tree was polytumor, the next best solution with a single tumor initiating ancestor was 
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chosen for further analysis. The clone diversity index and the clone and mutation diversity index 

were also estimated where the former measures how many distinct cell subpopulations are present 

in each sample while the latter extends this measure to include information about tumor mutation 

burden. 

 

Defining disease genes and mutations  

We obtained a list of genes found to be previously mutated in MCL,9 PMBCL10 and DLBCL11 

from relevant publications. Further, when describing mutations in these genes as likely driver 

events, we focused only on those in coding regions. We also considered coding mutations 

previously annotated in COSMIC as potential driver events. 

 

Mutation signature analysis  

We used the MutationalPatterns package12 to compare mutations observed across predicted cell 

populations (Subclones) to known COSMIC signatures.13 We used strict signature refitting to 

assess the contribution of merged sets of single-base substitution (SBS) signatures. SBS signatures 

were first merged based on a cosine similarity cutoff of 0.5. 
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Supplementary Figure legends 

Supplementary Figure 1: Additional analysis of patient 1 (mantle cell lymphoma, MCL)  (A) 

One likely reconstruction of phylogeny using Treeomics and patterns of single nucleotide variants 

(SNVs). Driver genes are labeled along relevant edges. The tree is not to scale and the number of 

mutations gained in each sample is labeled. (B) Tree constrained subclonal frequencies inferred 

by pairtree across three samples. (C) Summary of coding driver gene and COSMIC annotated 

mutations across each subclone for patient 1. (D) Relative contribution of mutation types across 

pairtree inferred clones. (E) Relative contribution of correlated COSMIC annotated mutation 

signatures across each subclone. 

 

Supplementary Figure 2: Additional analysis of patient 2 (primary mediastinal B-cell 

lymphoma, PMBCL). (A) One likely reconstruction of phylogeny using Treeomics and patterns 

of single nucleotide variants (SNVs). Driver genes are labeled along relevant edges. The tree is 

not to scale and the number of mutations gained in each sample is labeled. (B) Tree constrained 

subclonal frequencies inferred by pairtree across three samples. (C) Summary of coding drive gene 

and COSMIC annotated mutations across each subclone for patient 1. (D) Relative contribution of 

mutation types across pairtree inferred clones. (E) Relative contribution of correlated COSMIC 

annotated mutation signatures across each subclone.  

 

Supplementary Figure 3: Additional analysis of patient 1 (high-grade B-cell lymphoma, 

HGBCL). (A) One likely reconstruction of phylogeny using Treeomics and patterns of single 

nucleotide variants (SNVs). Driver genes are labeled along relevant edges. The tree is not to scale 

and the number of mutations gained in each sample is labeled. (B) Tree constrained subclonal 
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frequencies inferred by pairtree across three samples. (C) Summary of coding driver gene and 

COSMIC annotated mutations across each subclone for patient 1. (D) Relative contribution of 

mutation types across pairtree inferred clones. (E) Relative contribution of correlated COSMIC 

annotated mutation signatures across each subclone. 
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Supplementary Table list  

Supplementary Table 1: Overview of samples. 

Supplementary Table 2: Whole genome sequencing summary statistics for 27 tumor samples and 
three control samples. 

Supplementary Table 3: Coding mutations identified using whole-genome sequencing across 
three patients. 

Supplementary Table 4: Mutations across Pyclone-VI and Pairtree clones.
 
 
Tables available as excel files 




