High transferrin saturation predicts inferior clinical outcomes in patients with myelodysplastic syndromes

Jennifer Teichman,¹ Michelle Geddes,² Nancy Zhu,³ Mary-Margaret Keating,⁴ Mitchell Sabloff,⁵ Grace Christou,⁵ Brian Leber,⁶ Dina Khalaf,⁶ Eve St-Hilaire,⁷ Nicholas Finn,⁷ April Shamy,⁸ Karen W.L. Yee,⁹ John M. Storring,¹⁰ Thomas J. Nevill,¹¹ Robert Delage,¹² Mohamed Elemary,¹³ Versha Banerji,^{1,4} Brett Houston,¹⁴ Lee Mozessohn,¹ Lisa Chodirker,¹ Liying Zhang,¹ Mohammed Siddiqui,¹ Anne Parmentier,¹ Heather A. Leitch^{15#} and Rena J. Buckstein^{1#}

¹Sunnybrook Health Sciences Center, Toronto, Ontario; ²Tom Baker Cancer Center, Calgary, Alberta; ³University of Alberta, Edmonton, Alberta; ⁴QEII Health Sciences Centre, Halifax, Nova Scotia; ⁵The Ottawa Hospital, Ottawa, Ontario; ⁶Juravinski Cancer Center, Hamilton, Ontario; ⁷Dr. Georges-L-Dumont University Hospital Center, Moncton, New Brunswick; ⁸Jewish General Hospital, Montreal, Quebec; ⁹Princess Margaret Cancer Center, Toronto, Ontario; ¹⁰McGill University Health Center, Montreal, Quebec; ¹¹Vancouver General Hospital, Vancouver, British Columbia; ¹²CHU de Québec-Université Laval, Quebec City, Quebec; ¹³Saskatoon Cancer Agency, Saskatoon, Saskatchewan; ¹⁴Cancer Care Manitoba, Winnipeg, Manitoba and ¹⁵St. Paul's Hospital, Vancouver, British Columbia, Canada

*HAL and RJB contributed equally as co-senior authors.

Correspondence: J. Teichman jennifer.teichman@mail.utoronto.ca

Received:	March 18, 2022.
Accepted:	August 5, 2022.
Prepublished:	August 18, 2022.

https://doi.org/10.3324/haematol.2022.280723

©2023 Ferrata Storti Foundation Published under a CC BY-NC license 😇 📆 🕫

High transferrin saturation predicts inferior clinical outcomes in patients with MDS

Teichman J, et al.

Supplementary Material

Table S1. Demographic and clinical variables stratified by transfusion density (TD), where TD-low and TD-high were defined as below and above the median TD, respectively.

	At Landmark Year 1					
	(calculation from the first transfusion date)					
	No	Low	High	p-value		
	transfusions	transfusion	transfusion			
	(n=259)	dose (n=138)	dose (n=148)			
Age categories				0.1573		
≤ 60	33 (12.74%)	7 (5.07%)	16 (10.81%)			
61-70	65 (25.10%)	35 (25.36%)	40 (27.03%)			
> 70	161 (62.16%)	96 (69.57%)	92 (62.16%)			
Sex				0.1566		
Μ	170 (65.89%)	77 (56.20%)	95 (64.19%)			
F	88 (34.11%)	60 (43.80%)	53 (35.81%)			
WHO subtype	()	· · · ·	()	0.1736		
5q-	13 (5.02%)	9 (6.52%)	5 (3.38%)			
Secondary AML, AML (previously	8 (3.09%)	4 (2.90%)	2 (1.35%)			
MDS-EB1	17 (6 56%)	16 (11 59%)	24 (16 22%)			
MDS-EB1	16 (6 18%)	11 (7 97%)	19 (12 8/%)			
	80 (30 80%)	11 (7.57 %)	13 (12.0470)			
MDS MDN CMML 0 CMML 1 or	80 (30.89%)	41 (23.7170) 8 (5 80%)	44 (29.7370) 13 (8 78%)			
CMML2	00 (30.09%)	0 (0.00 %)	13 (0.70 %)			
MDS-MPN-RS-T	3 (1.16%)	3 (2.17%)	2 (1.35%)			
MDS-RS-MLD	13 (5.02%)	8 (5.80%)	8 (5.41%)			
MDS-RS-SLD	23 (8.88%)	20 (14.49%)	12 (8.11%)			
MDS-SLD	29 (11.20%)	8 (5.80%)	11 (7.43%)			
MDS-U	15 (5.79%)	10 (7.25%)	7 (4.73%)			
Not available	2 (0.77%)	0 (0.00%)	1 (0.68%)			
IPSS-RR category				<.0001		
Very Low	53 (21.81%)	10 (7.81%)	11 (7.64%)			
Low	91 (37.45%)	40 (31.25%)	46 (31.94%)			
INT	61 (25.10%)	50 (39.06%)	49 (34.03%)			
High	25 (10.29%)	18 (14.06%)	17 (11.81%)			
Verv high	13 (5.35%)	10 (7.81%)	21 (14.58%)			
Cytogenetics	(<i>'</i>	()	(/	0.6413		
Very good	8 (3.25%)	4 (3.10%)	3 (2.05%)			
Good	184 (74.80%)	92 (71.32%)	102 (69.86%)			
Intermediate	36 (14.63%)	25 (19.38%)	25 (17.12%)			
Poor	8 (3.25%)	2 (1.55%)	4 (2.74%)			
Very poor	10 (4.07%)	6 (4.65%)	12 (8.22%)			

Figure S1. Overall survival of MDS patients based on transfusion dose density, using the revised International Working Group definition of low transfusion density (≥ 0.75 to < 2 units per month) and high transfusion dose density (≥ 2 units per month).

TDD = transfusion dose density.

Figure S2: Higher transfusion density was significantly associated with inferior OS in lower risk MDS patients (A) but not in higher risk MDS patients (B)

Figure S3: Higher TSAT was significantly associated with inferior OS in lower risk MDS patients (A) with a trend toward significance among higher risk MDS patients (B)

Figure S4: Higher TSAT was significantly associated with inferior PFS (B) and LFS (D) in higher risk MDS patients, but not in lower risk MDS (A,C), although a trend toward significance was seen in LFS among lower risk patients (C).

Figure S5: Iron chelation therapy had an attenuating effect on the impact of TSAT on progression-free survival and leukemia-free survival, although sample sizes were limited.

Figure S6. Cumulative incidence of death from infection according to three TSAT and three ferritin categories, where mean TSAT and mean ferritin were taken over the entire duration of follow-up.

Table S2. Univariate Cox proportional hazards analysis of the impact of covariates on overall survival.

Variable	p-value	HR	95% CI of HR		R² (%)
Age at baseline (years)	<.0001	1.039	1.028	1.050	7.63
IPSS-R value at baseline	<.0001	1.369	1.303	1.438	18.88
Blasts categories at baseline 5-9% vs. <5% ≥10% vs. <5% ≥10% vs. 5-9%	<.0001 <.0001 <.0001 0.0049	1.922 2.947 1.533	1.498 2.313 1.139	2.467 3.755 2.065	10.10
ECOG (0-4)	<.0001	1.557	1.362	1.780	5.37
BMI (kg/m ²)	0.7516	1.003	0.984	1.023	0.02
TD vs. TI at anytime	0.3575	1.092	0.906	1.316	0.12
Frailty value at baseline (continuous)	<.0001	1.510	1.383	1.649	12.85
Charlson Comorbidity value at baseline (continuous) *	<.0001	1.502	1.269	1.777	3.66
Iron chelation (Yes vs. No)	0.0144	0.708	0.537	0.934	0.90
Iron saturation averaged value from all measurements	0.0012	1.007	1.003	1.012	1.42
Iron saturation averaged value categories 50-80% vs. <50% >80% vs. <50% >80% vs. 50-80%	<.0001 0.7049 <.0001 <.0001	1.041 2.031 1.951	0.845 1.546 1.460	1.282 2.667 2.605	3.21
Iron saturation averaged value >80% (Yes vs. No)	<.0001	1.999	1.541	2.593	3.19
Ferritin averaged value from all measurements *	<.0001	1.264	1.164	1.372	4.44
Ferritin averaged value categories 501-800 vs. ≤500 >800 vs. ≤500 >800 vs. 501-800	<.0001 0.9316 <.0001 0.0001	1.013 1.764 1.742	0.757 1.438 1.315	1.355 2.163 2.307	4.66
Ferritin averaged value >800 (Yes vs. No)	<.0001	1.758	1.458	2.119	4.66
Ferritin averaged value >1000 (Yes vs. No)	<.0001	1.678	1.389	2.027	3.82
Transfusion density (>2.7 units/months) categories	<.0001				6.48
High vs. No Low vs. No High vs. Low	<.0001 0.5198 <.0001	1.955 0.919 2.128	1.587 0.710 1.641	2.410 1.189 2.760	

*Natural log transformation was applied for some covariates to normalize their distributions. P-values < 0.05 were considered statistically significant (bolded rows). Hazard ratios and 95% confidence intervals (CI) of hazard ratio were also calculated for each covariate. The generalized R² statistic was calculated based on the likelihood ratio statistic (LRT) for testing the global null hypothesis (see Allison, Paul D. 2010. *Survival Analysis Using the SAS System: A Practical Guide*. Cary, NC: SAS Institute Inc, Second ed. Page 282-283) **Table S3.** Multivariable cox proportional hazards analysis.

Model A	p-value	HR	95% CI of HR		R² (%)
Iron saturation averaged value >80% vs. ≤80%	0.0071	1.584	1.133	2.215	30.30
Ferritin averaged value >800 vs. ≤800	0.0056	1.480	1.122	1.953	
Age at baseline (years)	0.0206	1.017	1.003	1.032	
IPSS-R value at baseline	<.0001	1.272	1.197	1.352	
Frailty value at baseline (continuous)	<.0001	1.328	1.197	1.472	
Charlson Comorbidity value at baseline (log)	0.0356	1.230	1.014	1.493	
Iron chelation (Yes vs. No)	0.0022	0.581	0.410	0.822	
Model B	p-value	HR	95% CI of HR		R² (%)
Iron saturation averaged value >80% vs. ≤80%	0.0072	1.581	1.132	2.209	30.35
Transfusion density (>2.7 units/months) categories	0.0002				
High vs. No	0.0092	1.516	1.108	2.075	
Low vs. No	0.1760	0.798	0.576	1.106	
High vs. Low	<.0001	1.899	1.386	2.603	
Age at baseline (years)	0.0064	1.020	1.006	1.035	
IPSS-R value at baseline	<.0001	1.271	1.196	1.351	
Frailty value at baseline (continuous)	<.0001	1.338	1.205	1.486	
Charlson Comorbidity value at baseline (log)	0.0463	1.217	1.003	1.476	
Iron chelation (Yes vs. No)	0.0092	0.636	0.452	0.894	

Potentially significant (p-value <0.10) variables from the univariate analysis were included in the multivariate analysis and backward stepwise selection procedure was used. The above two models emerged with nearly identical R² values. While age, IPSS-R, frailty, Charlson Comorbidity, ICT and TSAT remained independent predictors in all three models, only one of ferritin or TDD retained significance in each model, suggesting significant colinearity among these variables.