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Deep learning (DL) is a subdomain of artificial intelligence algorithms capable of automatically evaluating subtle graphical 
features to make highly accurate predictions, which was recently popularized in multiple imaging-related tasks. Because 
of its capabilities to analyze medical imaging such as radiology scans and digitized pathology specimens, DL has significant 
clinical potential as a diagnostic or prognostic tool. Coupled with rapidly increasing quantities of digital medical data, nu-
merous novel research questions and clinical applications of DL within medicine have already been explored. Similarly, 
DL research and applications within hematology are rapidly emerging, although these are still largely in their infancy. Given 
the exponential rise of DL research for hematologic conditions, it is essential for the practising hematologist to be familiar 
with the broad concepts and pitfalls related to these new computational techniques. This narrative review provides a 
visual glossary for key deep learning principles, as well as a systematic review of published investigations within malignant 
and non-malignant hematologic conditions, organized by the different phases of clinical care. In order to assist the un-
familiar reader, this review highlights key portions of current literature and summarizes important considerations for the 
critical understanding of deep learning development and implementations in clinical practice.  
 

Abstract 

Introduction 
Recent advances in large-scale data storage, availability, and 
computational power have led to significant interest in the 
development of new techniques for “big data” analysis. 
Rapidly evolving artificial intelligence (AI) algorithms aim to 
efficiently utilize vast amounts of information with minimal 
human interaction to address tasks that automate or im-
prove upon human-level assessment. Artificial intelligence 
takes many forms and includes domains of deep learning 
(DL), convolutional neural networks (CNN), and other related 
techniques that are capable of processing imaging data 
quickly and automatically. Research divisions within com-
mercially successful technology companies have popular-
ized DL models for vision-related tasks, such as facial 
recognition, image segmentation, object detection, and 
many other examples that are currently being integrated into 
daily life.   
Within the medical field, visual assessment of digitized clini-

cal imaging and biospecimens by physicians is critical in nu-
merous phases of clinical care for patients. As a result, early 
investigations that employ clinical DL using histology slides 
or radiological images within medicine have produced prom-
ising results, including diagnosis detection,1 clinical subtyp-
ing,2 cancer mutation prediction,3,4 and survival.5 Recognizing 
the clinical importance of these algorithms, the US Food and 
Drug Administration has approved a number of novel AI and 
DL products.6  
However, DL algorithms exploring malignant and non-ma-
lignant hematologic conditions are still scarce. With digit-
ization tools generating larger biospecimen image 
databases7,8 and researchers becoming increasingly familiar 
with DL techniques, examples of applications in hematology 
are growing exponentially.9-14 As such, it is inevitable for 
hematologists to be familiar with the broad concepts, ap-
plications, and limitations of clinical DL.  
In this structured narrative review, we aim to describe the 
general concepts, provide a visual glossary for key terms 
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within image-based DL, and conduct a systematic review to 
provide an up-to-date assessment of the application of 
image-based DL in benign and malignant hematology across 
various phases of patient care. 

Neural networks and deep learning 
The concept of “deep learning” is poorly defined, imprecise, 
and often used interchangeably with terms such as “ma-
chine learning” and “artificial intelligence.” Traditionally, “ar-
tificial intelligence” is the use of automated systems to 
perform a particular task. “Machine learning” represents a 
subset of AI in which rules are not explicitly predetermined, 
but are acquired by training and optimizing parameters 
based on observed data. Machine learning workflows tra-
ditionally separate data into training, validation, and external 
testing cohorts for model assessment. Examples of ma-
chine learning that are probably the most familiar include 
linear regression, logistic regression, or Cox proportional ha-
zards models. “Deep learning” is a recently-popularized 
subset of machine learning utilizing a specialized neural-

network architecture undergoing millions of arithmetic op-
erations (Figure 1).15,16 DL architectures are loosely modeled 
after the complex neural connections of the human brain.17  
Although the term “deep learning” is derived from “deep 
convolutional neural networks” and has gained interest par-
ticularly in clinical research, the strict definition has be-
come increasingly ambiguous and may not completely 
represent modern state-of-the-art techniques. The field of 
DL and the list of essential glossary terms are rapidly 
changing, but in keeping with contemporary clinical manu-
scripts, this review will use the term “deep learning” to 
mean “deep convolutional neural networks and other con-
temporary techniques related to computer vision”. There are 
also non-image-based neural networks and image-based 
machine learning architectures without neural networks; 
however, both are beyond the scope of this current review.  

Image preprocessing 
A standard workflow3,18,19 for DL research typically 
requires preprocessing input images, which can expedite 
DL training time or improve performance. Preprocessing 
steps are typically dependent on the modality of the 

Figure 1. Exemplifying differences in “Artificial Intelligence”, “Machine Learning”, and “Deep Learning” with regards to anemia.  
“Artificial Intelligence” (AI) involves automation of tasks, and can be an explicitly programmed rule to categorize based on the 
level of a laboratory value. “Machine Learning” (ML) methods, such as linear or logistic regression, derive associations from given 
training data.  More complex image-based “Deep Learning” (DL) models utilize complex architectures termed “Neural Networks” 
to associate subtle features associated with particular outcomes of interest by using input training data, similar to other 
machine learning frameworks. In this figure, the clinical condition of anemia based on hemoglobin (Hb) values is used as an 
example for the above computational frameworks. DL methods may extract features in non-traditional images, such as 
fundoscopic exams, to derive clinically meaningful categorizations.
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image type. While radiological images may be input either 
whole or with particular Regions of Interest (ROI) seg-
mented, histopathology slides are typically tessellated 
into smaller tiles representing tissue or segmented cells 
of interest prior to inclusion into the model. Normaliza-
tion of pathology images may reduce artifacts specific to 
a clinical site or particular scanning device, but there is 
no current standard normalization process. Data aug-
mentation may be performed with random image rota-
tions, vertical or horizontal flips, and simulated 
compression artifacts to increase the size of the training 
set and broaden generalizability. In addition to using im-
ages alone, researchers can include other data modal-
ities such as clinical information with multi-modal 
models to supplement image inputs in attempts to im-
prove model performance. 

General neural network structure 
In a simplified viewpoint of neural network structures (Fig-
ure 2), the input image is transformed at various intermedi-
ate states, termed “nodes,” with each node representing a 
different graphical feature of the image. As the image is 
passed from node to node, the connection between each 
node involves mathematical transformations to represent 
more complex features in later nodes. Each node can be 
connected to multiple subsequent nodes simultaneously, 
and the group of nodes with similar numbers of sequential 
connections from the input image represent a layer of in-
termediate nodes. Shallow and Deep neural networks refer 
to the number of node layers within a particular architec-
ture, but there is no strict definition to differentiate the two. 
In addition, nodes may not necessarily connect to the nodes 
in the immediately subsequent layer, but may connect by 
“skip connections” to nodes in later layers. The penultimate 
layer of nodes, each representing only a single numerical 
value, is termed the Logit Layer, the values of which are then 
normalized between the range of 0 and 1 to give the final 
probabilities for the outcomes of interest. Common out-
comes of interest and examples include object detection, 
segmentation, classification, regression, survival analysis, 
and detail optimization (Figure 3).  

Information propagation and parameter training 
To develop a neural network model, the input image is rep-
resented numerically by each pixel. The numerical informa-
tion is propagated though intermediate nodes and layers 
towards the direction of the output layer. The connections 
between nodes are mathematically represented by either 
non-linear operations or matrix multiplication and addition 
with potentially millions of trainable parameters, whose 
values are updated while optimizing the end outcome. 
Upon initial model evaluation, the sequential movement of 
information from input image towards the outcome of in-
terest is deemed “forward propagation” or “forward pass” 

(Figure 2A-F). To complement an initial prediction, the user 
defines a particular loss function to quantitatively describe 
the incorrectness of the model’s prediction from available 
ground truth. Using an additional user-defined optimizer al-
gorithm, the trainable parameters are iteratively adjusted to 
decrease the loss value in subsequent forward passes. This 
framework of optimizing parameters in earlier layers using 
information from the predicted outcome is deemed “back 
propagation.” During training, forward and back propagation 
are repeated for a defined number of repetitions, or epochs, 
but training can also be stopped if other defined optimal 
conditions are met. Given the need for at least 109 calcula-
tions per forward pass, parallel computing often requires 
specific hardware such as Graphics Processing Units (GPU) 
to expedite necessary matrix operations to be finished 
within reasonable timeframes. 

Convolutions 
At the time of writing, the most popular type of DL archi-
tecture is the convolutional neural network (CNN). The pro-
totypical CNN algorithm assesses a smaller grid-like portion 
of each input image prior to propagation towards the next 
layer (Figure 2C). CNN utilize the convolution operation be-
tween layers, which involves matrix multiplication across 
overlapping sub-sections of the input image to produce a 
lower-dimensional output representation.  

Pre-trained networks and transfer learning 
Initially, CNN trained to perform object detection required 
millions of manually-annotated images, training for days 
or weeks on industry-grade computational equipment.20 
After training is complete, CNN have traditionally been 
understood to learn “low-level” general features such as 
lines, edges, and shapes in earlier layers of the network, 
but more complex “high-level” features such as faces, 
patterns, and spatial distributions are learned in sub-
sequent layers that are more closely associated with the 
evaluated outcome.21  
In clinical research, it is rare for clinicians to have the re-
sources to develop new CNN architectures with initially 
random parameters; such a feat requires large-scale da-
tabases with expert-level annotations and access to in-
dustry-grade supercomputers. Researchers have taken 
advantage of the learned features along progressive layers 
by using models previously trained on large databases for 
non-clinical tasks, but repurposing the final few layers to 
predict specific clinically-relevant outcomes. The concept 
of transfer learning involves utilizing a pre-trained network 
such as those already trained on the ImageNet database 
of over 1 million general images,22 initializing the model 
with the parameters that learned “low-level” features 
from images unrelated to the application of interest, and 
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allowing the model to retrain and modify parameters in 
the last few layers to learn “higher-level” features on im-
ages for specific patient-related tasks. By utilizing transfer 
learning, the minimum required dataset and computa-
tional power is significantly less than fully training a net-
work from completely random parameters.23 

Specific deep learning architectures in clinical research 
While DL is a framework of neural networks for outcome 
prediction, each specific model architecture incorporates 
drastically different complexities with regards to number of 
layers, connections between layers, functions, and many 
other highly-engineered features. In fact, newer contempor-

B

C
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E

F
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Figure 2. Brief representation of the structure and training phases of deep convolutional neural networks. Collectively, A-H 
represent “forward propagation” and G-H represent “back propagation.” (A) Images are first passed into the network to predict 
an outcome of interest. In this example, 4x4 pixelated images of written numbers are used to train a network to predict the 
numeric value of the image. (B) Pixels are initially converted into numeric values based on pixel intensity. (C) Smaller sub-
sections of the input images are transformed with the convolutional operation, which involves matrix multiplication and addition 
with trainable parameters. (D) As information is passed into subsequent layers, the image undergoes non-linear transformations, 
such as the Rectified Linear Unit function that allow the model to represent non-linear relationships within the data. (E) Within 
this figure, intermediate layers are restructured to a layer of single numerical values in the Logit layer. (F) After propagation 
through the pre-defined number of convolutional layers, the final activation function normalizes the Logit layer into a 
distribution of probabilities across the space of available outcomes. The value with the highest probability is deemed the 
model’s prediction. (A-F) The framework outlined as information is passed from image input to model prediction is termed 
“forward pass” or “forward propagation.” (G) After the first pass of the model’s predictions, a loss function specific to the 
outcome data type is calculated to quantitatively assess the level of error produced by the initial prediction. The loss function 
is chosen before training by the user. Common examples of loss functions are “cross entropy” for categorical outcomes and 
“mean square error” for regression outcomes. (H) Optimization algorithms iteratively alter the trainable parameters within each 
of the previous convolutional layers based on the defined loss function. The direction and magnitude of parameter adjustments 
is calculated by either maximizing or minimizing the loss function in future forward passes, as chosen by the user for the 
outcome of interest. (G and H) The framework outlined for automatically adjusting earlier parameters to optimize model 
performance is termed “back propagation.” The process of forward (A-F) and back (G-H) propagation is repeated until a pre-
specified set of conditions is fulfilled, typically leading to more accurate predictions.
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ary models lack any convolutional layers, and infer local and 
global image features by other methods.24  
Thus far, the predominant architecture for hematology-spe-
cific questions tend to be from a class of CNN known as 
Residual Neural Networks (ResNets), which utilize skip con-
nections. Most specific ResNet architectures, such as In-
ception, EfficientNets, MobileNets, and other various ResNet 
models are open-source and widely available.25  
Certain model architectures are engineered to provide an 
output that is an additional image; these model structures 
are needed for dimensionality reduction, bounding-box de-
tection, segmentation, and noise reduction tasks. One spe-
cific architecture, Autoencoders, are networks that pass an 
input image through an intermediate lower-dimensional 
representation, followed by upsizing to a higher-dimensional 
space to recreate the input image.26 Theoretically, the lower-
dimensional intermediate representation still retains fea-
tures of the original image which may be clinically or 
biologically relevant. Similar architectures such as U-Net 
require additional training data, such as object ROI or low-
/high-quality image pairs, to accomplish tasks such as 
image segmentation or digital optimization. 
An additional relevant DL framework utilized is Multiple In-
stance Learning (MIL)27,28 and its attention-based deriva-
tives,29,30 including the Clustering-constrained Attention 
Multiple Instance Learning (CLAM).31 The main distinction in 
MIL frameworks is the prediction for data subsets and not 
for single instances. Specifically, input images are separated 
into smaller subsets. The entirety of the subset is predicted 
“positive” if at least one image in the subset is predicted 
“positive”. As an example of MIL in histopathology, a biopsy 
whole-slide image would be predicted “cancerous” when one 

extracted tile is predicted as such.1 This framework may be 
particularly helpful when single annotations are provided 
across an entire image, or “weak supervision”, and not 
necessarily labels for each specific segmented ROI. In addi-
tion, Attention, or a numeric weight, can be assigned to each 
image tile to produce weighted predictions, as well as provide 
explainable heatmaps. Using Attention, CLAM was developed 
to increase the speed of MIL and reduce the noise from ir-
relevant image tiles. 
Vision Transformers (ViT) are a novel technique that do not 
utilize the convolution operator.24 The entire image is sep-
arated into a grid of sub-images that are analyzed in parallel 
along with the relative location of each sub-image. With this 
method, global relationships across the entire image may 
be learned by the model as opposed to only local features 
that are seen by the previously-described CNN. 
Currently, most architectures for hematology-specific 
questions utilize ResNet architectures, with just a few 
examples also incorporating MIL. However, the emergence 
of ViT and CLAM frameworks are part of a changing land-
scape of implemented DL architectures. In general, the 
choice of model architecture is somewhat informed by ex-
pected outcome task, but it is still largely empiric. How-
ever, there are broad advantages and disadvantages for 
each of the previously-mentioned frameworks. With weak 
supervision, MIL tends to require significantly larger 
amounts of training data than ResNets.1 CNN and ViT per-
form equally well at the scale of currently available clinical 
datasets. However, ViT are superior to CNN for larger scale 
datasets and are more computationally efficient with sig-
nificantly fewer parameters.24 There are numerous 
methods to attempt to explain the inner mechanisms of 

Figure 3. Examples of outcome tasks and explainability methods in Deep Learning. In this example, the initial input image is a 
promyelocyte with visible Auer Rods as seen on a peripheral blood smear, a possible pathognomonic finding for acute 
promyelocytic leukemia. Output tasks can include localization of white blood cells (Detection), creation of a region of interest 
around the nucleus (Segmentation), disease prediction (Classification/Regression), or increasing the visual quality of the input 
image (Detail Optimization). Explainability methods are necessary to ensure biological feasibility. In exploratory analyses, 
parameters within the intermediate layers can be directly visualized (Feature Maps), heatmaps can be generated to highlight 
specific areas associated with the outcome (Saliency or Attention Maps), synthetic images can be generated from noise to 
represent an outcome of interest (generative adversarial networks), or cluster analyses can be performed with dimensionality 
reduction techniques.
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standard CNN,32 but similar methods to “open the black 
box” of ViT are currently under development.33 

Explainability 
While “explainability” in DL research is loosely defined, in 
this review, “explainability” refers to the efforts in describing 
DL models and predictions in humanly-understandable con-
cepts.34 
Although DL may empirically exhibit a high performance, DL 
is often criticized for its highly complex mechanisms and is 
often thought of as a “black box.” In multiple examples, 

seemingly high-performing models often utilize artifact or 
contextually irrelevant features for its predictions, as the ar-
tifactual features may be unintentionally over-represented in 
certain imaging subgroups.35 Multiple methods are under de-
velopment to explain and validate biologically reasonable 
predictions. As such, explainability is increasingly important 
in clinical AI development and in developing physicians’ trust 
of DL.36 
To give just a few examples, unsupervised data dimension-
ality reduction methods such as principal component analy-
sis (PCA), t-distributed stochastic neighbor embedding 

B

Figure 4. Literature search. (A) 
Search terms to extract rele-
vant manuscripts related to 
deep learning in malignant and 
non-malignant hematology. 
Articles were queried in Pub-
Med using one “Deep Lear-
ning” term in addition to one 
“Hematology” term. (B) PRI-
SMA diagram of “Deep Lear-
ning in Hematology” survey. 
Initially 2,708 articles were 
found from a PubMed query. 
After initial review of abstracts 
and article titles, 237 reports 
were deemed eligible for fur-
ther review of full manuscripts. 
Finally, 65 articles were inclu-
ded for the current narrative 
review. Justification for exclu-
sion are provided.
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(t-SNE), and Uniform Manifold Approximation and Projection 
(UMAP) are statistical techniques used to group visually 
similar input images into clusters, which may overlap with 
relevant outcomes. These methods are also popularized in 
non-imaging data such as single cell molecular and cyto-
metry time-of-flight analyses. Feature maps are direct visual 
representations of the intermediate trained parameters. 
Plotting Attention scores or using Saliency map methods 
such as Grad-CAM or Smooth-Grad can overlay heat-maps 
upon the input image to highlight relevant visual cues as-
sociated with the outcome of interest.35 For example, the 
heatmap explainability methods of a peripheral blood smear 
image may highlight pathognomonic Auer Rods for the ac-
curate diagnosis of acute promyelocytic leukemia (Figure 3). 
More complex methods such as Generative Adversarial Net-
works are architectures trained to generate synthetic im-
ages, which can create representations of a particular class 
or outcome.37  

Metrics 
Common performance metrics for the evaluation of DL 
classification models include Area Under the Receiver Op-
erator Curve (AUROC), sensitivity, specificity, and accuracy. 
The AUROC represent the tradeoff between true and false 
positive rates for a binary model along a range of possible 
threshold values. AUROC values nearing 1.0 represent a 
model with perfect discriminatory power, and values tend-
ing towards 0.5 perform no better than random chance.  
For segmentation tasks, the Sørensen-Dice similarity co-

efficient (Dice) represents the overlap between the pre-
dicted area of interest with the ground truth, where a 
Dice coefficient of 1.0 represents ideal predictive overlap. 
Other segmentation metrics include the similarly defined 
Jaccard index, also known as Intersection over Union 
(IoU).  
 
 

Literature review for clinical 
application of deep learning in  
hematologic conditions 
A Boolean query was submitted to PubMed to extract ar-
ticles created between January 1, 1990, and August 1, 
2022. Search terms included both a “deep learning” and 
a “hematology” specific term (Figure 4A). The query re-
sulted in 2,708 initial articles. Further refinement by 
manual review by one author excluded a large number of 
articles (Figure 4B), resulting in 65 manuscripts. General 
trends and findings of the resulting articles are described 
in the context of how DL has been utilized to enhance 
phases of clinical care within various hematologic con-
ditions, including task automation, detail optimization, 
disease detection, differential diagnosis, disease classifi-
cation, risk prediction, complication assessment, therapy 
response, and survival prediction (Figure 5). General con-
siderations for critical appraisal of the following manu-
scripts include performance metrics, use of external or 
prospective validation cohorts, use of explainability 

Figure 5. Deep Learning applications within 65 malignant and non-malignant hematology manuscripts. Applications are divided 
into separate phases of clinical care, including task automation, detail optimization, disease detection, differential diagnosis, 
disease classification, risk prediction, complication assessment, therapy response, and survival/relapse prediction. Image 
domains include radiological, pathological, and other atypical image types such as electrocardiograms or funduscopic exams. 
Specific image modalities are detailed in Tables 1-4. CBC: complete blood count; MDS: myelodysplastic syndromes; MPN: 
myeloproliferative neoplasms; RBC: red blood cell; VTE: venous thromboembolism; WBC: white blood cell.
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methods, and comparison with human expert perform-
ance (Tables 1-4).  

Task automation 
Routine clinical workflows in pathology and radiology may 
involve repetitive actions. Automation models can be de-
veloped to increase efficiency and decrease physician 
burden for tasks such as counting cell types in peripheral 
blood smears or contouring the borders of suspicious 
lesions on imaging. For pathology workflows, DL models 
trained to contour white blood cell (WBC) borders in pe-
ripheral blood smears were highly effective with near per-
fect Dice co-efficients in multiple cohorts.38 Automatic 
detection of cells can be put through downstream analyses 
and provide an automated cell count, for which DL-based 
methods achieve high accuracy.39  
In addition, chromosomal analyses are standard for diagno-
sis and prognostication for multiple hematologic malig-
nancies. Manual segmentation and rotation of digital 
karyograms is time-consuming, but automated models can 
significantly expedite throughput.40 In radiology workflows, 
contouring suspicious lesions or organs can help character-
ize downstream parameters such as volume, width, and 
avidity. Hypermetabolic lesions on PET/CT have been local-
ized with DL algorithms for multiple adult and pediatric 
lymphomas or multiple myeloma lesions.41,42 Segmentation 
metrics were reportedly high, with Dice coefficient 0.86-
0.98 among various lymphomatous conditions.43-45 For other 
conditions, the automated volume calculation of particular 
regions of interest have been explored in myeloproliferative 
neoplasms (MPN) for spleen volume,46 as well as clot burden 
quantification for new pulmonary emboli.47  

Detail optimization 
For expert diagnosticians, image quality is critical for the 
identification of disease. Using U-Net architectures, DL-en-
hanced images may improve user readability and potentially 
reduce the amount of toxic contrast material given to pa-
tients. Enhancement of peripheral blood images to assess 
red blood cell (RBC) aberrations have yielded promising re-
sults. For sickle cell disease, mobile-device photos of pe-
ripheral blood have been digitally upscaled to match 
laboratory microscope quality; upon further validation, the 
upscaled images retained relevant visual cues with near-
perfect classification.48 However, similar attempts to detect 
malaria RBC inclusion were less successful, noting that 
CNN-based enhancement of peripheral blood images was 
insufficient to resolve parasites that were not already easily 
distinguishable at low resolution.49 Multiple optimization ef-
forts in radiology have investigated whether DL can improve 
image quality from lower-contrast images, which may help 
spare patients from nephrotoxic or radioactive risks. For 
both positron emission tomography/magnetic resonance 
imaging (PET-MRI) in lymphomatous conditions and com-

puted tomography (CT) scans in multiple myeloma, authors 
have concluded that reduced contrast volumes may be 
feasible while still maintaining diagnostic quality.50, 51 

Disease detection 
In clinical practice, a common initial diagnostic step for 
hematologic disorders is the analysis of peripheral blood to 
observe morphologic abnormalities of RBC, WBC, and pla-
telets. The detection of structural RBC aberrations can 
identify certain infectious diseases and hemoglobin-
opathies. In endemic areas of malaria, the Plasmodium 
parasites are often identified by light microscopy as RBC 
inclusions. Multiple DL initiatives report high accuracy and 
good model performance for the diagnosis of malaria from 
peripheral blood in both cross-validated and external co-
horts.52-56 Other RBC aberrations, such as hemoglobin H in-
clusions in α-thalassemia, can be detected by DL with 
appropriate peripheral blood staining protocols.57 With re-
gards to transfusion medicine needs, the quality and degra-
dation of RBC products prior to transfusion can also be 
determined with DL methods. Using explainability tech-
niques, Doan et al. explored their proposed autoencoder 
network trained on RBC images to identify novel features 
associated with poor storage quality RBC products.58 
For certain disorders, the detection of aberrant WBC mor-
phologies from peripheral blood is paramount. DL algo-
rithms consistently detect dysplastic neutrophils 
pathognomonic for myelodysplastic syndrome (MDS),59 as 
well as other white blood precursors to aid in the diagno-
sis of MPN,60 acute promyelocytic leukemia (APL),12 or 
acute lymphoblastic leukemia (ALL).61,62 Many DL models 
for WBC detection have performed with high accuracy and 
AUROC upon internal validation strategies. If translated 
into clinical practice, DL models for peripheral blood as-
sessment may expedite critical diagnoses which necessi-
tate emergent therapy, such as APL.  
Particularly for myeloid malignancies, bone marrow assess-
ment is usually needed to establish a diagnosis. DL can de-
tect particular cellular morphologies of neutrophils, 
megakaryocytes, promyelocytes, and plasma cells associ-
ated with MDS,63 MPN,64 APL,13 and multiple myeloma,65 re-
spectively. Similarly for lymphoid malignancies, assessing 
lymph node architectures can aid the diagnosis of various 
lymphomas, such as diffuse large B-cell lymphoma 
(DLBCL)66 or follicular lymphoma (FL).67 DL models devel-
oped by Li et al. maintained high accuracy for the diagnosis 
of DLBCL from lymph biopsies across four separate institu-
tional cohorts.66 Furthermore, Syrykh et al. utilized the clini-
cal challenge of differentiating follicular lymphoma from 
follicular hyperplasia to develop a novel DL method quan-
tifying prediction uncertainty, which is not often reported in 
DL studies. With their uncertainty method, the authors re-
port higher classification capabilities when only considering 
the newly categorized low-uncertainty images.67  
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In addition to pathologic analysis, clinical guidelines com-
monly suggest radiologic assessment for the initial workup 
of suspected malignancy or thrombosis. Using PET/CT im-
ages, DL models exhibit high classification of the hyper-
metabolic lesions for DLBCL diagnosis.68 However, similar 
attempts using PET/CT images of mantle cell lymphoma 
(MCL) patients are challenged with tradeoffs between sen-
sitivity and false positive rates for diagnosis in external co-
horts.69 For select non-malignant conditions, multiple 
studies explored DL for the expedited and more affordable 
diagnosis of pulmonary emboli (PE) and deep vein throm-
boses (DVT), for which a diagnosis may require immediate 
intervention.70-72 Huang et al. integrated clinical data in con-
junction with CT scans to improve their DL model for PE de-
tection. The authors report that multi-modal models exhibit 
higher classification performance than image-only DL 
models.71 In addition, automated detection of common 
thrombotic conditions may reduce the financial burden, 
with cost analyses revealing positive financial benefit to 
health care systems.72  
Finally, a particularly novel use of DL is the prediction of dis-
ease from imaging modalities beyond standard pathologic 
or radiologic domains. Multiple studies have shown that 
anemia can be detected with high accuracy utilizing DL on 
atypical modalities such as electrocardiograms (ECG)73 or 
funduscopic examinations.74 Both authors have imple-
mented explainability methods to reveal features associated 
with anemia, such as QRS complexes in ECG or optic disk 
aberrations in funduscopic images. Thus, screening for ane-
mia may offer a low-cost benefit for patients already under-
going these common examinations.  

Differential diagnosis 
Various hematologic conditions share similar features and 
presentations, posing challenges in providing a definitive 
diagnosis in clinical scenarios where radiologic findings 
may be non-specific and pathological morphologies may 
be subtle. Differentiating among possible diagnoses is a 
common clinical task, and various approaches of DL have 
been explored as a potential means to increase objectivity 
towards a true diagnosis. For example, Li et al. used 
transfer learning to pre-train their model with images of 
common household objects, such as bananas, rings, and 
pears to learn the analogous morphologies of similarly-
shaped RBC inclusions of Toxoplasma, Plasmodium, and 
Babesia.75  
Interestingly, DL models have been shown to better extract 
subtle features for disease differentiation than can be as-
sessed by humans. Cytopenias can be a common presen-
tation for either MDS or aplastic anemia (AA) patients. 
Though either diagnosis typically requires bone marrow bi-
opsy assessment, Kimura et al. trained a DL model on pe-
ripheral blood images  to accurately differentiate between 
the two conditions.76 Newly diagnosed leukemia patients 

commonly present with blasts in peripheral blood. The cat-
egorization of blasts into either myeloid or lymphoid line-
ages requires identifying cell-surface markers by flow 
cytometry; thus, visualization of blasts is not usually suffi-
cient for classification. Similarly, lymphoma histology share 
visual commonalities and require immunohistochemical 
staining of cell-surface markers on biopsy specimens. To 
address these classification challenges, DL algorithms re-
portedly differentiate between acute myeloid leukemia 
(AML) and acute lymphoblastic leukemia (ALL) utilizing only 
peripheral blood or bone marrow images,9,77,78 and similarly 
among various non-Hodgkin lymphomas (NHL) utilizing 
standard hematoxylin and eosin (H&E) lymph node biopsy 
images.79-82  
For patients with malignant brain lesions found on MRI im-
aging, clinicians may be tasked to differentiate between pri-
mary central nervous system lymphoma (PCNSL) and 
glioblastoma multiforme (GBM).83 DL models for this re-
vealed seemingly high initial performance but with a signifi-
cant reduction to an AUROC of nearly 0.5 in external 
cohorts.83 The problem of generalizing results highlights the 
continued need for critical appraisal of any newly-developed 
DL model across patient populations. 

Disease classification 
The classification of blood cells in standard peripheral blood 
smear review is a ubiquitous task useful in a broad array of 
diseases. The differential of WBC is necessary to stratify the 
likelihood of the malignant and non-malignant causes of 
WBC abnormalities. Numerous studies developed DL 
models as a single cell WBC classifier. Across the studies, 
performance remained robust, with the majority of studies 
achieving accuracies above 90% and explainability tech-
niques highlighting sensitive cellular features.11,84-86 However, 
validation upon external cohorts, which commonly reveal a 
lower performance,11 is still needed prior to deployment in 
clinical practice. In addition to WBC classification, the cat-
egorization of RBC morphologies is useful within various 
anemias,87 including sickle cell disease.88 To explore platelet 
abnormalities, Zhou et al. developed a highly accurate DL 
model predicting the identity of agonists causing platelet 
aggregation using imaging flow cytometry.89  
Specific sub-classification of diagnoses is often necessary 
to guide prognostication, counseling, and therapeutic con-
siderations. In numerous non-hematologic applications, 
previous DL models can accurately further categorize vari-
ous cancers into genetic and clinical subtypes,4 which has 
led to similar explorations within leukemic and lymphoma-
tous conditions. For leukemic classifications, ALL bone mar-
row images can be separated into the historically relevant 
French-American-British (FAB) classifications.90 Fur-
thermore, genomic subtypes may be accurately identified 
by DL models; Eckardt et al. identified NPM1 mutations 
among newly diagnosed AML patients and characterized 
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novel cellular morphological features that had not pre-
viously been reported.14 Broader DL efforts to identify each 
clinically relevant molecular or cytogenetic abnormality 
have been attempted for MDS sub-classifications.91 For lym-
phoma, Swiderska-Chadaj et al. developed a DL model pre-
dicting MYC gene rearrangements in DLBCL patients using 
lymph node biopsy images. Though MYC rearrangement is 
typically assessed with ancillary fluorescent in situ hybri-
dization, the DL model using only H&E images maintained 
high accuracy upon external cohorts.92  

Advanced stages of patient care 
There are currently few examples of DL for the assistance 
of later stages of patient care, including risk prediction, 
complication assessment, therapy response, and survival 
prediction. For such tasks, the disease processes and image 
modalities are heterogenous. Risk has been assessed with 
CT images or digitalized bone marrow biopsies (BMB) for 
DLBCL outcomes. DL models predict the transformation of 
low-grade lymphomas to high-grade DLBCL using BMB im-
ages,93 and, furthermore, known clinical risk factors such as 
sarcopenia can be extracted and quantified in CT images of 
DLBCL patients.94 Risk in thrombotic conditions can be 
characterized automatically using DL classification of right 
ventricular strain in chest imaging for PE workup.95 Cai et al. 
assessed complications of sickle cell disease by detecting 
sea fan neovascularization in funduscopic images, which is 
a vision-threatening complication warranting prophylactic 
management.96 Doan et al. evaluated therapy response in 
ALL patients by using DL methods to detect residual lym-
phoblasts after receiving induction chemotherapy.97 Finally, 
DL models for relapse prediction using baseline imaging 
have been developed for extranodal natural killer/T-cell lym-
phoma98 and mantle cell lymphoma.99 However, further 
evaluations upon external cohorts are needed for these ad-
vanced stage tasks.  

Conclusions 
The use of deep learning in hematologic conditions has at-
tracted significant interest in recent years. As noted above, 
researchers have utilized multiple data structures including 
radiologic images, pathology specimens, clinical data, and 
atypical imaging such as funduscopic examinations to per-
form a variety of clinically relevant tasks. Most Authors re-
ported high model performance for disease diagnosis, 
segmentation, and subtyping. Other studies explored tasks 
beyond human capabilities such as genomic inference and 
prognostication from imaging analysis alone. Few studies 
have used hematologic conditions as a means to implement 
state-of-the-art architectures to improve the field of DL in 
general. Compared to other clinical domains, DL in hema-
tology is still in its infancy, so it is not widely used in clinical 

practice. As such, the intention of this review is to introduce 
broad concepts to hematology clinicians to assist in the 
evaluation and understanding of future DL implementations, 
as well as to provide an overview of the clinical uses cur-
rently being explored throughout patient care. 
The fact that it is still early days for DL in hematology may 
be due to a lack of appropriate algorithm design, data avail-
ability, computational resources, and insufficient disease-
specific expertise involved in DL development.100 To the best 
of our knowledge, there are still no large clinically-anno-
tated multi-modal public datasets for many hematologic 
conditions. In addition, critical morphological information in 
hematopathology may only be available at higher magnifi-
cation levels, surpassing the limits of standard pathology 
scanners. Although these structural barriers continue to 
compromise the development of DL in hematology, rapid 
technological advances continue, and interest for DL within 
the academic community is growing.101 
Though promising, the methods and conclusions from the 
numerous studies are heterogenous and challenging to 
compare. As yet, there is no standardized approach in DL 
research, reporting, or implementation. In the present over-
view, the majority of publications were evaluated by internal 
validation strategies, with the minority evaluated on external 
institution cohorts. Explaining model predictions were not 
ubiquitous, and few DL models were compared directly 
against human evaluation. Major government initiatives cur-
rently aim to standardize DL protocol design,102 and, despite 
the variance in outcome reporting in DL analyses, the 
SPIRIT-AI, STARD-AI, and CONSORT-AI initiatives aim to 
standardize future clinical trial design and reporting of ar-
tificial intelligence interventions.103-105  
The research and results of DL analyses must be interpreted 
cautiously, as a number of practical and ethical issues have 
arisen in other domains of machine learning. CNN are prone 
to “memorize” the training set; thus, the initial high per-
formance may fail to be carried forward on new previously 
unseen data. For this reason, it is imperative to evaluate DL 
models on external cohorts from separate institutions. If 
training data are acquired from multiple institutions, care 
must be given to correct for known “batch effects,” as DL 
models may infer site-specific artifact signatures not re-
lated to the underlying disease biology.106 Similarly, re-
searchers should investigate explainability and error analysis 
to ensure that the models rely on scientifically reasonable 
features and ignore irrelevant factors. In addition, uncer-
tainty in model predictions are rarely reported but are ar-
guably necessary for clinical implementation of DL 
algorithms. 
In this review, the majority of DL applications are aimed to-
wards earlier phases of clinical care, such as automation 
and disease detection. DL in lymphoma resulted in the plu-
rality of exploratory analyses, likely due to the importance 
of both radiologic and pathologic findings in the care of lym-
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phoma patients. Though explored in a myriad of malignant 
and non-malignant conditions, notably lacking are DL ap-
plications in stem cell transplantation and many other non-
malignant processes where morphological assessment is 
paramount, such as thrombotic microangiopathies.  
Future work is needed to address large scale applications of 
DL in hematology. As a hematopathologist typically assesses 
histology specimens at different magnification levels, cus-
tomized architectures to implement multi-scale image 
analysis should be explored. DL in solid oncology is widely 
used, in part due to the publicly available digital biopsy speci-
mens provided by The Cancer Genome Atlas,107 of which there 
is no analogous database for hematologic conditions. In ad-
dition, the combination of multi-modal data structures that 
incorporate images in concert with flow cytometry, molecular 
analyses, cytogenetics, or other clinical factors may provide 
additional relevant features to improve DL models.  
While numerous considerations remain before large-scale 
implementation of DL is feasible, the development of new 
models and applications in hematology is rapidly increasing, 
and it is imperative for clinicians to be aware of the oppor-
tunities that DL may provide.  
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