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Deep learning (DL) is a subdomain of artificial intelligence algorithms capable of automatically evaluating subtle graphical
features to make highly accurate predictions, which was recently popularized in multiple imaging-related tasks. Because
of its capabilities to analyze medical imaging such as radiology scans and digitized pathology specimens, DL has significant
clinical potential as a diagnostic or prognostic tool. Coupled with rapidly increasing quantities of digital medical data, nu-
merous novel research questions and clinical applications of DL within medicine have already been explored. Similarly,
DL research and applications within hematology are rapidly emerging, although these are still largely in their infancy. Given
the exponential rise of DL research for hematologic conditions, it is essential for the practising hematologist to be familiar
with the broad concepts and pitfalls related to these new computational techniques. This narrative review provides a
visual glossary for key deep learning principles, as well as a systematic review of published investigations within malignant
and non-malignant hematologic conditions, organized by the different phases of clinical care. In order to assist the un-
familiar reader, this review highlights key portions of current literature and summarizes important considerations for the

critical understanding of deep learning development and implementations in clinical practice.

Introduction

Recent advances in large-scale data storage, availability, and
computational power have led to significant interest in the
development of new techniques for “big data” analysis.
Rapidly evolving artificial intelligence (Al) algorithms aim to
efficiently utilize vast amounts of information with minimal
human interaction to address tasks that automate or im-
prove upon human-level assessment. Artificial intelligence
takes many forms and includes domains of deep learning
(DL), convolutional neural networks (CNN), and other related
techniques that are capable of processing imaging data
quickly and automatically. Research divisions within com-
mercially successful technology companies have popular-
ized DL models for vision-related tasks, such as facial
recognition, image segmentation, object detection, and
many other examples that are currently being integrated into
daily life.

Within the medical field, visual assessment of digitized clini-

cal imaging and biospecimens by physicians is critical in nu-
merous phases of clinical care for patients. As a result, early
investigations that employ clinical DL using histology slides
or radiological images within medicine have produced prom-
ising results, including diagnosis detection,' clinical subtyp-
ing,? cancer mutation prediction,** and survival.®* Recognizing
the clinical importance of these algorithms, the US Food and
Drug Administration has approved a number of novel Al and
DL products.®

However, DL algorithms exploring malignant and non-ma-
lignant hematologic conditions are still scarce. With digit-
ization tools generating larger biospecimen image
databases’® and researchers becoming increasingly familiar
with DL techniques, examples of applications in hematology
are growing exponentially.®™ As such, it is inevitable for
hematologists to be familiar with the broad concepts, ap-
plications, and limitations of clinical DL.

In this structured narrative review, we aim to describe the
general concepts, provide a visual glossary for key terms
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within image-based DL, and conduct a systematic review to
provide an up-to-date assessment of the application of
image-based DL in benign and malignant hematology across
various phases of patient care.

Neural networks and deep learning

The concept of “deep learning” is poorly defined, imprecise,
and often used interchangeably with terms such as “ma-
chine learning” and “artificial intelligence.” Traditionally, “ar

tificial intelligence” is the use of automated systems to
perform a particular task. “Machine learning” represents a
subset of Al in which rules are not explicitly predetermined,
but are acquired by training and optimizing parameters
based on observed data. Machine learning workflows tra-
ditionally separate data into training, validation, and external
testing cohorts for model assessment. Examples of ma-
chine learning that are probably the most familiar include
linear regression, logistic regression, or Cox proportional ha-
zards models. “Deep learning” is a recently-popularized
subset of machine learning utilizing a specialized neural-
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network architecture undergoing millions of arithmetic op-
erations (Figure 1).%'® DL architectures are loosely modeled
after the complex neural connections of the human brain.”
Although the term “deep learning” is derived from “deep
convolutional neural networks” and has gained interest par-
ticularly in clinical research, the strict definition has be-
come increasingly ambiguous and may not completely
represent modern state-of-the-art techniques. The field of
DL and the list of essential glossary terms are rapidly
changing, but in keeping with contemporary clinical manu-
scripts, this review will use the term “deep learning” to
mean “deep convolutional neural networks and other con-
temporary techniques related to computer vision”. There are
also non-image-based neural networks and image-based
machine learning architectures without neural networks;
however, both are beyond the scope of this current review.

Image preprocessing

A standard workflow?®" for DL research typically
requires preprocessing input images, which can expedite
DL training time or improve performance. Preprocessing
steps are typically dependent on the modality of the
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Figure 1. Exemplifying differences in “Artificial Intelligence”, “Machine Learning”, and “Deep Learning” with regards to anemia.
“Artificial Intelligence” (Al) involves automation of tasks, and can be an explicitly programmed rule to categorize based on the
level of a laboratory value. “Machine Learning” (ML) methods, such as linear or logistic regression, derive associations from given
training data. More complex image-based “Deep Learning” (DL) models utilize complex architectures termed “Neural Networks”
to associate subtle features associated with particular outcomes of interest by using input training data, similar to other
machine learning frameworks. In this figure, the clinical condition of anemia based on hemoglobin (Hb) values is used as an
example for the above computational frameworks. DL methods may extract features in non-traditional images, such as
fundoscopic exams, to derive clinically meaningful categorizations.
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image type. While radiological images may be input either
whole or with particular Regions of Interest (ROI) seg-
mented, histopathology slides are typically tessellated
into smaller tiles representing tissue or segmented cells
of interest prior to inclusion into the model. Normaliza-
tion of pathology images may reduce artifacts specific to
a clinical site or particular scanning device, but there is
no current standard normalization process. Data aug-
mentation may be performed with random image rota-
tions, vertical or horizontal flips, and simulated
compression artifacts to increase the size of the training
set and broaden generalizability. In addition to using im-
ages alone, researchers can include other data modal-
ities such as clinical information with multi-modal
models to supplement image inputs in attempts to im-
prove model performance.

General neural network structure

In a simplified viewpoint of neural network structures (Fig-
ure 2), the input image is transformed at various intermedi-
ate states, termed “nodes,” with each node representing a
different graphical feature of the image. As the image is
passed from node to node, the connection between each
node involves mathematical transformations to represent
more complex features in later nodes. Each node can be
connected to multiple subsequent nodes simultaneously,
and the group of nodes with similar numbers of sequential
connections from the input image represent a layer of in-
termediate nodes. Shallow and Deep neural networks refer
to the number of node layers within a particular architec-
ture, but there is no strict definition to differentiate the two.
In addition, nodes may not necessarily connect to the nodes
in the immediately subsequent layer, but may connect by
“skip connections” to nodes in later layers. The penultimate
layer of nodes, each representing only a single numerical
value, is termed the Logit Layer, the values of which are then
normalized between the range of 0 and 1 to give the final
probabilities for the outcomes of interest. Common out-
comes of interest and examples include object detection,
segmentation, classification, regression, survival analysis,
and detail optimization (Figure 3).

Information propagation and parameter training

To develop a neural network model, the input image is rep-
resented numerically by each pixel. The numerical informa-
tion is propagated though intermediate nodes and layers
towards the direction of the output layer. The connections
between nodes are mathematically represented by either
non-linear operations or matrix multiplication and addition
with potentially millions of trainable parameters, whose
values are updated while optimizing the end outcome.
Upon initial model evaluation, the sequential movement of
information from input image towards the outcome of in-
terest is deemed “forward propagation” or “forward pass”
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(Figure 2A-F). To complement an initial prediction, the user
defines a particular loss function to quantitatively describe
the incorrectness of the model’s prediction from available
ground truth. Using an additional user-defined optimizer al-
gorithm, the trainable parameters are iteratively adjusted to
decrease the loss value in subsequent forward passes. This
framework of optimizing parameters in earlier layers using
information from the predicted outcome is deemed “back
propagation.” During training, forward and back propagation
are repeated for a defined number of repetitions, or epochs,
but training can also be stopped if other defined optimal
conditions are met. Given the need for at least 109 calcula-
tions per forward pass, parallel computing often requires
specific hardware such as Graphics Processing Units (GPU)
to expedite necessary matrix operations to be finished
within reasonable timeframes.

Convolutions

At the time of writing, the most popular type of DL archi-
tecture is the convolutional neural network (CNN). The pro-
totypical CNN algorithm assesses a smaller grid-like portion
of each input image prior to propagation towards the next
layer (Figure 2C). CNN utilize the convolution operation be-
tween layers, which involves matrix multiplication across
overlapping sub-sections of the input image to produce a
lower-dimensional output representation.

Pre-trained networks and transfer learning

Initially, CNN trained to perform object detection required
millions of manually-annotated images, training for days
or weeks on industry-grade computational equipment.?®
After training is complete, CNN have traditionally been
understood to learn “low-level” general features such as
lines, edges, and shapes in earlier layers of the network,
but more complex “high-level” features such as faces,
patterns, and spatial distributions are learned in sub-
sequent layers that are more closely associated with the
evaluated outcome.”

In clinical research, it is rare for clinicians to have the re-
sources to develop new CNN architectures with initially
random parameters; such a feat requires large-scale da-
tabases with expert-level annotations and access to in-
dustry-grade supercomputers. Researchers have taken
advantage of the learned features along progressive layers
by using models previously trained on large databases for
non-clinical tasks, but repurposing the final few layers to
predict specific clinically-relevant outcomes. The concept
of transfer learning involves utilizing a pre-trained network
such as those already trained on the ImageNet database
of over 1 million general images,?? initializing the model
with the parameters that learned “low-level” features
from images unrelated to the application of interest, and
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allowing the model to retrain and modify parameters in Specific deep learning architectures in clinical research

the last few layers to learn “higher-level” features on im- While DL is a framework of neural networks for outcome
ages for specific patient-related tasks. By utilizing transfer prediction, each specific model architecture incorporates
learning, the minimum required dataset and computa- drastically different complexities with regards to number of
tional power is significantly less than fully training a net- layers, connections between layers, functions, and many
work from completely random parameters.? other highly-engineered features. In fact, newer contempor-
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Figure 2. Brief representation of the structure and training phases of deep convolutional neural networks. Collectively, A-H
represent “forward propagation” and G-H represent “back propagation.” (A) Images are first passed into the network to predict
an outcome of interest. In this example, 4x4 pixelated images of written numbers are used to train a network to predict the
numeric value of the image. (B) Pixels are initially converted into numeric values based on pixel intensity. (C) Smaller sub-
sections of the input images are transformed with the convolutional operation, which involves matrix multiplication and addition
with trainable parameters. (D) As information is passed into subsequent layers, the image undergoes non-linear transformations,
such as the Rectified Linear Unit function that allow the model to represent non-linear relationships within the data. (E) Within
this figure, intermediate layers are restructured to a layer of single numerical values in the Logit layer. (F) After propagation
through the pre-defined number of convolutional layers, the final activation function normalizes the Logit layer into a
distribution of probabilities across the space of available outcomes. The value with the highest probability is deemed the
model’s prediction. (A-F) The framework outlined as information is passed from image input to model prediction is termed
“forward pass” or “forward propagation.” (G) After the first pass of the model’s predictions, a loss function specific to the
outcome data type is calculated to quantitatively assess the level of error produced by the initial prediction. The loss function
is chosen before training by the user. Common examples of loss functions are “cross entropy” for categorical outcomes and
“mean square error” for regression outcomes. (H) Optimization algorithms iteratively alter the trainable parameters within each
of the previous convolutional layers based on the defined loss function. The direction and magnitude of parameter adjustments
is calculated by either maximizing or minimizing the loss function in future forward passes, as chosen by the user for the
outcome of interest. (G and H) The framework outlined for automatically adjusting earlier parameters to optimize model
performance is termed “back propagation.” The process of forward (A-F) and back (G-H) propagation is repeated until a pre-
specified set of conditions is fulfilled, typically leading to more accurate predictions.
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Figure 3. Examples of outcome tasks and explainability methods in Deep Learning. In this example, the initial input image is a
promyelocyte with visible Auer Rods as seen on a peripheral blood smear, a possible pathognomonic finding for acute
promyelocytic leukemia. Output tasks can include localization of white blood cells (Detection), creation of a region of interest
around the nucleus (Segmentation), disease prediction (Classification/Regression), or increasing the visual quality of the input
image (Detail Optimization). Explainability methods are necessary to ensure biological feasibility. In exploratory analyses,
parameters within the intermediate layers can be directly visualized (Feature Maps), heatmaps can be generated to highlight
specific areas associated with the outcome (Saliency or Attention Maps), synthetic images can be generated from noise to
represent an outcome of interest (generative adversarial networks), or cluster analyses can be performed with dimensionality

reduction techniques.

ary models lack any convolutional layers, and infer local and
global image features by other methods.*

Thus far, the predominant architecture for hematology-spe-
cific questions tend to be from a class of CNN known as
Residual Neural Networks (ResNets), which utilize skip con-
nections. Most specific ResNet architectures, such as In-
ception, EfficientNets, MobileNets, and other various ResNet
models are open-source and widely available.?

Certain model architectures are engineered to provide an
output that is an additional image; these model structures
are needed for dimensionality reduction, bounding-box de-
tection, segmentation, and noise reduction tasks. One spe-
cific architecture, Autoencoders, are networks that pass an
input image through an intermediate lower-dimensional
representation, followed by upsizing to a higher-dimensional
space to recreate the input image.? Theoretically, the lower-
dimensional intermediate representation still retains fea-
tures of the original image which may be clinically or
biologically relevant. Similar architectures such as U-Net
require additional training data, such as object ROI or low-
/high-quality image pairs, to accomplish tasks such as
image segmentation or digital optimization.

An additional relevant DL framework utilized is Multiple In-
stance Learning (MIL)**?® and its attention-based deriva-
tives?**® including the Clustering-constrained Attention
Multiple Instance Learning (CLAM).*' The main distinction in
MIL frameworks is the prediction for data subsets and not
for single instances. Specifically, input images are separated
into smaller subsets. The entirety of the subset is predicted
“positive” if at least one image in the subset is predicted
“positive”. As an example of MIL in histopathology, a biopsy
whole-slide image would be predicted “cancerous” when one

extracted tile is predicted as such. This framework may be
particularly helpful when single annotations are provided
across an entire image, or “weak supervision”, and not
necessarily labels for each specific segmented ROI. In addi-
tion, Attention, or a numeric weight, can be assigned to each
image tile to produce weighted predictions, as well as provide
explainable heatmaps. Using Attention, CLAM was developed
to increase the speed of MIL and reduce the noise from ir-
relevant image tiles.

Vision Transformers (ViT) are a novel technique that do not
utilize the convolution operator.?* The entire image is sep-
arated into a grid of sub-images that are analyzed in parallel
along with the relative location of each sub-image. With this
method, global relationships across the entire image may
be learned by the model as opposed to only local features
that are seen by the previously-described CNN.

Currently, most architectures for hematology-specific
questions utilize ResNet architectures, with just a few
examples also incorporating MIL. However, the emergence
of ViT and CLAM frameworks are part of a changing land-
scape of implemented DL architectures. In general, the
choice of model architecture is somewhat informed by ex-
pected outcome task, but it is still largely empiric. How-
ever, there are broad advantages and disadvantages for
each of the previously-mentioned frameworks. With weak
supervision, MIL tends to require significantly larger
amounts of training data than ResNets.! CNN and ViT per-
form equally well at the scale of currently available clinical
datasets. However, ViT are superior to CNN for larger scale
datasets and are more computationally efficient with sig-
nificantly fewer parameters.?* There are numerous
methods to attempt to explain the inner mechanisms of
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A Hematology Terms

Deep Learning Terms
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Figure 4. Literature search. (A)
Search terms to extract rele-
vant manuscripts related to
deep learning in malignant and
non-malignant  hematology.
Articles were queried in Pub-
Med using one “Deep Lear-
ning” term in addition to one
“Hematology” term. (B) PRI-
SMA diagram of “Deep Lear-
ning in Hematology” survey.
Initially 2,708 articles were
found from a PubMed query.
After initial review of abstracts

and article titles, 237 reports
were deemed eligible for fur-
ther review of full manuscripts.

] Finally, 65 articles were inclu-
ded for the current narrative

review. Justification for exclu-
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standard CNN,*? but similar methods to “open the black
box” of ViT are currently under development.®

Explainability

While “explainability” in DL research is loosely defined, in
this review, “explainability” refers to the efforts in describing
DL models and predictions in humanly-understandable con-
cepts.*

Although DL may empirically exhibit a high performance, DL
is often criticized for its highly complex mechanisms and is
often thought of as a “black box.” In multiple examples,

seemingly high-performing models often utilize artifact or
contextually irrelevant features for its predictions, as the ar-
tifactual features may be unintentionally over-represented in
certain imaging subgroups.®* Multiple methods are under de-
velopment to explain and validate biologically reasonable
predictions. As such, explainability is increasingly important
in clinical Al development and in developing physicians’ trust
of DL.*

To give just a few examples, unsupervised data dimension-
ality reduction methods such as principal component analy-
sis (PCA), t-distributed stochastic neighbor embedding
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(t-SNE), and Uniform Manifold Approximation and Projection
(UMAP) are statistical techniques used to group visually
similar input images into clusters, which may overlap with
relevant outcomes. These methods are also popularized in
non-imaging data such as single cell molecular and cyto-
metry time-of-flight analyses. Feature maps are direct visual
representations of the intermediate trained parameters.
Plotting Attention scores or using Saliency map methods
such as Grad-CAM or Smooth-Grad can overlay heat-maps
upon the input image to highlight relevant visual cues as-
sociated with the outcome of interest.*® For example, the
heatmap explainability methods of a peripheral blood smear
image may highlight pathognomonic Auer Rods for the ac-
curate diagnosis of acute promyelocytic leukemia (Figure 3).
More complex methods such as Generative Adversarial Net-
works are architectures trained to generate synthetic im-
ages, which can create representations of a particular class
or outcome.*

Metrics

Common performance metrics for the evaluation of DL
classification models include Area Under the Receiver Op-
erator Curve (AUROC), sensitivity, specificity, and accuracy.
The AUROC represent the tradeoff between true and false
positive rates for a binary model along a range of possible
threshold values. AUROC values nearing 1.0 represent a
model with perfect discriminatory power, and values tend-
ing towards 0.5 perform no better than random chance.
For segmentation tasks, the Sgrensen-Dice similarity co-

Deep Learning Applications in Phases of Clinical Care

Task Detail Disease Differential

_Automation Optimization Detection Diagnosis Classification Prediction Assessment Response

Generalx’/‘:}//é ? Q\ /
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efficient (Dice) represents the overlap between the pre-
dicted area of interest with the ground truth, where a
Dice coefficient of 1.0 represents ideal predictive overlap.
Other segmentation metrics include the similarly defined
Jaccard index, also known as Intersection over Union
(loV).

Literature review for clinical
application of deep learning in

hematologic conditions

A Boolean query was submitted to PubMed to extract ar-
ticles created between January 1, 1990, and August 1,
2022. Search terms included both a “deep learning” and
a “hematology” specific term (Figure 4A). The query re-
sulted in 2,708 initial articles. Further refinement by
manual review by one author excluded a large number of
articles (Figure 4B), resulting in 65 manuscripts. General
trends and findings of the resulting articles are described
in the context of how DL has been utilized to enhance
phases of clinical care within various hematologic con-
ditions, including task automation, detail optimization,
disease detection, differential diagnosis, disease classifi-
cation, risk prediction, complication assessment, therapy
response, and survival prediction (Figure 5). General con-
siderations for critical appraisal of the following manu-
scripts include performance metrics, use of external or
prospective validation cohorts, use of explainability

/= Radiology
4 = Pathology
@ = Other

Complication Therapy Survival/Relapse
Prediction »

Disease Risk

CBC WBC Stored Platelet WBC RBC
RBC unit aggregate
Karyanpe agonists
. “\,\K \ ‘* W : _
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Lymphoma MIIDN Lymphoma Lymphoma { ke S
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Figure 5. Deep Learning applications within 65 malignant and non-malignant hematology manuscripts. Applications are divided
into separate phases of clinical care, including task automation, detail optimization, disease detection, differential diagnosis,
disease classification, risk prediction, complication assessment, therapy response, and survival/relapse prediction. Image
domains include radiological, pathological, and other atypical image types such as electrocardiograms or funduscopic exams.
Specific image modalities are detailed in Tables 1-4. CBC: complete blood count; MDS: myelodysplastic syndromes; MPN:
myeloproliferative neoplasms; RBC: red blood cell; VTE: venous thromboembolism; WBC: white blood cell.
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methods, and comparison with human expert perform-
ance (Tables 1-4).

Task automation

Routine clinical workflows in pathology and radiology may
involve repetitive actions. Automation models can be de-
veloped to increase efficiency and decrease physician
burden for tasks such as counting cell types in peripheral
blood smears or contouring the borders of suspicious
lesions on imaging. For pathology workflows, DL models
trained to contour white blood cell (WBC) borders in pe-
ripheral blood smears were highly effective with near per-
fect Dice co-efficients in multiple cohorts.*® Automatic
detection of cells can be put through downstream analyses
and provide an automated cell count, for which DL-based
methods achieve high accuracy.*®

In addition, chromosomal analyses are standard for diagno-
sis and prognostication for multiple hematologic malig-
nancies. Manual segmentation and rotation of digital
karyograms is time-consuming, but automated models can
significantly expedite throughput.”® In radiology workflows,
contouring suspicious lesions or organs can help character-
ize downstream parameters such as volume, width, and
avidity. Hypermetabolic lesions on PET/CT have been local-
ized with DL algorithms for multiple adult and pediatric
lymphomas or multiple myeloma lesions.**? Segmentation
metrics were reportedly high, with Dice coefficient 0.86-
0.98 among various lymphomatous conditions.**** For other
conditions, the automated volume calculation of particular
regions of interest have been explored in myeloproliferative
neoplasms (MPN) for spleen volume,*¢ as well as clot burden
guantification for new pulmonary emboli.*

Detail optimization

For expert diagnosticians, image quality is critical for the
identification of disease. Using U-Net architectures, DL-en-
hanced images may improve user readability and potentially
reduce the amount of toxic contrast material given to pa-
tients. Enhancement of peripheral blood images to assess
red blood cell (RBC) aberrations have yielded promising re-
sults. For sickle cell disease, mobile-device photos of pe-
ripheral blood have been digitally upscaled to match
laboratory microscope quality; upon further validation, the
upscaled images retained relevant visual cues with near-
perfect classification.*®* However, similar attempts to detect
malaria RBC inclusion were less successful, noting that
CNN-based enhancement of peripheral blood images was
insufficient to resolve parasites that were not already easily
distinguishable at low resolution.*® Multiple optimization ef-
forts in radiology have investigated whether DL can improve
image quality from lower-contrast images, which may help
spare patients from nephrotoxic or radioactive risks. For
both positron emission tomography/magnetic resonance
imaging (PET-MRI) in lymphomatous conditions and com-
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puted tomography (CT) scans in multiple myeloma, authors
have concluded that reduced contrast volumes may be
feasible while still maintaining diagnostic quality.*® *’

Disease detection

In clinical practice, a common initial diagnostic step for
hematologic disorders is the analysis of peripheral blood to
observe morphologic abnormalities of RBC, WBC, and pla-
telets. The detection of structural RBC aberrations can
identify certain infectious diseases and hemoglobin-
opathies. In endemic areas of malaria, the Plasmodium
parasites are often identified by light microscopy as RBC
inclusions. Multiple DL initiatives report high accuracy and
good model performance for the diagnosis of malaria from
peripheral blood in both cross-validated and external co-
horts.5>*¢ Other RBC aberrations, such as hemoglobin H in-
clusions in a-thalassemia, can be detected by DL with
appropriate peripheral blood staining protocols.*” With re-
gards to transfusion medicine needs, the quality and degra-
dation of RBC products prior to transfusion can also be
determined with DL methods. Using explainability tech-
niques, Doan et al. explored their proposed autoencoder
network trained on RBC images to identify novel features
associated with poor storage quality RBC products.®®

For certain disorders, the detection of aberrant WBC mor-
phologies from peripheral blood is paramount. DL algo-
rithms consistently detect dysplastic neutrophils
pathognomonic for myelodysplastic syndrome (MDS),*® as
well as other white blood precursors to aid in the diagno-
sis of MPN,*® acute promyelocytic leukemia (APL),? or
acute lymphoblastic leukemia (ALL).*"*? Many DL models
for WBC detection have performed with high accuracy and
AUROC upon internal validation strategies. If translated
into clinical practice, DL models for peripheral blood as-
sessment may expedite critical diagnoses which necessi-
tate emergent therapy, such as APL.

Particularly for myeloid malignancies, bone marrow assess-
ment is usually needed to establish a diagnosis. DL can de-
tect particular cellular morphologies of neutrophils,
megakaryocytes, promyelocytes, and plasma cells associ-
ated with MDS,®® MPN,®* APL,”® and multiple myeloma,®® re-
spectively. Similarly for lymphoid malignancies, assessing
lymph node architectures can aid the diagnosis of various
lymphomas, such as diffuse large B-cell lymphoma
(DLBCL)®%® or follicular lymmphoma (FL).%” DL models devel-
oped by Li et al. maintained high accuracy for the diagnosis
of DLBCL from lymph biopsies across four separate institu-
tional cohorts.®® Furthermore, Syrykh et al. utilized the clini-
cal challenge of differentiating follicular lymphoma from
follicular hyperplasia to develop a novel DL method quan-
tifying prediction uncertainty, which is not often reported in
DL studies. With their uncertainty method, the authors re-
port higher classification capabilities when only considering
the newly categorized low-uncertainty images.®’
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In addition to pathologic analysis, clinical guidelines com-
monly suggest radiologic assessment for the initial workup
of suspected malignancy or thrombosis. Using PET/CT im-
ages, DL models exhibit high classification of the hyper-
metabolic lesions for DLBCL diagnosis.®® However, similar
attempts using PET/CT images of mantle cell lymphoma
(MCL) patients are challenged with tradeoffs between sen-
sitivity and false positive rates for diagnosis in external co-
horts.®® For select non-malignant conditions, multiple
studies explored DL for the expedited and more affordable
diagnosis of pulmonary emboli (PE) and deep vein throm-
boses (DVT), for which a diagnosis may require immediate
intervention.”? Huang et al. integrated clinical data in con-
junction with CT scans to improve their DL model for PE de-
tection. The authors report that multi-modal models exhibit
higher classification performance than image-only DL
models.” In addition, automated detection of common
thrombotic conditions may reduce the financial burden,
with cost analyses revealing positive financial benefit to
health care systems."

Finally, a particularly novel use of DL is the prediction of dis-
ease from imaging modalities beyond standard pathologic
or radiologic domains. Multiple studies have shown that
anemia can be detected with high accuracy utilizing DL on
atypical modalities such as electrocardiograms (ECG)” or
funduscopic examinations.” Both authors have imple-
mented explainability methods to reveal features associated
with anemia, such as QRS complexes in ECG or optic disk
aberrations in funduscopic images. Thus, screening for ane-
mia may offer a low-cost benefit for patients already under-
going these common examinations.

Differential diagnosis

Various hematologic conditions share similar features and
presentations, posing challenges in providing a definitive
diagnosis in clinical scenarios where radiologic findings
may be non-specific and pathological morphologies may
be subtle. Differentiating among possible diagnoses is a
common clinical task, and various approaches of DL have
been explored as a potential means to increase objectivity
towards a true diagnosis. For example, Li et al. used
transfer learning to pre-train their model with images of
common household objects, such as bananas, rings, and
pears to learn the analogous morphologies of similarly-
shaped RBC inclusions of Toxoplasma, Plasmodium, and
Babesia.”™

Interestingly, DL models have been shown to better extract
subtle features for disease differentiation than can be as-
sessed by humans. Cytopenias can be a common presen-
tation for either MDS or aplastic anemia (AA) patients.
Though either diagnosis typically requires bone marrow bi-
opsy assessment, Kimura et al. trained a DL model on pe-
ripheral blood images to accurately differentiate between
the two conditions.”® Newly diagnosed leukemia patients
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commonly present with blasts in peripheral blood. The cat-
egorization of blasts into either myeloid or lymphoid line-
ages requires identifying cell-surface markers by flow
cytometry; thus, visualization of blasts is not usually suffi-
cient for classification. Similarly, lymphoma histology share
visual commonalities and require immunohistochemical
staining of cell-surface markers on biopsy specimens. To
address these classification challenges, DL algorithms re-
portedly differentiate between acute myeloid leukemia
(AML) and acute lymphoblastic leukemia (ALL) utilizing only
peripheral blood or bone marrow images,* "® and similarly
among various non-Hodgkin lymphomas (NHL) utilizing
standard hematoxylin and eosin (H&E) lymph node biopsy
images.”®82

For patients with malignant brain lesions found on MRI im-
aging, clinicians may be tasked to differentiate between pri-
mary central nervous system lymphoma (PCNSL) and
glioblastoma multiforme (GBM).22 DL models for this re-
vealed seemingly high initial performance but with a signifi-
cant reduction to an AUROC of nearly 0.5 in external
cohorts.® The problem of generalizing results highlights the
continued need for critical appraisal of any newly-developed
DL model across patient populations.

Disease classification

The classification of blood cells in standard peripheral blood
smear review is a ubiquitous task useful in a broad array of
diseases. The differential of WBC is necessary to stratify the
likelihood of the malignant and non-malignant causes of
WBC abnormalities. Numerous studies developed DL
models as a single cell WBC classifier. Across the studies,
performance remained robust, with the majority of studies
achieving accuracies above 90% and explainability tech-
niques highlighting sensitive cellular features."#%¢ However,
validation upon external cohorts, which commonly reveal a
lower performance,” is still needed prior to deployment in
clinical practice. In addition to WBC classification, the cat-
egorization of RBC morphologies is useful within various
anemias,? including sickle cell disease.® To explore platelet
abnormalities, Zhou et al. developed a highly accurate DL
model predicting the identity of agonists causing platelet
aggregation using imaging flow cytometry.®®

Specific sub-classification of diagnoses is often necessary
to guide prognostication, counseling, and therapeutic con-
siderations. In numerous non-hematologic applications,
previous DL models can accurately further categorize vari-
ous cancers into genetic and clinical subtypes,* which has
led to similar explorations within leukemic and lymphoma-
tous conditions. For leukemic classifications, ALL bone mar-
row images can be separated into the historically relevant
French-American-British (FAB) classifications.®® Fur-
thermore, genomic subtypes may be accurately identified
by DL models; Eckardt et al. identified NPM7 mutations
among newly diagnosed AML patients and characterized
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novel cellular morphological features that had not pre-
viously been reported. Broader DL efforts to identify each
clinically relevant molecular or cytogenetic abnormality
have been attempted for MDS sub-classifications.®” For lym-
phoma, Swiderska-Chadaj et al. developed a DL model pre-
dicting MYC gene rearrangements in DLBCL patients using
lymph node biopsy images. Though MYC rearrangement is
typically assessed with ancillary fluorescent in situ hybri-
dization, the DL model using only H&E images maintained
high accuracy upon external cohorts.*?

Advanced stages of patient care

There are currently few examples of DL for the assistance
of later stages of patient care, including risk prediction,
complication assessment, therapy response, and survival
prediction. For such tasks, the disease processes and image
modalities are heterogenous. Risk has been assessed with
CT images or digitalized bone marrow biopsies (BMB) for
DLBCL outcomes. DL models predict the transformation of
low-grade lymphomas to high-grade DLBCL using BMB im-
ages,” and, furthermore, known clinical risk factors such as
sarcopenia can be extracted and quantified in CT images of
DLBCL patients.®® Risk in thrombotic conditions can be
characterized automatically using DL classification of right
ventricular strain in chest imaging for PE workup.®® Cai et al.
assessed complications of sickle cell disease by detecting
sea fan neovascularization in funduscopic images, which is
a vision-threatening complication warranting prophylactic
management.®® Doan et al. evaluated therapy response in
ALL patients by using DL methods to detect residual lym-
phoblasts after receiving induction chemotherapy.®” Finally,
DL models for relapse prediction using baseline imaging
have been developed for extranodal natural killer/T-cell lym-
phoma® and mantle cell lymphoma.*® However, further
evaluations upon external cohorts are needed for these ad-
vanced stage tasks.

Conclusions

The use of deep learning in hematologic conditions has at-
tracted significant interest in recent years. As noted above,
researchers have utilized multiple data structures including
radiologic images, pathology specimens, clinical data, and
atypical imaging such as funduscopic examinations to per-
form a variety of clinically relevant tasks. Most Authors re-
ported high model performance for disease diagnosis,
segmentation, and subtyping. Other studies explored tasks
beyond human capabilities such as genomic inference and
prognostication from imaging analysis alone. Few studies
have used hematologic conditions as a means to implement
state-of-the-art architectures to improve the field of DL in
general. Compared to other clinical domains, DL in hema-
tology is still in its infancy, so it is not widely used in clinical
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practice. As such, the intention of this review is to introduce
broad concepts to hematology clinicians to assist in the
evaluation and understanding of future DL implementations,
as well as to provide an overview of the clinical uses cur-
rently being explored throughout patient care.

The fact that it is still early days for DL in hematology may
be due to a lack of appropriate algorithm design, data avail-
ability, computational resources, and insufficient disease-
specific expertise involved in DL development.® To the best
of our knowledge, there are still no large clinically-anno-
tated multi-modal public datasets for many hematologic
conditions. In addition, critical morphological information in
hematopathology may only be available at higher magnifi-
cation levels, surpassing the limits of standard pathology
scanners. Although these structural barriers continue to
compromise the development of DL in hematology, rapid
technological advances continue, and interest for DL within
the academic community is growing.'”!

Though promising, the methods and conclusions from the
numerous studies are heterogenous and challenging to
compare. As yet, there is no standardized approach in DL
research, reporting, or implementation. In the present over-
view, the majority of publications were evaluated by internal
validation strategies, with the minority evaluated on external
institution cohorts. Explaining model predictions were not
ubiquitous, and few DL models were compared directly
against human evaluation. Major government initiatives cur-
rently aim to standardize DL protocol design,°? and, despite
the variance in outcome reporting in DL analyses, the
SPIRIT-Al, STARD-AI, and CONSORT-AI initiatives aim to
standardize future clinical trial design and reporting of ar-
tificial intelligence interventions.'®-%%

The research and results of DL analyses must be interpreted
cautiously, as a number of practical and ethical issues have
arisen in other domains of machine learning. CNN are prone
to “memorize” the training set; thus, the initial high per-
formance may fail to be carried forward on new previously
unseen data. For this reason, it is imperative to evaluate DL
models on external cohorts from separate institutions. If
training data are acquired from multiple institutions, care
must be given to correct for known “batch effects,” as DL
models may infer site-specific artifact signatures not re-
lated to the underlying disease biology.°® Similarly, re-
searchers should investigate explainability and error analysis
to ensure that the models rely on scientifically reasonable
features and ignore irrelevant factors. In addition, uncer-
tainty in model predictions are rarely reported but are ar-
guably necessary for clinical implementation of DL
algorithms.

In this review, the majority of DL applications are aimed to-
wards earlier phases of clinical care, such as automation
and disease detection. DL in lymphoma resulted in the plu-
rality of exploratory analyses, likely due to the importance
of both radiologic and pathologic findings in the care of lym-
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phoma patients. Though explored in a myriad of malignant
and non-malignant conditions, notably lacking are DL ap-
plications in stem cell transplantation and many other non-
malignant processes where morphological assessment is
paramount, such as thrombotic microangiopathies.

Future work is needed to address large scale applications of
DL in hematology. As a hematopathologist typically assesses
histology specimens at different magnification levels, cus-
tomized architectures to implement multi-scale image
analysis should be explored. DL in solid oncology is widely
used, in part due to the publicly available digital biopsy speci-
mens provided by The Cancer Genome Atlas,” of which there
is no analogous database for hematologic conditions. In ad-
dition, the combination of multi-modal data structures that
incorporate images in concert with flow cytometry, molecular
analyses, cytogenetics, or other clinical factors may provide
additional relevant features to improve DL models.

While numerous considerations remain before large-scale
implementation of DL is feasible, the development of new
models and applications in hematology is rapidly increasing,
and it is imperative for clinicians to be aware of the oppor-
tunities that DL may provide.
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