Integrating biological HLA-DPB1 mismatch models to predict survival after unrelated hematopoietic cell transplantation

Annalisa Ruggeri,^{1,2} Liesbeth C. de Wreede,³ Carlheinz R. Müller,⁴ Pietro Crivello,⁵ Edouard F. Bonneville,³ Effie W. Petersdorf,⁶ Gerard Socié,⁷ Valérie Dubois,⁸ Riitta Niittyvuopio,⁹ Juha Peräsaari,¹⁰ Ibrahim Yakoub-Agha,¹¹ Jan J. Cornelissen,¹² Lotte Wieten,¹³ Tobias Gedde-Dahl,¹⁴ Edouard Forcade,¹⁵ Charles R. Crawley,¹⁶ Steven G.E. Marsh,¹⁷ Virginie Gandemer,¹⁸ Eleni Tholouli,¹⁹ Claude-Eric Bulabois,²⁰ Anne Huynh,²¹ Goda Choi,²² Eric Deconinck,²³ Maija Itäla-Remes,²⁴ Stig Lenhoff,²⁵ Mats Bengtsson,²⁶ Jan-Erik Johansson,²⁷ Gwendolyn van Gorkom,²⁸ Jorinde D. Hoogenboom,²⁹ Luca Vago,^{1,2} Vanderson Rocha,³⁰ Chiara Bonini,^{1,2} Christian Chabannon^{2,31} and Katharina Fleischhauer^{2,5,32}

An appendix with all contributing EBMT centers can be found at the end of the manuscript.

¹San Raffaele Scientific Institute, Hematology and Bone Marrow Transplantation unit, Milan, Italy; ²Cellular Therapy and Immunobiology Working Party of the EBMT, Leiden, the Netherlands; ³Leiden University Medical Center, Leiden, the Netherlands; ⁴Zentrales Knochenmarkspender-Register Deutschland, Ulm, Germany; ⁵Institute for Experimental Cellular Therapy, University Hospital Essen, Essen, Germany; ⁶Fred Hutchinson Cancer Research Center, Seattle, WA, USA; ⁷Hôpital St. Louis, Paris, France; ⁸Histocompatibility Laboratory, EFS Lyon, Lyon, France; ⁹HUCH Comprehensive Cancer Center, Helsinki, Finland; ¹⁰Clinical Laboratory Services, Histocompatibility Testing, Finnish Red Cross Blood Service, Helsinki, Finland; ¹¹CHU de Lille, Lille, France; ¹²Erasmus MC Cancer Institute, Rotterdam, the Netherlands; ¹³Transplantation Immunology, Maastricht University Medical Center, Maastricht, the Netherlands; ¹⁴Oslo University Hospital, Rikshospitalet, Oslo, Norway; ¹⁵CHU Bordeaux, Pessac, France; ¹⁶Addenbrookes Hospital, Cambridge, UK; ¹⁷Anthony Nolan Research Institute and UCL Cancer Institute, Royal Free Campus, London, UK; ¹⁸Centre Hospitalier Universitaire de Rennes, Rennes, France; ¹⁹Manchester Royal Infirmary, Manchester, UK; ²⁰CHU Grenoble Alpes - Université Grenoble Alpes, Grenoble, France; ²¹CHU - Institut Universitaire du Cancer Toulouse, Toulouse, France; ²²University Medical Center Groningen (UMCG), Groningen, the Netherlands; ²³Hopital Jean Minjoz, Besancon, France; ²⁴Turku University Hospital, Turku, Finland; ²⁵Skanes University Hospital, Lund, Sweden; ²⁶Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; ²⁷Sahlgrenska University Hospital, Goeteborg, Sweden; ²⁸University Hospital Maastricht, Maastricht, the Netherlands; ²⁹EBMT Leiden Study Unit, Leiden, the Netherlands; ³⁰Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31) of the Service of Hematology and Cell Therapy, Hospital das Clínicas da Faculdade de Medicina da USP, São Paulo, SP, Brazil, ³¹Institut Paoli-Calmettes, Centre de Lutte Contre le Cancer, Centre d'Investigations Cliniques en Biothérapie, Université d'Aix-Marseille, Inserm CBT 1409, Marseille, France and ³²German Cancer Consortium, partner site Essen/Düsseldorf, Germany

Correspondence: K. FLEISCHHAUER - katharina.fleischhauer@uk-essen.de

https://doi.org/10.3324/haematol.2021.280055

Supplementary Data

Integrating biological HLA-DPB1 mismatch models to predict survival after unrelated HCT

Annalisa Ruggeri^{1,2}, Liesbeth C. de Wreede³, Carlheinz R. Müller⁴, Pietro Crivello⁵, Edouard F. Bonneville³, Effie W. Petersdorf⁶, Gerard Socié⁷, Valérie Dubois⁸, Riitta Niittyvuopio⁹, Juha Peräsaari¹⁰, Ibrahim Yakoub-Agha¹¹, Jan J. Cornelissen¹², Lotte Wieten¹³, Tobias Gedde-Dahl¹⁴, Edouard Forcade¹⁵, Charles R. Crawley¹⁶, Steven G.E. Marsh¹⁷, Virginie Gandemer¹⁸, Eleni Tholouli¹⁹, Claude-Eric Bulabois²⁰, Anne Huynh²¹, Goda Choi²², Eric Deconinck²³, Maija Itäla-Remes²⁴, Stig Lenhoff²⁵, Mats Bengtson²⁶, Jan-Erik Johansson²⁷, Gwendolyn van Gorkom²⁸, Jorinde D. Hoogenboom²⁹, Luca Vago^{1,2}, Vanderson Rocha³⁰, Chiara Bonini^{1,2}, Christian Chabannon^{2,31}, Katharina Fleischhauer^{2,5}

- 1. San Raffaele Scientific Institute, Hematology and Bone marrow Transplantation unit, Milan, Italy
- Cellular Therapy and Immunobiology Working Party of the EBMT, Leiden, The Netherlands
- 3. Leiden University Medical Center, Leiden, The Netherlands
- 4. Zentrales Knochenmarkspender-Register Deutschland, Ulm, Germany
- Institute for Experimental Cellular Therapy, University Hospital Essen, Essen, Germany
- 6. Fred Hutchinson Cancer Research Center, Seattle, USA

- 7. Hôpital St. Louis, Paris, France
- 8. Histocompatibility Laboratory, EFS Lyon, France
- 9. HUCH Comprehensive Cancer Center, Helsinki, Finland
- 10. Clinical Laboratory Services, Histocompatibility Testing, Finnish Red Cross Blood Service, Helsinki, Finland
- 11. CHU de Lille, Lille, France
- 12. Erasmus MC Cancer Institute, Rotterdam, The Netherlands
- Transplantation Immunology, Maastricht University Medical Center, Maastricht, The Netherlands
- 14. Oslo University Hospital, Rikshospitalet, Oslo, Norway
- 15. CHU Bordeaux, Pessac, France
- 16. Addenbrookes Hospital, Cambridge, UK
- 17. Anthony Nolan Research Institute and UCL Cancer Institute, Royal Free Campus, London,, UK
- 18. Centre Hospitalier Universitaire de Rennes, Rennes, France
- 19. Manchester Royal Infirmary, Manchester, UK
- 20. CHU Grenoble Alpes Université Grenoble Alpes, Grenoble, France
- 21. CHU Institut Universitaire du Cancer Toulouse, Toulouse, France
- 22. University Medical Center Groningen (UMCG), Groningen, The Netherlands
- 23. Hopital Jean Minjoz, Besancon, France
- 24. Turku University Hospital, Turku, Finland
- 25. Skanes University Hospital, Lund, Sweden

- 26. Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- 27. Sahlgrenska University Hospital, Goeteborg, Sweden
- 28. University Hospital Maastricht, Maastricht, The Netherlands
- 29. EBMT Leiden Study Unit, Leiden, The Netherlands
- 30. Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31) of the Service of Hematology and Cell Therapy, Hospital das Clínicas da Faculdade de Medicina da USP, São Paulo, SP, Brazil
- 31. Institut Paoli-Calmettes, Centre de Lutte Contre le Cancer; Centre
 d'Investigations Cliniques en Biothérapie, Université d'Aix-Marseille, Inserm CBT
 1409, Marseille, France

Correspondence:

Prof. Katharina Fleischhauer, MD katharina.fleischhauer@uk-essen.de

This file includes:

Supplementary Tables S1 and S2

Supplementary Figure Legend

Supplementary Figure S1

Variable ^{a,b}	Variable ^{a,b} OS			RFS			GRFS			Relapse			NRM			aGvHD 2-4		
T all abro	HR	CI	Ρ	HR	CI	Ρ	HR	CI	Ρ	HR	CI	Р	HR	CI	Р	HR	CI	Ρ
Patient Age ^c	1.16	1.10	<.001	1.11	1.07	<.001	1.08	1.03	<.001	1.06	1.00	.06	1.24	1.15	<.001	0.93	0.89	.01
		_ 1.22			_ 1.17			_ 1.12			_ 1.12			_ 1.34			_ 0.98	
Donor Age ^c	1.08	1.02	.01	1.05	1.00	.07	1.08	1.03	.002	0.99	0.92	.76	1.16	1.07	<.001	1.12	1.05	<.001
		_ 1.14			1.11			1.14			1.06			1.26			1.20	
Donor Sex	0.98	0.87	.70	0.99	0.89	.91	0.91	0.82	.08	1.06	0.92	.41	0.91	0.76	.28	0.88	0.77	.08
Female		_ 1.10			_ 1.11			1.01			_ 1.23			_ 1.08			_ 1.01	
CMV status	1.00	0.89	.94	0.99	0.89	.78	1.01	0.92	.82	0.92	0.81	.23	1.09	0.92	.33	0.89	0.78	.07
neg/neg		_ 1.11			_ 1.09			_ 1.12			_ 1.05			_ 1.29			_ 1.01	
Diagnosis:	0.94	0.82	.41	0.91	0.79	.16	1.06	0.94	.34	0.63	0.52	<.001	1.48	1.20	<.001	1.34	1.14	<.001
AML+ALL		1.09			1.04			1.21			0.76			1.82			_ 1.59	
Diagnosis:	0.70	0.59	<.001	0.90	0.78	.15	1.02	0.90	.72	0.8	0.67	.02	1.12	0.89	.35	1.12	0.94	.19
others vs AML+ALL		_ 0.81			_ 1.04			_ 1.17			_ 0.96			_ 1.41			_ 1.34	
Disease Stage:	1.32	1.15	<.001	1.26	1.11	<.001	1.19	1.04	.008	1.39	1.18	<.001	1.07	0.87	.53	1.01	0.86	.94
Early		_ 1.51			_ 1.44			_ 1.33			_ 1.65			_ 1.31			_ 1.18	
Disease Stage:	1.63	1.40	<.001	1.65	1.44	<.001	1.38	1.21	<.001	2.03	1.69	<.001	1.24	0.99	.06	1.10	0.92	.28
Early		_ 1.89			_ 1.90			_ 1.57			_ 2.44			_ 1.55			_ 1.31	
Year of HCT:	0.95	0.84	.42	0.94	0.84	.30	0.99	0.88	.81	1.01	0.86	.92	0.86	0.72	.11	1.14	0.97	.11
2012-2017 VS 2005-2011		_ 1.08			_ 1.06			_ 1.10			_ 1.18			_ 1.03			_ 1.34	

Supplementary Table S1: Association of non-HLA-DPB1 variables with clinical endpoints.

Stem Cell	1.08	0.91	.39	0.98	0.84	.84	1.14	0.98	.08	1.0	0.81	.97	1.00	0.78	.99	1.14	0.94	.18
vs BM		_ 1.28			_ 1.15			_ 1.32			_ 1.22			_ 1.28			_ 1.38	
Conditioning Reduced vs Standard	1.00	0.88 _ 1.15	.95	1.04	0.92 _ 1.17	.56	0.92	0.82 _ 1.04	.18	1.16	0.99 _ 1.36	.07	0.84	0.69 _ 1.03	.09	0.72	0.62 _ 0.84	<.001
TCD Yes vs No	0.93	0.83 _ 1.05	.25	1.04	0.93 _ 1.16	.52	0.75	0.67 _ 0.83	<.001	1.24	1.06 _ 1.44	.006	0.80	0.67 _ 0.95	.01	0.67	0.59 _ 0.77	<.001
Karnofsky <=90 vs >90	1.59	1.28 _ 1.98	<.001	1.52	1.23 _ 1.88	<.001	1.39	1.11 _ 1.73	.004	1.36	1.01 _ 1.82	.04	1.74	1.27 _ 2.38	<.001	1.16	0.85 _ 1.58	.36
Mismatch HLA- DQB1 Yes vs No	0.86	0.67 _ 1.12	.27	0.94	0.74 _ 1.18	.58	1.03	0.83 _ 1.27	.81	0.82	0.59 _ 1.13	.22	1.12	0.80 _ 1.57	.52	1.20	0.91 _ 1.58	.21
GvHD regimen CSA/MMF vs CSA/MTX	1.13	1.00 _ 1.28	.04	1.06	0.95 _ 1.19	.32	1.30	1.17 _ 1.45	<.001	0.83	0.71 _ 0.96	.01	1.47	1.23 _ 1.76	<.001	1.31	1.14 _ 1.51	<.001
GvHD regimen other vs CSA/MTX	1.69	1.24 - 2.30	<.001	1.46	1.08 _ 1.96	.01	1.44	1.06 _ 1.94	.02	1.18	0.80 _ 1.76	.41	1.88	1.18 _ 3.01	.008	1.38	0.92 _ 2.09	.12
GvHD regimen TAC-based vs CSA/MTX	1.05	0.86 _ 1.28	.64	1.05	0.88 _ 1.26	.59	0.94	0.79 1.11	.45	0.91	0.71 _ 1.15	.42	1.30	0.98 _ 1.72	.07	0.83	0.66 _ 1.05	.12

^aMedian follow-up was 36.7 months (interquartile range 19.15 to 64.43). At 5-years, RFS, OS and GRFS were 42% (95% CI 41-44%), 49% (95% CI 47-51%) and 33% (95% CI 31-35%) respectively. The cumulative incidences of relapse, NRM and cGVHD at 5-years were 34% (95% CI 32-36%), 23% (95% CI 21-24%) and 42% (95% CI 41-44%) respectively. The cumulative incidences of aGVHD 2-4 and aGVHD 3-4 at 100 days were 30% (95% CI 29-31%) and 11% (95% CI 10-12%), respectively.

^bAbbreviations: TCD, T-cell depletion; CMV, cytomegalovirus; BM, bone marrow; PBSC, peripheral blood stem cells; RIC, reduced intensity conditioning; MAC, myeloablative conditioning; Year of transplantation: first period 2005-2011, second period 2012-2017; AL, acute leukemia (myeloid or lymphatic); MDS, myelodysplastic syndrome; MPN, myeloproliferative neoplasm. Disease stage was defined as in the legend to **Table 1** in the main text. Donor and patient age was analyzed as continuous variable by decades.

^cPatient and donor age was considered as linear variable, with higher age associated with worse outcome.

		RFS⁵			Relapse^b		á	aGvHD grade 2	-4 ^b	NRM ^b			
HLA-DPB1 Status ^a	HR	95% CI	Р	HR 95% CI		Р	HR	95% CI	Р	HR	95% CI	Р	
Allele-matched	1			1			1			1			
Allele-mismatched ^c	0.95	0.87 to 1.05	.31	0.78	0.69 to 0.88	<.001	1.25	1.11 to 1.41	<.001	1.26	1.07 to 1.47	.005	
TCE-permissive ^c	0.94	0.85 to 1.03	.20	0.81	0.71 to 0.92	.001	1.18	1.04 to 1.35	.01	1.16	0.98 to 1.38	.09	
TCE-nonpermissive ^c	0.98	0.88 to 1.08	.64	0.75	0.65 to 0.86	<.001	1.35	1.18 to 1.54	<.001	1.38	1.16 to 1.65	<.001	
Low-expression ^d	0.98	0.87 to 1.1	.74	0.87	0.75 to 1.01	.07	1.09	0.94 to 1.27	.27	1.16	0.96 to 1.41	.13	
High-expression ^d	0.91	0.81 to 1.03	.14	0.69	0.59 to 0.81	<.001	1.3	1.12 to 1.52	<.001	1.33	1.09 to 1.61	.005	
TPHE ^{d,e}	0.81	0.69 to 0.95	.01	0.68	0.55 to 0.84	<.001	1.5	1.25 to 1.8	<.001	1.1	0.85 to 1.41	.47	
Other ^{d,e}	0.99	0.89 to 1.1	.84	0.82	0.71 to 0.94	.004	1.11	0.96 to 1.27	.16	1.28	1.07 to 1.53	.006	

Supplementary Table S2. Multivariable associations between HLA-DPB1 mismatching models and HCT outcomes.

^aNo associations were observed for any of the models with the endpoints aGvHD grade 3-4, cGvHD, GRFS and OS. ^bAdjustment was made for non-HLA-DPB1 variables as in *Online Supplementary Table S1*. ^ctested in the overall cohort. ^dtested in the single HLA-DPB1 GvH mismatched cohort. ^eTPHE: TCEpermissive and high-expression single HLA-DPB1 GvH mismatches; Other: Non-TPHE single HLA-DPB1 GvH mismatches.

Legend to Supplementary Figure S1.

Study design and RFS according to combined HLA-DPB1 TCE and Expression mismatches A) Flow chart of patient stratification according to HLA-DPB1 matching status. Shown is the absolute number of patients in each group, followed by (in parenthesis) the respective percentage referred to the entire study cohort. B) 5-year probability of RFS after HCT from donors with a single HLA-DPB1 GvH mismatch that is TCE-permissive and high expression (TPHE; 49%), TCE-permissive and low expression (42%), TCE-nonpermissive and high expression (44%) or TCE-nonpermissive and low expression (42%), or DPB1 allele matched (39%).

Supplementary Figure S1.

A)

B)

