Prognostic value of positron emission tomography/computed tomography in transplant-eligible newly diagnosed multiple myeloma patients from CASSIOPEIA: the CASSIOPET study

Françoise Kraeber-Bodéré,^{1,2} Sonja Zweegman,³ Aurore Perrot,⁴ Cyrille Hulin,⁵ Denis Caillot,⁶ Thierry Facon,⁷ Xavier Leleu,⁸ Karim Belhadj,⁹ Emmanuel Itti,¹⁰ Lionel Karlin,¹¹ Clément Bailly,^{1,2} Mark-David Levin,¹² Monique C. Minnema,¹³ Bastien Jamet,¹ Caroline Bodet-Milin,^{1,2} Bart de Keizer,¹⁴ Marie C. Béné,^{2,15} Hervé Avet-Loiseau,¹⁶ Pieter Sonneveld,¹⁷ Lixia Pei,¹⁸ Fabio Rigat,¹⁹ Carla de Boer,²⁰ Jessica Vermeulen,²⁰ Tobias Kampfenkel,²⁰ Jérôme Lambert²¹ and Philippe Moreau^{2,22}

¹Service de Médecine Nucléaire, University Hospital Hôtel-Dieu, Nantes, France; ²CRCI2NA, INSERM, CNRS, Université d'Angers, Nantes Université, Nantes, France; ³Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Department of Hematology, Amsterdam, the Netherlands; ⁴CHU de Toulouse, IUCT-O, Université de Toulouse, UPS, Service d'Hématologie, Toulouse, France; ⁵Department of Hematology, Hôpital Haut Lévêque, University Hospital Bordeaux, Pessac, France; ⁶CHU Dijon, Hôpital du Bocage, Dijon, France; ⁷University of Lille, CHU Lille, Service des Maladies du Sang, Lille, France; ⁸CHU Poitiers, Hôpital la Milétrie, Poitiers, France; ⁹Hôpital Henri Mondor, Lymphoid Malignancies Unit, Créteil, France; ¹⁰Department of Nuclear Medicine, Hôpital Henri Mondor, Créteil, France; ¹¹Centre Hospitalier Lyon-Sud Hématologie (HCL), Pierre–Bénite, France; ¹²Albert Schweitzer Ziekenhuis, Dordrecht, the Netherlands; ¹³Department of Hematology, University Medical Center Utrecht, Utrecht, the Netherlands; ¹⁴Department of Nuclear Medicine and Radiology, University Medical Center Utrecht, Utrecht, The Netherlands; ¹⁵Hematology Biology, University Hospital Hôtel Dieu, Nantes, France; ¹⁶Unite de Génomique du Myelome, IUC-Oncopole, Toulouse, France; ¹⁷Erasmus MC Cancer Institute, Rotterdam, the Netherlands; ¹⁸Janssen Research & Development, LLC, Raritan, NJ, USA; ¹⁹Janssen Research & Development, LLC, Buckinghamshire, UK; ²⁰Janssen Research & Development, LLC, Leiden, the Netherlands; ²¹Biostatistical Department, Hôpital Saint Louis, Paris, France and ²²Hematology, University Hospital Hôtel-Dieu, Nantes, France

Correspondence: F. KRAEBER-BODÉRÉ - francoise.bodere@chu-nantes.fr

https://doi.org/10.3324/haematol.2021.280051

Prognostic value of positron emission tomography/computed tomography in transplant-

eligible newly diagnosed multiple myeloma patients from CASSIOPEIA: the CASSIOPET

study – Supplemental Materials

	CASSIOPEIA ITT (N=1 085)	CASSIOPET				
		Total D-VTd		VTd	P value	
	111 (11 1,000)	(N=268)	(n=137)	(n=131)	1 value	
Age					0.375	
Median (range), years	58 (22 to 65)	59 (26 to 65)	58 (35 to 65)	59 (26 to 65)	0.575	
Male, n (%)	635 (59)	152 (57)	80 (58)	72 (55)	0.571	
ECOG PS, ^a n (%)						
0	522 (48)	112 (42)	52 (38)	60 (46)	0.193	
≥1	563 (52)	156 (58)	85 (62)	71 (54)		
ISS stage, ^b n (%)						
Ι	432 (40)	118 (44)	57 (42)	61 (47)	0.572	
II	488 (45)	111 (41)	61 (44)	50 (38)		
III	165 (15)	39 (15)	19 (14)	20 (15)		
Cytogenetic profile ^c			<u> </u>	, í		
N	1,082 ^d	268	137	131	0.517	
High risk, n (%)	168 (16)	49 (18)	23 (17)	26 (20)		
	CASSIOPET					
	Total	D-VTd (n=137)		VTd	P value	
	(N=268)			(n=131)		
Negative baseline PET	54 (20)	22 (16)		32 (24)	0.088	
status, n (%)	0 • (20)		(10)	52 (21)	0.000	
Negative bone marrow				/		
uptake visual analysis	139 (52)	62 (45)		77 (59)	0.027	
(Deauville scale), n (%)						
Presence of FLs, n (%)	180 (67)	96 (70)		84 (64)	0.30	
FL SUV _{max}	100				-	
N	180	96		84	0.011	
Median (range)	6.12 (1.90 to	6.89 (2.34	4 to 48.50)	5.35 (1.90 to		
	48.50)			23.23)	<u> </u>	
Bone SUV _{max}	2.00		27	101	-	
N	268	137		131	0.008	
Median (range)	4.63 (1.53 to 48.5)	5.44 (1.86 to 48.5)		4.22 (1.53 to 23.23)		
Presence of PMD, n (%)	47 (18)	26 (19)		21 (16)	0.526	
Presence of EMD, n (%)	21 (8)	15	(11)	6 (5)	0.052	

Supplemental Table 1. Demographics and Baseline Disease Characteristics

Abbreviations: D-VTd, daratumumab plus bortezomib/thalidomide/dexamethasone; ECOG PS, Eastern Cooperative Oncology Group performance status; EMD, extramedullary disease; FL, focal lesion; ISS, International Staging System; ITT, intent-to-treat; PET, positron emission tomography; PMD, paramedullary disease; SUV_{max}, maximum standardized uptake value; VTd, bortezomib/thalidomide/dexamethasone.

^aECOG PS is scored on a scale from 0 to 5, with 0 indicating no symptoms and higher scores indicating increasing disability.

^bBased on the combination of serum β_2 -microglobulin and albumin.

^cBased on fluorescence in situ hybridization; high risk was defined as the presence of del17p and/or t(4;14), as centrally confirmed during screening.

^dIncludes patients with risk results available.

	D-VTd (n=101)	VTd (n=83)	Odds ratio (95% CI)	P value ^a
PET-CR, n (%)	65 (64)	53 (64)	1.02 (0.56 to 1.87)	0.94
PET-uCR, n (%)	26 (26)	21 (25)	1.02 (0.53 to 1.99)	0.95
PET-PR + PET-SD, n (%)	10 (10)	9 (11)	0.9 (0.35 to 2.34)	0.83

Supplemental Table 2. PET Response Post-consolidation

Abbreviations: CR, complete response; D-VTd, daratumumab plus

bortezomib/thalidomide/dexamethasone; PET, positron emission tomography; PR, partial

response; SD, stable disease; uCR, unconfirmed complete response; VTd,

bortezomib/thalidomide/dexamethasone.

^a*P* value was calculated using the chi-square test.