# Prediction of complete remission and survival in acute myeloid leukemia using supervised machine learning

Jan-Niklas Eckardt,<sup>1</sup> Christoph Röllig,<sup>1</sup> Klaus Metzeler,<sup>2</sup> Michael Kramer,<sup>1</sup> Sebastian Stasik,<sup>1</sup> Julia-Annabell Georgi,<sup>1</sup> Peter Heisig,<sup>3</sup> Karsten Spiekermann,<sup>4</sup> Utz Krug,<sup>5</sup> Jan Braess,<sup>6</sup> Dennis Görlich,<sup>7</sup> Cristina M. Sauerland,<sup>7</sup> Bernhard Woermann,<sup>8</sup> Tobias Herold,<sup>4</sup> Wolfgang E. Berdel,<sup>9</sup> Wolfgang Hiddemann,<sup>4</sup> Frank Kroschinsky,<sup>1</sup> Johannes Schetelig,<sup>1</sup> Uwe Platzbecker,<sup>2</sup> Carsten Müller-Tidow,<sup>10,11</sup> Tim Sauer,<sup>10</sup> Hubert Serve,<sup>12</sup> Claudia Baldus,<sup>13</sup> Kerstin Schäfer-Eckart,<sup>14</sup> Martin Kaufmann,<sup>15</sup> Stefan Krause,<sup>16</sup> Mathias Hänel,<sup>17</sup> Christoph Schliemann,<sup>9</sup> Maher Hanoun,<sup>18</sup> Christian Thiede,<sup>1,11</sup> Martin Bornhäuser,<sup>11,11,19</sup> Karsten Wendt<sup>2</sup> and Jan Moritz Middeke<sup>1</sup>

<sup>1</sup>Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden; <sup>2</sup>Medical Clinic and Policlinic I Hematology and Cell Therapy. University Hospital, Leipzig; <sup>3</sup>Institute of Software and Multimedia Technology, Technical University Dresden, Dresden; <sup>4</sup>Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich; <sup>5</sup>Medical Clinic III, Hospital Leverkusen, Leverkusen; <sup>6</sup>Hospital Barmherzige Brueder Regensburg, Regensburg; <sup>7</sup>Institute for Biometrics and Clinical Research, University Münster, Münster; <sup>8</sup>Department of Hematology, Oncology and Tumor Immunology, Charité, Berlin; <sup>9</sup>Department of Internal Medicine A, University Hospital Münster, Münster; <sup>10</sup>Department of Medicine V, University Hospital Heidelberg, Heidelberg; <sup>11</sup>German Consortium for Translational Cancer Research DKFZ, Heidelberg; <sup>12</sup>Department of Medicine 2, Hematology and Oncology, Goethe University Frankfurt, Frankfurt; <sup>13</sup>Department of Hematology and Oncology, University Hospital Schleswig Holstein, Kiel; <sup>14</sup>Department of Internal Medicine 5, Paracelsus Medical Private University Nuremberg, Nuremberg; <sup>15</sup>Department of Hematology, Oncology and Palliative Care, Robert-Bosch Hospital, Stuttgart; <sup>16</sup>Department of Internal Medicine 5, University Hospital Erlangen, Erlangen; <sup>17</sup>Department of Internal Medicine 3, Klinikum Chemnitz GmbH, Chemnitz; <sup>18</sup>Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen and <sup>19</sup>National Center for Tumor Diseases (NCT), Dresden, Germany

### **Correspondence:** J-N. Eckardt jan-niklas.eckardt@uniklinikum-dresden.de

| juir mituo.co    |                     |
|------------------|---------------------|
| <b>Received:</b> | September 15, 2021. |
| Accepted:        | March 31, 2022.     |
| Early view:      | June 16. 2022.      |

## https://doi.org/10.3324/haematol.2021.280027

©2023 Ferrata Storti Foundation Published under a CC BY-NC license 😇 🛈 S

### **Machine Learning Pipeline**

To enable a customizable and reusable technological approach and to achieve optimal results, we designed a data-driven software platform. The embedded, automated ML pipeline integrates state-of-the-art software technology for data management, feature transformation, ML models and training algorithms and use-case specification (such as specific result exports), and consists of five subsequent steps, which were executed in an iterative manner to approach step-wisely the optimal configuration. 1. Data import & modeling: data from different sources were aggregated and stored in a MySQL (Oracle, Austin, Texas, USA) database, allowing efficient data access and format alignment. In that way, pooled data from the above-mentioned clinical trials and the SAL patient registry were collected and 212 multimodal variables (clinical data, laboratory parameters as well as molecular and cytogenetic genetic data) became available (see Tab. S4 for a full list of variables used in the model). 2. Model enhancement: Relevant attributes were selected by domain experts (physicians) and dimensionality was reduced by excluding sparse features (cut-off 1%). This way, redundancies were removed and the risk of collinearities and overfitting was reduced. 3. Data transformation: the resulting object graph was transformed in a uniform and robust representation for ML models, i.e. as the data included a variety of numerical values with different ranges, feature scaling was performed by standardizing numerical values to the zscore. Nominal and ordinal variables were one-hot encoded. As not all ML models can compute missing values and since we aimed to evaluate a variety of ML models for their capabilities of predicting CR and 2-year OS, an imputation of missing values was essential and thus, integrated. Missing ordinal, discrete and continuous variables were imputed with the median of the respective variable. Missing nominal values were labeled 'unknown'. To reduce dimensionality and thereby the risk of overfitting, dynamic feature selection was used, i.e. features were selected according to their support by five feature selection metrics: linear correlation, chi-square test, recursive feature elimination, lasso regularization and random

forest ranking. To be included in an ML model, a variable had to pass a pre-determined threshold of overall predictive power determined by summing the normalized scores of these five feature selection algorithms. Precisely, each single feature selection metric evaluated every single feature for its prognostic impact resulting in a score ranging from 0 to 1, where 0 means no impact on outcome and 1 means high association with outcome. As an example: Potentially, a feature could reach a prognostic score of 2.5. That could mean that two feature selection metrics gave a score of 1, one metric gave 0.4, one metric 0.1 and finally the last metric 0. Alternatively, the feature could have been graded with 0.5 from every single feature selection metric. Essentially, this resembles a mathematical representation of a Venn diagram where the overlap for a single feature between the metrics are expressed numerically ranging from 0-5 (very low to very high prognostic impact). By using five rather than just one feature selection metric and summing the resulting prognostic score we aimed to reduce bias introduced by individual algorithms. Subsequently, an automated cut-off was used for including the scored features in the classification models. This cut-off was iteratively determined by maximizing the average AUROCs of all classification algorithms, i. e. the number of features included on the model was determined by cutting off less predictive features when the classification algorithms reached their peak performance in the test set. For both CR and 2-year OS, this point was achieved at a prognostic score of 0.5. Including features below 0.5 again decreased classification performance likely due to introduction of random noise. In that way, features of high redundancy or low entropy were automatically filtered out. In contrast to upfront regression analysis of all 212 parameters, the proposed ML method controls for potential type I and II errors in addition to agnostic and data-driven analysis rather than hypothesis-based parameter testing. As multiple testing greatly increases type I error rate, especially for such a multidimensional data set, conventional approaches require post-hoc correction, e. g. using Bonferroni correction. This would introduce a very conservative significance level, especially in the context of 212 variables, which in turn would increase the risk for type II errors. By pre-selecting parameters and thereby reducing the number of univariate regression models needed for analysis, type I and II error rate are more controlled for than with upfront regression analysis for all individual parameters. <u>4. Machine</u> learning classifiers: Applied ML models were Random Forest (RF), Gradient Boosting, adaptive Boosting, linear, polynomial and radial basis function kernel (RBF) support vector machines (SVM), k-nearest neighbor (KNN), logistic regression (LR) and artificial neural nets (ANN). The prepared data from step 1-3 was divided in a training and test set with a ratio of 9:1 using stratified randomization and tenfold cross-validation. That means that for each of ten iterations the data set is reshuffled and a sample is drawn completely at random where 90% of patients are allocated to the training set and 10% of patients are allocated to the test set. The test set is then strictly withheld from the training data to prevent overfitting of the classifiers. Overfitting is the notion that a classifier 'memorizes' training data rather than learning abstract feature representations derived from the data. This would result in high classification performance in the training set and poor performance (low generalizability) in the test set or with external data. To prevent this, stratified randomization ensured the 9:1 ratio for each single iteration of the tenfold cross-validation. By performing this process over ten iterations, the risk of selection bias, i. e. the notion that the patients in the training vs. the test set differ substantially e.g. with respect to risk or outcome, is greatly reduced since every patient has the chance to be allocated to either training or test set in ten different iterations. By introducing a predefined seed for the random generators before each run, reproducibility is ensured. Finally, performance for the test set was averaged. All reported performance measures are derived from averaged scores of tenfold cross-validation on test sets only. This approach enables the ML pipeline within the platform to train different ML models on the base of a stable data set, making the results comparable to search for the optimal model and configuration. 5. Visualization & analysis: Finally, the ML models' output is automatically visualized and performance can be assessed using a pre-defined cluster of performance

metrics. This way, both clinicians and ML engineers receive immediate feedback of model performance and selected features.

With the support of hyperparameter optimization, which filters parameters that do not belong to the model itself, utilizing Bayesian optimization with Gaussian processes, the entire ML pipeline was executed several times, producing an automated documentation for each model and configuration. Hyperparameter search was performed using scikit.learn version 0.23.2. including model stabilization (https://scikit-

learn.org/stable/modules/model\_evaluation.html#common-cases-predefined-values) and search space optimization (https://scikit-

optimize.github.io/stable/modules/generated/skopt.space.space.Real.html) using default settings. Medical and ML experts collaborated to discuss the intermediate results to refine configuration, feature selection and preparation techniques, data transformation and ML technology as well as the result representation to optimize the pipeline after each run to achieve optimal results for the CR/Cri and OS use case. For external validation, pre-trained models were tested on 664 AML patients from the multi-center AML Cooperative Group bioregistry. Model building, evaluation and visualization was performed in Python 3.8 (Python Software Foundation, Fredericksburg, Virginia, USA). Python packages that were used are summarized in Tab. S6.

### Code availability

Code that was generated for the purpose of this work is publicly available under <a href="https://github.com/sit-institute/sal-cr/">https://github.com/sit-institute/sal-cr/</a>

| trial name      | clinicaltrials.gov<br>identifier | trial duration | protocol summary                                                                                                                                                                                                                                                                                                                             |
|-----------------|----------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AML96           | NCT00180115                      | 1996-2008      | risk-adapted<br>postremission<br>treatment regarding<br>allogeneic stem cell<br>transplantation for<br>high-risk AML and<br>related allogeneic and<br>autologous stem cell<br>transplantation for<br>standard-risk AML,<br>and randomization<br>between intermediate-<br>dose and high-dose<br>cytarabine within the<br>first post-remission |
| AML2003         | NCT00180102                      | 2003-2009      | course<br>early allogeneic stem<br>cell transplantation in<br>post-induction aplasia<br>for high-risk AML,<br>factorial design with<br>four therapy arms with<br>two factors of two<br>stages (intensified vs.<br>standard therapy and<br>cytarabine vs.<br>cytarabine +<br>mitoxantrone +<br>amsacrin)                                      |
| AML60+          | NCT00180167                      | 2005-2010      | amsacrin)<br>Patients $\geq$ 60 years,<br>mitoxantron on day<br>1,2,3 + cytarabine on<br>days 1,3,5,7 vs. DA<br>7+3                                                                                                                                                                                                                          |
| SORAML          | NCT00893373                      | 2011-2014      | Standard therapy +<br>sorafenib vs. standard<br>therapy + placebo                                                                                                                                                                                                                                                                            |
| SAL bioregistry | NCT03188874                      | 2010-present   | Prospective registry of<br>AML patients                                                                                                                                                                                                                                                                                                      |
| AMLCG-1999      | NCT00266136                      | 1999-2007      | double induction with<br>HAM-HAM, multiple<br>course G-CSF or<br>myeloablative<br>consolidation with<br>Bu/Cy and<br>autologous blood<br>stem cell<br>transplantation<br>instead of<br>maintenance vs.                                                                                                                                       |
| AMLCG-2008      | NCT01382147                      | 2008-2012      | standard therapy<br>S-HAM escalated for<br>younger patients and                                                                                                                                                                                                                                                                              |

Table S1. Summary of trial data used for retrospective analysis

| TruSight Myeloid Sequencing Panel |          |       |        |       |  |  |
|-----------------------------------|----------|-------|--------|-------|--|--|
| ABL1                              | CEBPA    | HRAS  | MYD88  | SF3B1 |  |  |
| ASXL1                             | CSF3R    | IDH1  | NOTCH1 | SMC1A |  |  |
| ATRX                              | CUX1     | IDH2  | NPM1   | SMC3  |  |  |
| BCOR                              | DNMT3A   | IKZF1 | NRAS   | SRSF2 |  |  |
| BCORL1                            | ETV6/TEL | JAK2  | PDGFRA | STAG2 |  |  |
| BRAF                              | EZH2     | JAK3  | PHF6   | TET2  |  |  |
| CALR                              | FBXW7    | KDM6A | PTEN   | TP53  |  |  |
| CBL                               | FLT3     | KIT   | PTPN11 | U2AF1 |  |  |
| CBLB                              | GATA1    | KRAS  | RAD21  | WT1   |  |  |
| CBLC                              | GATA2    | MLL   | RUNX1  | ZRSR2 |  |  |
| CDKN2A                            | GNAS     | MPL   | SETBP1 |       |  |  |

Table S2. Summary of the 54 genes targeted by the TruSight Myeloid Sequencing Panel (Illumina, San

Diego, CA, USA).

| Section & Topic      | No | Item                                                                                                                                                        | Reported on page # |
|----------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| TITLE OR<br>ABSTRACT |    |                                                                                                                                                             |                    |
|                      | 1  | Identification as a study of diagnostic accuracy using at least<br>one measure of accuracy<br>(such as sensitivity, specificity, predictive values, or AUC) | 1                  |
| ABSTRACT             |    | (such as sensitivity, specificity, predictive values, of AOC)                                                                                               |                    |
|                      | 2  | Structured summary of study design, methods, results, and conclusions                                                                                       | 2                  |
| INTRODUCTION         |    | (for specific guidance, see STARD for Abstracts)                                                                                                            |                    |
| INTRODUCTION         | 3  | Scientific and clinical background, including the intended use and clinical role of the index test                                                          | 2-3                |
| METHODS              | 4  | Study objectives and hypotheses                                                                                                                             | 2-3                |
| Study design         | 5  | Whether data collection was planned before the index test and<br>reference standard<br>were performed (prospective study) or after (retrospective<br>study) | 3-4 + supplements  |
| Participants         | 6  | Eligibility criteria                                                                                                                                        | 3-4                |
|                      | 7  | On what basis potentially eligible participants were identified<br>(such as symptoms, results from previous tests, inclusion in<br>registry)                | 3-4                |
|                      | 8  | Where and when potentially eligible participants were identified (setting, location and dates)                                                              | 3-4 + supplements  |

|                         | 9         | Whether participants formed a consecutive, random or convenience series                                                             | 3-4 +                        |
|-------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Test methods            | 10a       | Index test, in sufficient detail to allow replication                                                                               | supplements<br>4-5 +         |
|                         | 10b<br>11 | Reference standard, in sufficient detail to allow replication<br>Rationale for choosing the reference standard (if alternatives     | supplements<br>n.a.<br>n.a.  |
|                         | 12a       | exist)<br>Definition of and rationale for test positivity cut-offs or result                                                        | 5 +                          |
|                         |           | categories of the index test, distinguishing pre-specified from exploratory                                                         | supplements                  |
|                         | 12b       | Definition of and rationale for test positivity cut-offs or result categories of the reference standard, distinguishing pre-        | n.a.                         |
|                         | 13a       | specified from exploratory<br>Whether clinical information and reference standard results                                           | n.a.                         |
|                         | 13b       | were available to the performers/readers of the index test<br>Whether clinical information and index test results were<br>available | n.a.                         |
|                         |           | to the assessors of the reference standard                                                                                          |                              |
| Analysis                | 14        | Methods for estimating or comparing measures of diagnostic accuracy                                                                 | 5                            |
|                         | 15        | How indeterminate index test or reference standard results were handled                                                             | Supplements                  |
|                         | 16        | How missing data on the index test and reference standard were handled                                                              | supplements                  |
|                         | 17        | Any analyses of variability in diagnostic accuracy,<br>distinguishing pre-specified from exploratory                                | supplements                  |
|                         | 18        | Intended sample size and how it was determined                                                                                      | n.a.                         |
| RESULTS<br>Participants | 19        | Flow of participants, using a diagram                                                                                               | Figure 1                     |
| Farticipants            | 20        | Baseline demographic and clinical characteristics of participants                                                                   | Table 1 +<br>Table S4-S5     |
|                         | 21a       | Distribution of severity of disease in those with the target condition                                                              | Table 1 +<br>Table S4-S5     |
|                         | 21b       | Distribution of alternative diagnoses in those without the target condition                                                         | n.a.                         |
|                         | 22        | Time interval and any clinical interventions between index test<br>and reference standard                                           | n.a.                         |
| Test results            | 23        | Cross tabulation of the index test results (or their distribution) by the results of the reference standard                         | n.a.                         |
|                         | 24        | Estimates of diagnostic accuracy and their precision (such as 95% confidence intervals)                                             | 6-9, Figure 2,<br>Figure 4-6 |
|                         | 25        | Any adverse events from performing the index test or the reference standard                                                         | n.a.                         |
| DISCUSSION              |           |                                                                                                                                     |                              |
|                         | 26        | Study limitations, including sources of potential bias, statistical uncertainty, and generalisability                               | 13-14                        |
|                         | 27        | Implications for practice, including the intended use and clinical role of the index test                                           | 12-14                        |
| OTHER                   |           |                                                                                                                                     |                              |
| INFORMATION             |           |                                                                                                                                     |                              |
|                         | 28        | Registration number and name of registry                                                                                            | 3                            |
|                         | 29<br>30  | Where the full study protocol can be accessed<br>Sources of funding and other support; role of funders                              | n.a.<br>15                   |
| Table S3. STAF          |           |                                                                                                                                     |                              |

|                              |      | SAL          | AMLCG  |                |
|------------------------------|------|--------------|--------|----------------|
| Variable                     |      | and testing) |        | al validation) |
|                              | n    | %            | n      | %              |
| clinical                     |      |              |        |                |
| age                          |      |              |        |                |
| height                       |      |              |        |                |
| weight                       |      |              |        |                |
| sex                          |      |              |        |                |
| AML type, de novo            | 1180 | 85.32%       | 570    | 85.84%         |
| AML type, secondary          | 146  | 10.56%       | 59     | 8.89%          |
| AML type, therapy-related    | 40   | 2.89%        | 35     | 5.27%          |
| extramedullary disease       | 202  | 14.61%       | 16/270 | 5.93%          |
| Fever during induction phase | 361  | 26.10%       | n.a.   |                |
| laboratory values            |      |              |        |                |
| hemoglobin                   |      |              |        |                |
| white blood cell count       |      |              |        |                |
| platelet count               |      |              |        |                |
| bone marrow blast count      |      |              |        |                |
| peripheral blood blast count |      |              |        |                |
| fibrinogen level             |      |              |        |                |
| LDH level                    |      |              |        |                |
| molecular genetics           |      |              |        |                |
| ASXL1                        | 124  | 8.97%        | 73     | 10.99%         |
| ATRX                         | 3    | 0.22%        | n.a.   |                |
| BCOR                         | 61   | 4.41%        | 46     | 6.93%          |
| BCORL1                       | 49   | 3.54%        | 15     | 2.26%          |
| BRAF                         | 6    | 0.43%        | 1      | 0.15%          |
| CALR                         | 1    | 0.07%        | n.a.   |                |
| CBL                          | 27   | 1.95%        | 13     | 1.96%          |
| CBLB                         | 2    | 0.14%        | n.a.   |                |
| CDKN2A                       | 3    | 0.22%        | 2      | 0.30%          |
| CEBPA, monoallelic (TAD)     | 41   | 2.96%        | 8      | 1.20%          |
| CEBPA, monoallelic (bZIP)    | 30   | 2.17%        | 11     | 1.66%          |
| CEBPA, double-mutated        | 91   | 6.58%        | 27     | 4.07%          |
| CSF3R                        | 20   | 1.45%        | 13     | 1.96%          |
| CUX1                         | 34   | 2.46%        | 2      | 0.30%          |
| DNMT3A                       | 396  | 28.63%       | 211    | 31.78%         |
| ETV6                         | 9    | 0.65%        | 15     | 2.26%          |
| EZH2                         | 53   | 3.83%        | 28     | 4.22%          |
| FBXW7                        | 3    | 0.22%        | 2      | 0.30%          |
| FLT3-ITD                     | 280  | 20.25%       | 178    | 26.81%         |
| FLT3-ITD ratio               |      |              |        |                |
| FLT3-TKD                     | 62   | 4.48%        | n.a.   |                |
| GATA2                        | 80   | 5.78%        | 27     | 4.01%          |
| HRAS                         | 2    | 0.14%        | 1      | 0.15%          |
| IDH1                         | 122  | 8.82%        | 45     | 6.78%          |

| IDH2                                                                    | 197                                       | 14.24%                                                               | 93                                                   | 14.01%           |
|-------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------|------------------|
| IKZF1                                                                   | 36                                        | 2.60%                                                                | n.a.                                                 |                  |
| JAK2                                                                    | 18                                        | 1.30%                                                                | 8                                                    | 1.20%            |
| KDM6A                                                                   | 9                                         | 0.65%                                                                | 13                                                   | 1.96%            |
| KIT                                                                     | 73                                        | 5.28%                                                                | 27                                                   | 4.07%            |
| KRAS                                                                    | 79                                        | 5.71%                                                                | 41                                                   | 6.17%            |
| MPL                                                                     | 5                                         | 0.36%                                                                | n.a.                                                 |                  |
| MYD88                                                                   | 2                                         | 0.14%                                                                | n.a.                                                 |                  |
| NOTCH1                                                                  | 24                                        | 0.14%<br>1.74%                                                       | 8                                                    | 1.20%            |
| NPM1                                                                    | 466                                       | 33.69%                                                               | 221                                                  | 33.28%           |
| NRAS                                                                    | 229                                       | 33.09%<br>16.56%                                                     | 144                                                  | 21.69%           |
| PDGFRA                                                                  | 1                                         | 0.07%                                                                | n.a.                                                 |                  |
| PHF6                                                                    | 41                                        |                                                                      | 16                                                   | 2.41%            |
| PTEN                                                                    | 3                                         | 2.96%                                                                | 1                                                    | 0.15%            |
| PTEN<br>PTPN11                                                          | 3<br>100                                  | 0.22%                                                                | 68                                                   | 10.24%           |
|                                                                         |                                           | 7.23%                                                                | 37                                                   | 5.57%            |
| RAD21                                                                   | 50<br>124                                 | 3.62%                                                                | 102                                                  | 15.36%           |
| RUNX1                                                                   | 134                                       | 9.69%                                                                | 3                                                    |                  |
| SETBP1                                                                  | 7                                         | 0.51%                                                                |                                                      | 0.45%            |
| SF3B1                                                                   | 41                                        | 2.96%                                                                | 23                                                   | 3.46%            |
| SMC1A                                                                   | 22                                        | 1.59%                                                                | 17                                                   | 2.56%            |
| SMC3                                                                    | 18                                        | 1.30%                                                                | 23                                                   | 3.46%            |
| SRSF2                                                                   | 72                                        | 5.21%                                                                | 65                                                   | 9.79%            |
| STAG2                                                                   | 71                                        | 5.13%                                                                | 44                                                   | 6.63%            |
| TET2                                                                    | 247                                       | 17.86%                                                               | 102                                                  | 15.36%           |
| TP53                                                                    | 102                                       | 7.38%                                                                | 63                                                   | 9.49%            |
| U2AF1                                                                   | 36                                        | 2.60%                                                                | 27                                                   | 4.07%            |
| WT1                                                                     | 102                                       | 7.38%                                                                | 86                                                   | 12.95%           |
| ZRSR2                                                                   | 19                                        | 1.37%                                                                | 5                                                    | 0.75%            |
| cytogenetics                                                            |                                           |                                                                      |                                                      |                  |
| Karyotype, complex                                                      | 152                                       | 10.99%                                                               | 75                                                   | 11.29%           |
| Karyotype, neither normal nor                                           | 100                                       | 22 4004                                                              | 270                                                  | 20.020/          |
| complex                                                                 | 463                                       | 33.48%                                                               | 259<br>330                                           | 39.02%<br>49.69% |
| Karyotype, normal                                                       | 709                                       | 51.27%                                                               |                                                      |                  |
| t(6;9)                                                                  | 5                                         | 0.36%                                                                | 5                                                    | 0.75%            |
| t(11;19)                                                                | 1                                         | 0.07%                                                                | n.a.                                                 |                  |
| abn(3q)                                                                 |                                           | 1 500/                                                               | n.a.                                                 |                  |
|                                                                         | 21                                        | 1.52%                                                                |                                                      |                  |
| t(1;3)                                                                  | 5                                         | 0.36%                                                                | n.a.                                                 |                  |
| t(3;21)                                                                 | 5<br>4                                    | 0.36%<br>0.29%                                                       | n.a.                                                 |                  |
| t(3;21)<br>t(2;3)                                                       | 5<br>4<br>1                               | 0.36%<br>0.29%<br>0.07%                                              | n.a.<br>n.a.                                         |                  |
| t(3;21)                                                                 | 5<br>4<br>1<br>5                          | 0.36%<br>0.29%                                                       | n.a.<br>n.a.<br>n.a.                                 |                  |
| t(3;21)<br>t(2;3)                                                       | 5<br>4<br>1                               | 0.36%<br>0.29%<br>0.07%                                              | n.a.<br>n.a.                                         |                  |
| t(3;21)<br>t(2;3)<br>del(3q)                                            | 5<br>4<br>1<br>5                          | 0.36%<br>0.29%<br>0.07%<br>0.36%                                     | n.a.<br>n.a.<br>n.a.                                 |                  |
| t(3;21)<br>t(2;3)<br>del(3q)<br>add(3q)<br>t(3;4;3)                     | 5<br>4<br>1<br>5<br>2                     | 0.36%<br>0.29%<br>0.07%<br>0.36%<br>0.14%                            | n.a.<br>n.a.<br>n.a.<br>n.a.                         |                  |
| t(3;21)<br>t(2;3)<br>del(3q)<br>add(3q)<br>t(3;4;3)<br>t(3;8)           | 5<br>4<br>1<br>5<br>2<br>1                | 0.36%<br>0.29%<br>0.07%<br>0.36%<br>0.14%<br>0.07%                   | n.a.<br>n.a.<br>n.a.<br>n.a.<br>n.a.                 |                  |
| t(3;21)<br>t(2;3)<br>del(3q)<br>add(3q)<br>t(3;4;3)<br>t(3;8)<br>t(3;6) | 5<br>4<br>1<br>5<br>2<br>1<br>1           | 0.36%<br>0.29%<br>0.07%<br>0.36%<br>0.14%<br>0.07%<br>0.07%          | n.a.<br>n.a.<br>n.a.<br>n.a.<br>n.a.<br>n.a.         |                  |
| t(3;21)<br>t(2;3)<br>del(3q)<br>add(3q)                                 | 5<br>4<br>1<br>5<br>2<br>1<br>1<br>1<br>1 | 0.36%<br>0.29%<br>0.07%<br>0.36%<br>0.14%<br>0.07%<br>0.07%<br>0.07% | n.a.<br>n.a.<br>n.a.<br>n.a.<br>n.a.<br>n.a.<br>n.a. |                  |

|                      |        |                | 1    |        |
|----------------------|--------|----------------|------|--------|
| +8                   | 79     | 5.71%          | n.a. |        |
| -Y                   | 14     | 1.01%          | n.a. |        |
| del(9q)              | 12     | 0.87%          | n.a. |        |
| del(20q)             | 5      | 0.36%          | n.a. |        |
| inv(3)               | 7      | 0.51%          | 13   | 1.96%  |
| -5                   | 7      | 0.51%          | n.a. |        |
| del(5q)              | 44     | 3.18%          | 54   | 8.13%  |
| -7                   | 33     | 2.39%          | n.a. |        |
| -17                  | 2      | 0.14%          | n.a. |        |
| t(v;11)(v;q23)       | 13     | 0.94%          | n.a. |        |
| add(11q23)           | 1      | 0.07%          | n.a. |        |
| t(6;11)              | 1      | 0.07%          | n.a. |        |
| t(10;11)             | 2      | 0.14%          | n.a. |        |
| t(1;11)              | 1      | 0.07%          | n.a. |        |
| t(11;17)             | 1      | 0.07%          | n.a. |        |
| inv(11)              | 2      | 0.14%          | n.a. |        |
| t(5;11)              | - 1    | 0.07%          | n.a. |        |
| t(9;10;11)           | 1      | 0.07%          | n.a. |        |
| t(3;11;15)           | 1      | 0.07%          | n.a. |        |
| abn(17p)             | 6      | 0.43%          | n.a. |        |
| add(17p)             | 1      | 0.07%          | n.a. |        |
| del(17p)             | 32     | 2.31%          | 39   | 5.87%  |
| inv(16)              | 58     | 4.19%          | 18   | 2.71%  |
| del(9p)              | 1      | 4.19%<br>0.07% | n.a. | 2.7170 |
|                      |        |                | n.a. |        |
| del(11q)<br>del(12r) | 6<br>4 | 0.43%          | n.a. |        |
| del(12p)             |        | 0.29%          | n.a. |        |
| del(16q)             | 4      | 0.29%          | n.a. |        |
| del(10p)             | 3      | 0.22%          |      |        |
| del(21q)             | 1      | 0.07%          | n.a. |        |
| del(6q)              | 1      | 0.07%          | n.a. |        |
| del(17q)             | 2      | 0.14%          | n.a. |        |
| del(1p)              | 2      | 0.14%          | n.a. |        |
| del(15q)             | 1      | 0.07%          | n.a. |        |
| del(13q)             | 2      | 0.14%          | n.a. |        |
| del(1q)              | 1      | 0.07%          | n.a. |        |
| del(3p)              | 1      | 0.07%          | n.a. |        |
| del(4q)              | 1      | 0.07%          | n.a. |        |
| -22                  | 1      | 0.07%          | n.a. |        |
| -13                  | 2      | 0.14%          | n.a. |        |
| -18                  | 2      | 0.14%          | n.a. |        |
| -X                   | 5      | 0.36%          | n.a. |        |
| -15                  | 1      | 0.07%          | n.a. |        |
| add(20p)             | 1      | 0.07%          | n.a. |        |
| add(18q)             | 1      | 0.07%          | n.a. |        |
| add(12p)             | 2      | 0.14%          | n.a. |        |
| add(14q)             | 2      | 0.14%          | n.a. |        |
| add(9p)              | 1      | 0.07%          | n.a. |        |
|                      |        |                |      |        |

| add(15q)         | 1  | 0.07% | n.a. |       |
|------------------|----|-------|------|-------|
| add(19p)         | 1  | 0.07% | n.a. |       |
| add(21q)         | 2  | 0.14% | n.a. |       |
| add(8q)          | 1  | 0.07% | n.a. |       |
| add(22q)         | 1  | 0.07% | n.a. |       |
| add(17q)         | 1  | 0.07% | n.a. |       |
| +6               | 3  | 0.22% | n.a. |       |
| +11              | 9  | 0.65% | n.a. |       |
| +9               | 3  | 0.22% | n.a. |       |
| +14              | 3  | 0.22% | n.a. |       |
| +4               | 10 | 0.72% | n.a. |       |
| +19              | 6  | 0.43% | n.a. |       |
| +13              | 10 | 0.72% | n.a. |       |
| +22              | 20 | 1.45% | n.a. |       |
| +21              | 14 | 1.01% | n.a. |       |
| +1               | 1  | 0.07% | n.a. |       |
| +5               | 2  | 0.14% | n.a. |       |
| +12              | 1  | 0.07% | n.a. |       |
| +7               | 1  | 0.07% | n.a. |       |
| +10              | 2  | 0.14% | n.a. |       |
| +X               | 1  | 0.07% | n.a. |       |
| +Y               | 3  | 0.22% | n.a. |       |
| +15              | 1  | 0.07% | n.a. |       |
| +20              | 2  | 0.14% | n.a. |       |
| +23              | 1  | 0.07% | n.a. |       |
| +3               | 1  | 0.07% | n.a. |       |
| +r               | 2  | 0.14% | n.a. |       |
| mar              | 13 | 0.94% | n.a. |       |
| XXYY             | 1  | 0.07% | n.a. |       |
| dup(21)(q22q22)  | 1  | 0.07% | n.a. |       |
| dup(17)(q21q25)  | 1  | 0.07% | n.a. |       |
| dup(8)           | 1  | 0.07% | n.a. |       |
| t(9;11)          | 20 | 1.45% | 17   | 2.56% |
| t(4;14)(q11;q32) | 1  | 0.07% | n.a. |       |
| t(8;9)           | 2  | 0.14% | n.a. |       |
| t(5;18)(q35;q21) | 1  | 0.07% | n.a. |       |
| t(16;16)         | 18 | 1.30% | 2    | 0,3%  |
| t(9;21)          | 2  | 0.14% | n.a. |       |
| t(4;21)(q11;q11) | 1  | 0.07% | n.a. |       |
| t(1;4)(q25;q12)  | 1  | 0.07% | n.a. |       |
| t(3;5)           | 4  | 0.29% | n.a. |       |
| t(8;11)          | 1  | 0.07% | n.a. |       |
| t(2;15)          | 1  | 0.07% | n.a. |       |
| t(7;14)          | 1  | 0.07% | n.a. |       |
| t(7;9)           | 1  | 0.07% | n.a. |       |
| t(6;12)          | 1  | 0.07% | n.a. |       |
| t(2;14)          | 2  | 0.14% | n.a. |       |
|                  |    |       |      |       |

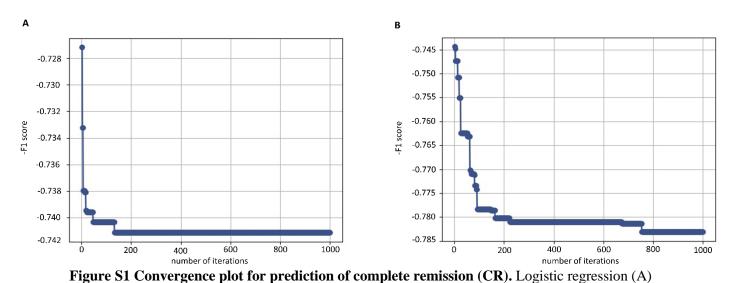
| t(5;21)        | 1  | 0.07% | n.a. |       |
|----------------|----|-------|------|-------|
| t(7;11)        | 2  | 0.14% | n.a. |       |
| t(7;21)        | 1  | 0.07% | n.a. |       |
| t(3;11)        | 1  | 0.07% | n.a. |       |
| t(13;21)       | 1  | 0.07% | n.a. |       |
| t(1;17)        | 1  | 0.07% | n.a. |       |
| t(5;9)         | 1  | 0.07% | n.a. |       |
| t(10;11)       | 1  | 0.07% | n.a. |       |
| t(8;21)        | 52 | 3.76% | 26   | 3.92% |
| t(12;22)       | 1  | 0.07% | n.a. |       |
| t(4;22)        | 1  | 0.07% | n.a. |       |
| t(1;8;16)      | 1  | 0.07% | n.a. |       |
| t(2;5;10)      | 1  | 0.07% | n.a. |       |
| t(7;12;12)     | 1  | 0.07% | n.a. |       |
| ins(21)        | 1  | 0.07% | n.a. |       |
| i(17)(q10)     | 6  | 0.43% | n.a. |       |
| i(22)(q10)     | 1  | 0.07% | n.a. |       |
| idic(X)        | 1  | 0.07% | n.a. |       |
| inv(8)         | 1  | 0.07% | n.a. |       |
| inv(9)         | 3  | 0.22% | n.a. |       |
| inv(17)        | 1  | 0.07% | n.a. |       |
| inv(10)        | 1  | 0.07% | n.a. |       |
| inv(11)(1)     | 1  | 0.07% | n.a. |       |
| der(16)t(1;16) | 2  | 0.14% | n.a. |       |
| der(1;7)       | 1  | 0.07% | n.a. |       |
| der(2)(p23)    | 1  | 0.07% | n.a. |       |
| der(10)        | 1  | 0.07% | n.a. |       |
| der(9)         | 3  | 0.22% | n.a. |       |
| der(19)        | 1  | 0.07% | n.a. |       |
| der(18)        | 2  | 0.14% | n.a. |       |
| der(1;14)      | 1  | 0.07% | n.a. |       |
| der(12)        | 1  | 0.07% | n.a. |       |
|                |    |       |      |       |

**Table S4.** Multimodal data including clinical data, laboratory values, molecular genetics and

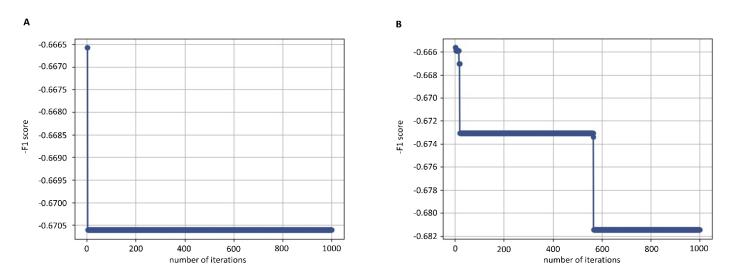
 cytogenetics were available for dynamic feature selection and subsequent model building.

| Variables            | AML96        | AML2003    | AML60+       | SORAML       | Validation |
|----------------------|--------------|------------|--------------|--------------|------------|
| N of patients        | 943          | 191        | 53           | 196          | 664        |
| age, median (IQR)    | 60 (47 – 67) | 48 (39 –   | 69 (66 – 73) | 50 (44 - 55) | 57 (44 –   |
|                      |              | 55)        |              |              | 66)        |
| sex, n (%)           |              |            |              |              |            |
| Female               | 439 (46.6)   | 90 (47.1)  | 33 (62.3)    | 99 (50.5)    | 328 (49.4) |
| Male                 | 504 (53.4)   | 101 (52.9) | 20 (37.7)    | 97 (49.5)    | 336 (50.6) |
| AML status, n (%)    |              |            |              |              |            |
| de novo              | 773 (82.0)   | 181 (94.8) | 49 (92.5)    | 177 (90.3)   | 570 (85.8) |
| Secondary            | 123 (13.0)   | 1 (0.5)    | 3 (5.7)      | 14 (7.1)     | 59 (8.9)   |
| therapy-associated   | 31 (3.3)     | 2 (1.0)    | 0 (3.0)      | 5 (2.6)      | 35 (5.3)   |
| missing, n (%)       | 16 (1.7)     | 7 (3.7)    | 1 (1.9)      | 0            |            |
| FAB                  |              |            |              |              |            |
| classification, n    |              |            |              |              |            |
| (%)                  |              |            |              |              |            |
| MO                   | 39 (4.1)     | 2 (1.0)    | 0            | 8 (4.1)      | 35 (5.4)   |
| M1                   | 201 (21.3)   | 59 (30.9)  | 22 (41.5)    | 44 (22.4)    | 157 (23.6) |
| M2                   | 323 (34.3)   | 57 (29.8)  | 20 (37.7)    | 58 (29.6)    | 178 (26.8) |
| M3                   | Ò            | 0          | 0            | 0            | <b>0</b>   |
| M4                   | 169 (17.9)   | 44 (23.0)  | 3 (5.7)      | 32 (16.3)    | 163 (24.5) |
| M5                   | 141 (15.0)   | 15 (7.9)   | 2 (3.8)      | 31 (15.8)    | 83 (12.5)  |
| M6                   | 33 (3.5)     | 5 (2.6)    | 0            | 8 (4.1)      | 19 (2.9)   |
| M7                   | 6 (0.6)      | Û          | 0            | 0            | 3 (0.5)    |
| missing, n (%)       | 31 (3.3)     | 9 (4.7)    | 6 (11.3)     | 15 (7.7)     | 26 (3.9)   |
| ELN2017 category,    | · ,          | ~ /        | ~ /          | ~ /          | ~ /        |
| (%)                  |              |            |              |              |            |
| Favorable            | 307 (32.6)   | 120 (62.8) | 17 (32.1)    | 74 (37.8)    | 231 (34.8) |
| Intermediate         | 378 (40.1)   | 41 (21.5)  | 14 (26.4)    | 77 (39.3)    | 166 (25.0) |
| Adverse              | 205 (21.7)   | 2 (1.0)    | 1 (1.9)      | 33 (16.8)    | 250 (37.7) |
| missing, n (%)       | 53 (5.6)     | 28 (14.7)  | 21 (39.6)    | 12 (6.1)     | 17 (2.6)   |
| Complex              | 122 (12.9)   | 8 (4.2)    | 0            | 22 (11.2)    | 75 (11.3%) |
| karyotype ( $\geq 3$ |              |            |              |              | × ,        |
| abnormalities), n    |              |            |              |              |            |
| (%)                  |              |            |              |              |            |
| missing, n (%)       | 0            | 0          | 0            | 114 (58.2)   | 0          |
| Extramedullary       | 181 (19.2)   | 4 (2.1)    | 4 (7.5)      | 12 (6.1)     | 16 (5.9)   |
| disease, n (%)       | ~ /          | ~ /        |              | ~ /          | ~ /        |
| missing, n (%)       | 132 (14.0)   | 3 (1.6)    | 2 (3.8)      | 0            | 379 (57.1) |
| WBC, median          |              |            | 8.1 (2.2 –   |              | . ,        |
| (IQR) in GPt/l       | 49.2)        |            | 32.1)        |              | 60.3)      |
| Hb, median (IQR)     | ,            | ,          | 5.7 (5.1 –   | ,            |            |
| in mmol/l            | 6.5)         | 6.6)       | 6.3)         | 10.3)        | 6.3)       |
| Plt, median (IQR)    | 51 (28 - 98) | ,          | ,            | 58 (30 -     | ,          |
| in GPt/l             |              | 96.5)      |              | 110)         | 102)       |
| LDH, median          | 408 (254 –   | ,          | 409 (251 –   | ,            | ,          |
| (IQR) in U/l         | 745)         | 827)       | 698)         | 527)         | 787)       |
| BM blasts, median    | ,            | ,          | 56 (35 –     | ,            | 80 (58 -   |
| Line Orabio, moundi  | 51(12 /0)    | 00.0 (07   | 50 (55       | 35(12)00)    | 00 (00     |

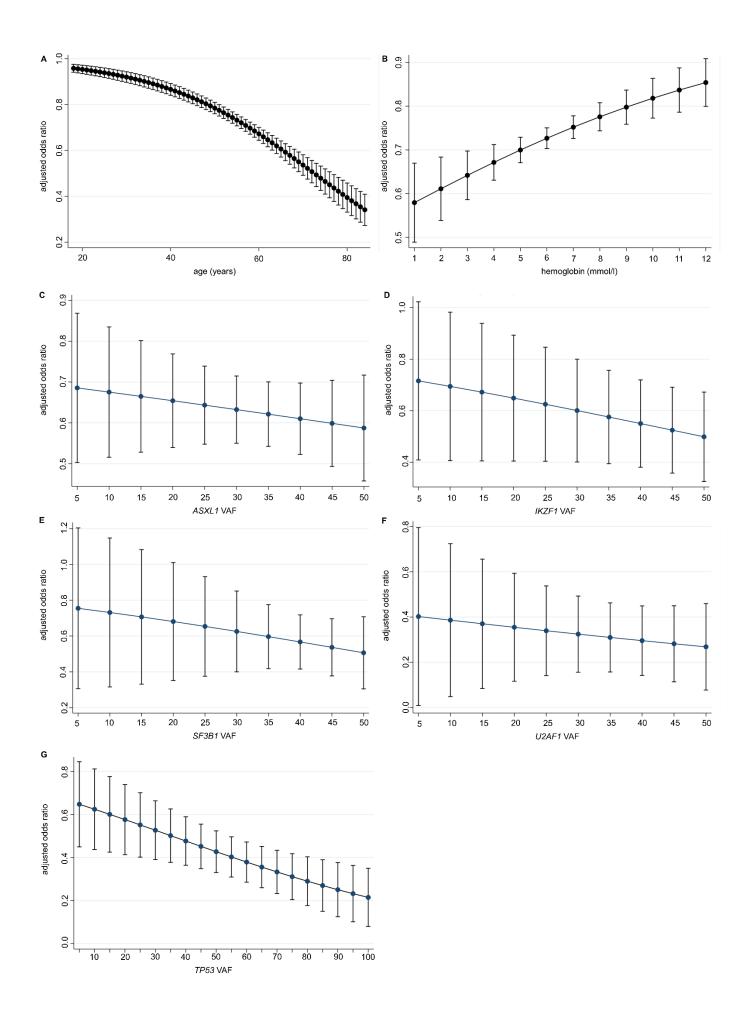
| PB blasts, median (IQR) in %         | 30 (7 - 67) | 27 (6-64)  | 20 (2 - 57.5) | 20 (4 - 57) | 23 (4.5 –<br>67) |
|--------------------------------------|-------------|------------|---------------|-------------|------------------|
| Achieved CR after induction therapy, | 610 (64.7)  | 182 (95.3) | 46 (86.8)     | 170 (86.7)  | 445 (67.0)       |
| n (%)                                |             |            |               |             |                  |
| Median OS<br>(months)                | 12.2        | 41.4       | 9.4           | 17.1        | 17.3             |
| $OS \ge 2$ years, n (%)              | 335 (35.5)  | 134 (70.2) | 17 (32.1)     | 124 (63.3)  | 290 (43.7)       |


 Table S5. Baseline patient characteristics according to individual trials used in training and

 testing as well as external validation. FAB: French-American-British Classification; ELN2017:


European Leukemia Net 2017; WBC: white blood cell count; Hb: hemoglobin; Plt: platelet count; BM: bone marrow; OS: overall survival; PB: peripheral blood; CR: complete remission; n/N: number; IQR: interquartile range; n.a. – not available

| package              | version |
|----------------------|---------|
| click                | 7.1.2   |
| coverage             | 5.3     |
| flake8               | 3.8.4   |
| matplotlib           | 3.3.2   |
| missingno            | 0.4.2   |
| numpy                | 1.18.5  |
| numpydoc             | 1.1.0   |
| pandas               | 1.1.4   |
| pytablewriter        | 0.58.0  |
| python-dotenv        | 0.15.0  |
| scikit-learn         | 0.23.2  |
| seaborn              | 0.11.0  |
| sklearn-pandas       | 2.0.2   |
| Sphinx               | 3.3.0   |
| sphinx-rtd-theme     | 0.5.0   |
| PyYAML               | 5.3.1   |
| xgboost              | 1.2.1   |
| yellowbrick          | 1.2     |
| imbalanced-learn     | 0.7.0   |
| sphinxcontrib-images | 0.9.2   |
| scikit-optimize      | 0.8.1   |
| tune-sklearn         | 0.1.0   |
| ray[tune]            | 1.0.1.  |


Table S6. Python packages used for model building



and Random Forest (B) were selected for hyperparameter tuning for CR classification. Both converged over 1000 iterations achieving a final F1-score of 0.7411 (A) and 0.7831 (B), respectively.



**Figure S2 Convergence plot for prediction of overall survival (OS).** Logistic regression (A) and Random Forest (B) were selected for hyperparameter tuning for classification of OS above 24 months. Both converged over 1000 iterations achieving a final F1-score of 0.6706 (A) and 0.6815 (B), respectively.



# Figure S3 Adjusted odds ratios for continuous variables regarding prediction of complete

**remission** (**CR**). (**A**) Age ranged between 18 and 84 years. Increasing age was significantly associated with decreased odds for achieving CR with intensive induction therapy. (**B**) Increased hemoglobin (until normal values) was associated with increased odds of achieving CR. For molecular genetics associated with CR such as *ASXL1* (**C**), *IKZF1* (**D**), *SF3B1* (**E**), *U2AF1* (**F**), *TP53* (**G**), higher variant allele fraction (VAF) was associated with decreased CR rates. For biallelic *CEBPA* mutations and *CEBPA*-bZIP, VAF was not available for analysis.

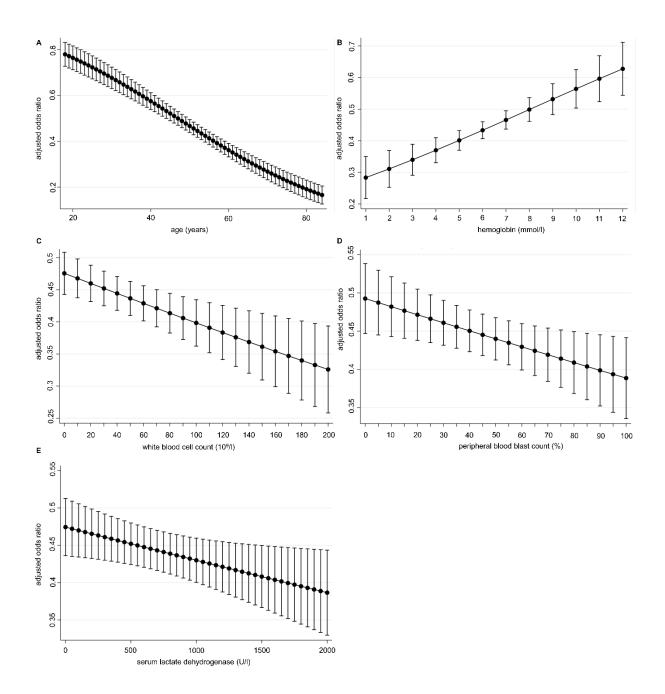



Figure S4 Adjusted odds ratios for continuous variables regarding prediction of overall survival  $\geq 2$  years. (A) Age ranged between 18 and 84 years. Increasing age was significantly associated with decreased odds for survival for 2 years or longer. (B) Increased hemoglobin (until normal values) was associated with increased odds of surviving 2 years or longer. An increase in white blood cell count (C), peripheral blood blast count (D) and serum lactate dehydrogenase (E) was associated with decreased odds of survival.

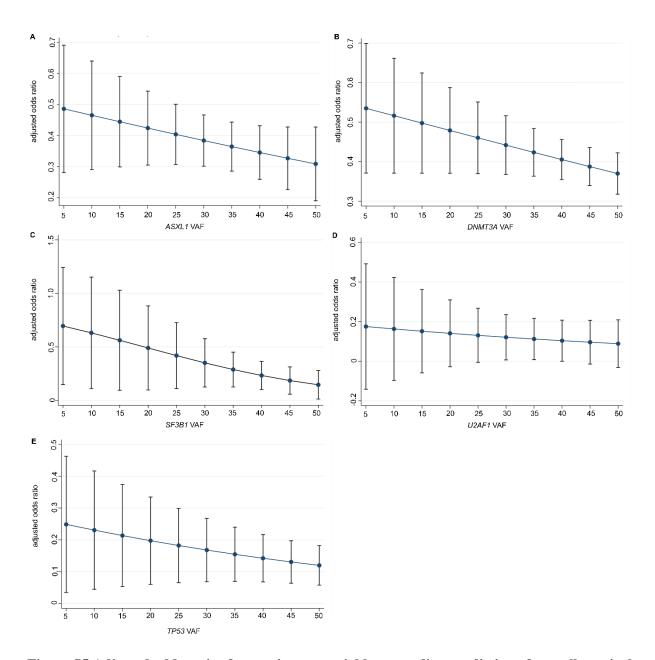
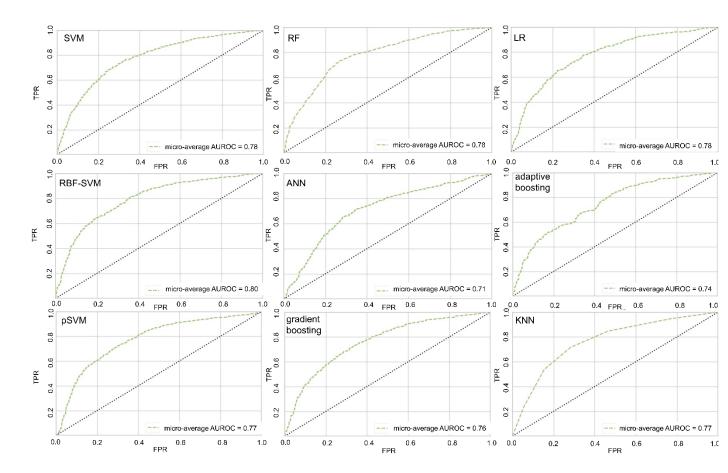
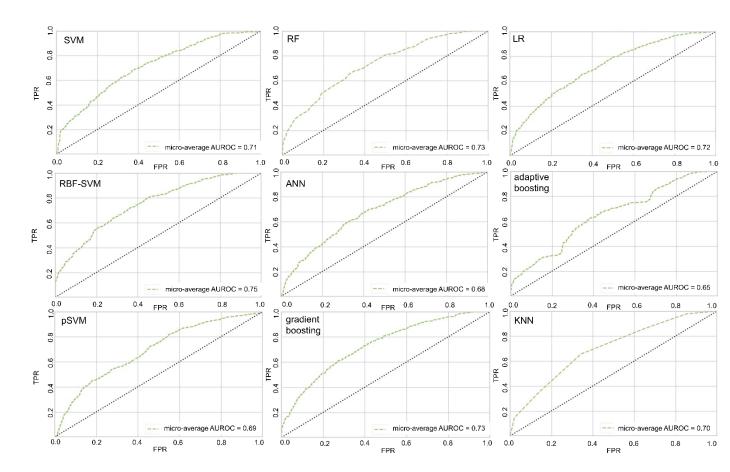





Figure S5 Adjusted odds ratios for continuous variables regarding prediction of overall survival  $\geq 2$  years. For molecular genetics associated with overall survival (OS)  $\geq 2$  years such as *ASXL1* (A), *DNMT3A* (B), *SF3B1* (C), *U2AF1* (D), *TP53* (E), higher variant allele fraction (VAF) was associated with decreased rates of 2-year OS. For biallelic *CEBPA* mutations and *CEBPA*-bZIP, VAF was not available for analysis.



**Figure S6 Performance of pre-trained machine learning models for prediction of CR/CRi on external data.** The previously trained machine learning models were tested on external multi-center data encompassing 664 AML patients from the bioregistry of the AML Cooperative Group. ANN – artificial neural net; CR: complete remission; CRi: complete remission with incomplete hematologic recovery; FPR – false positive rate; KNN – k nearest neighbor; LR – logistic regression; pSVM – polynomial support vector machine; RBF-SVM – radial basis kernel function support vector machine; RF – random forest; SVM – (linear) support vector machine; TPR – true positive rate.



**Figure S7 Performance of pre-trained machine learning models for prediction of 2-year overall survival on external data.** The previously trained machine learning models were tested on external multi-center data encompassing 664 AML patients from the bioregistry of the AML Cooperative Group. ANN – artificial neural net; CR: complete remission; CRi: complete remission with incomplete hematologic recovery; FPR – false positive rate; KNN – k nearest neighbor; LR – logistic regression; pSVM – polynomial support vector machine; RBF-SVM – radial basis kernel function support vector machine; RF – random forest; SVM – (linear) support vector machine; TPR – true positive rate.