Profound systemic alteration of the immune phenotype and an immunoglobulin switch in Erdheim-Chester disease in 78 patients from a single center

Fleur Cohen Aubart,^{1*} Lucie Poupel,^{2*} Flora Saint-Charles,² Frédéric Charlotte,³ Youssef Arsafi,² Eric Frisdal,² Damien Roos-Weil,³ Jean-François Emile,⁴ Zahir Amoura,¹ Maryse Guerin,² Philippe Lesnik,² Julien Haroche¹ and Wilfried Le Goff²

¹Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Service de Médecine Interne 2, Centre National de Référence Maladies Systémiques Rares et Histiocytoses, Hôpital Pitié-Salpêtrière, Paris; ²Sorbonne Université, INSERM, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Paris; ³Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Service d'anatomopathologie, Hôpital Pitié-Salpêtrière, Paris and ⁴EA4340, Université Versailles-Saint Quentin, Assistance Publique-Hôpitaux de Paris, Hôpital Ambroise Paré, Département de Pathologie, Boulogne, France.

*FCA and LP contributed equally as co-first authors.

Correspondence:

Julien Haroche Julien.haroche@psl.aphp.fr Wilfried Le Goff wilfried.le_goff@sorbonne-universite.fr

Received:	April 30, 2021.						
Accepted:	October 6, 2021.						
Prepublished:	October 14, 2021.						
https://doi.org/10.3	3324/haematol.2021.279118						
©2022 Ferrata Storti Foundation							
Haematologica ma	aterial is published under a						
CC BY-NC license							

SUPPLEMENTARY MATERIALS

Profound systemic alteration of the immune phenotype and an immunoglobulin switch in

Erdheim–Chester disease in a single-center of 78 patients

Fleur COHEN AUBART^{1*}, Lucie POUPEL^{2*}, Flora SAINT-CHARLES², Frédéric CHARLOTTE³, Youssef

ARSAFI², Eric FRISDAL², Damien ROOS-WEIL³, Jean-François EMILE⁴, Zahir AMOURA¹, Maryse GUERIN²,

Philippe LESNIK², Julien HAROCHE¹ and Wilfried LE GOFF²

1- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Service de Médecine Interne 2, Centre National de Référence Maladies Systémiques Rares et Histiocytoses, Hôpital Pitié-Salpêtrière, 75013-Paris, France.

2- Sorbonne Université, INSERM, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, F-75013 Paris, France.

3- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Service d'anatomopathologie, Hôpital Pitié-Salpêtrière, 75013-Paris, France.

4- EA4340, Université Versailles-Saint Quentin, Assistance Publique-Hôpitaux de Paris, Hôpital Ambroise Paré, Département de Pathologie, Boulogne-92100, France.

*The first two authors contributed equally to this work.

Correspondence:	
Julien Haroche, M.D., Ph.D.	Wilfried Le Goff, Ph.D.
Service de Médecine Interne 2	INSERM UMR_S1166
Groupe Hospitalier Pitié-Salpêtrière	Faculté de médecine Sorbonne Université
47-83, boulevard de l'Hôpital	91, boulevard de l'Hôpital
75013 Paris	75013 Paris
France	France
email: Julien.haroche@psl.aphp.fr	email: <u>wilfried.le_goff@sorbonne-universite.fr</u>

Financial support: INSERM, Sorbonne Université, French National Agency (ANR-10-IAHU-05), and the Erdheim-Chester Disease Global Alliance.

Conflict-of-interest disclosure: The authors declare no competing financial interests.

Running title: Alteration of the systemic immune cell phenotype in ECD.

Methods.

Analysis of blood immune cells by flow cytometry.

A 100- or 300-µl aliquot of fresh blood samples was used for immunostaining of monocytes, lymphocytes, or dendritic cells (DCs), respectively. Samples were blocked with 200 µl of 1/400 diluted Fc Blocking reagent (Miltenyi) and then incubated with corresponding antibodies for 30 min at 4°C, in the dark. If necessary, 50 µl of 1/200 diluted streptavidin PE Texas Red (BD Biosciences) was added and samples were incubated for a further 15 min at 4°C in the dark (final dilution 1/1400). Then, red blood cells were lysed and leukocytes were fixed with 700 μ l (for lymphocytes and monocytes) or 1300 μ l (for DCs) of Versafix solution (Beckman Coulter), according to the manufacturer's instructions. Distinctions among lymphocyte subsets were based on different expression patterns of surface markers, as previously described ¹¹: T helper cells (CD45⁺, CD3⁺, CD4⁺, CD8⁻, CD25⁻, CD127⁺), T regulatory cells (CD25+, CD127⁻), cytotoxic lymphocytes (CD45⁺, CD3⁺, CD4⁻, CD8⁺), and B lymphocytes (HLA-DR⁺, CD19⁺). Monocyte subsets were distinguished as classical (CD14⁺⁺/CD16⁻), intermediate (CD14⁺⁺/CD16⁺), and nonclassical (CD14⁺/CD16⁺⁺) monocytes. DC subsets were identified according to their plasmacytoid (CD11c⁻, CD123⁺, BDCA2⁺(CD303)), myeloid 1 (CD11c⁺, BDCA1⁺(CD1c⁺), BDCA3⁻ (CD141⁻)), or myeloid 2 lineages (CD11c⁺, BDCA1⁻(CD1c⁻), BDCA3⁺(CD141⁺)). Samples were run on an LSR II FORTESSA SORP (BD Biosciences) and the results were analyzed using FACSDIVA software (BDBiosciences). Absolute quantification of leukocytes was assessed using the TRUCOUNT method (BDBiosciences).

Quantification of circulating chemokines and cytokines. Plasma was isolated from fresh blood samples collected in EDTA tubes, following centrifugation for 20 min at 3000 rpm at 4°C; the plasma samples were then immediately stored at -80°C. Circulating concentrations of cytokines and chemokines were quantified from 25-µl non-diluted aliquots of the plasma samples using a Milliplex 29-plex human cytokine/chemokine magnetic bead panel (Millipore) and a Luminex[®] analyzer (MAGPIX), according to the manufacturer's instructions.

Measurement of circulating immunoglobulins. Circulating concentrations of immunoglobulins were quantified from plasma samples (50-µl 1/16,000 diluted samples) using a Milliplex human immunoglobulin (IgA, IgM, IgG1, IgG2, IgG3, and IgG4) isotyping magnetic bead panel (Millipore) and a Luminex[®] analyzer (MAGPIX), according to the manufacturer's instructions. Plasma samples from healthy individuals were included as controls.

			n	Age (years)		n	Age (years)
Controls			17	53±25 (21-90)	Males Females	13 4	52±27 (21-90) 56±19 (28-70)
		All	78	60±14 (18-84)	Males Females	60 18	61±13 (18-84) 58±17 (26-83)
ECD	BRAF ^{V600E}	wт	21	63±14 (30-79)	Males Females	15 3	65±12 (30-79) 51±18 (37-71)
	mutation	V600E	50	61±14 (18-84)	Males Females	37 13	60±14 (18-84) 62±15 (32-83)

Supplemental Table 1. Distribution of controls and ECD patients according to age and gender. Values are expressed as mean±S.D (range). WT and V600E, absence and presence of the *BRAF*^{v600E} mutation.

	-		Untreated ECD		Treated ECD (V600E)				
	Circulating		BRAF	mutation			All (n=27)		
Pathway	biomolecules (pg/mL)	All (n=34)	WT (n=9)	V600E (n=21)	PegIFNα (n=16)	Vemurafenib (n=11)			
	IL-1a	0.00 (0.00-30.04)	13.34 (0.00-30.34)	0.00 (0.00-35.88)	17.62 (1.34-53.51)	8.30 (0.00-53.53)	13.34 (0.00-53.53)		
	IL-1β	1.38 (0.66-3.42)	0.97 (0.55-2.94)	1.38 (0.38-3.52)	1.37 (0.61-2.68)	1.58 (0.97-3.33)	1.58 (0.77-2.85)		
	IL-6	0.00 (0.00-18.01)	0.00 (0.00-0.00)	0.00 (0.00-20.06)	0.00 (0.00-31.57)	8.71 (0.00-32.49)	8.27 (0.00-32.49)		
	IL-7	12.15 (3.38-20.58)	5.91 (0.00-17.91)	7.95 (0.00-21.14)	10.57 (0.00-18.03)	0.00 (0.00-21.70)	9.75 (0.00-18.82)		
	IL-12p40	2.28 (0.00-20.47)	0.00 (0.00-22.50)	10.00 (0.00-26.38)	9.98 (0.00-17.99)	13.66 (0.00-15.99)	11.24 (0.00-17.14)		
n1	IL-12p70	4.48 (1.10-7.72)	4.48 (2.32-5.13)	4.48 (0.55-8.36)	4.15 (2.49-7.64)	7.08 (3.16-9.65)	6.43 (2.49-8.69)		
	IL-15	5.07 (1.95-10.49)	6.41 (1.40-8.92)	4.88 (2.47-10.66)	9.02 (5.25-12.93) [†]	4.88 (0.00-13.38)	8.28 (3.70-13.38)		
	IFNα2	53.67 (39.99-99.12)	57.63 (34.08-97.77)	53.67 (38.88-101.5)	299.7 (122.6-466.8) ^{***}	49.61 (36.64-103.2)	118.9 (53.67-330.7) [†]		
	IFNγ	6.11 (3.59-11.48)	6.40 (4.57-10.63)	5.83 (3.59-11.77)	6.11 (3.94-10.77)	9.78 (5.27-17.44)	6.68 (4.15-12.90)		
	ΤΝFα	36.27 (21.28-65.88)	21.28 (17.56-47.90)	44.33 (24.90-77.92)	53.89 (38.94-68.99)	38.73 (27.70-49.27)	49.27 (33.79-65.13)		
	IL-1ra	38.83 (21.54-74.85)	40.35 (10.97-71.35)	32.89 (20.83-48.37)	40.35 (27.03-88.54)	97.57 (24.33-157.2)	43.34 (26.36-121.4)		
	IL-4	3.01 (0.00-17.07)	8.33 (0.00-20.96)	3.01 (0.00-24.09)	10.76 (3.70-21.15)	8.33 (0.00-26.59)	8.33 (0.00-22.26)		
Th2	IL-5	0.82 (0.04-1.75)	0.88 (0.15-1.88)	0.88 (0.09-1.62)	0.88 (0.34-1.60)	0.88 (0.06-1.83)	0.88 (0.31-1.73)		
	IL-10	8.80 (4.67-18.63)	7.28 (3.91-16.12)	9.31 (5.08-18.24)	18.07 (12.94-29.47) ^{††}	7.28 (4.92-17.54)	16.68 (7.28-24.17)		
h17	IL-17a	2.94 (1.12-5.95)	3.27 (1.55-5.55)	2.94 (1.02-7.75)	2.25 (0.64-4.58)	3.93 (1.92-9.29)	2.94 (1.21-6.50)		
	CCL2	678.9 (444.7-864.1)	438.8 (362.9-765.5)	692.8 (482.2-876.0)	924.3 (764.4-1189) [†]	467.5 (393.1-559.9) [†]	760.7 (467.5-1026)		
	CCL22	867.6 (603.7-1257)	683.7 (503.2-958.1)	975.3 (664.0-1397)	644.6 (565.6-815.1) [†]	1047 (694.3-1438)	748.3 (606.5-1047)		
	Eotaxin	111.2 (87.06-156.3)	130.8 (102.5-185.8)	101.5 (78.48-135.2)	114.3 (95.34-156.5)	103.6 (82.87-177.1)	111.0 (88.70-158.9)		
	Fractalkine	46.04 (15.85-62.62)	51.18 (20.71-71.14)	42.91 (15.85-59.54)	33.90 (26.67-50.68)	38.52 (17.96-45.73)	35.48 (24.68-48.49)		
	GRO	1623 (879.5-1896)	1601 (448.0-1813)	1646 (1066-1934)	1474 (720.4-1610)	1712 (1226-2107)	1536 (787.9-1753)		
HEIVIOKINES	IL-8	7.88 (4.52-12.80)	6.40 (2.64-12.35)	8.67 (5.39-13.07)	10.73 (6.99-14.96)	10.72 (6.67-24.35)	10.72 (6.71-15.67)		
	IP-10	877.0 (488.7-1244)	497.7 (449.1-721.7)	993.0 (522.9-1321)	1529 (1083-1860) [†]	1094 (689.6-1791))	1373 (787.5-1836)		
	MCP-3	11.89 (0.00-53.18)	3.36 (0.00-56.24)	13.08 (2.30-53.38)	21.85 (7.80-84.57)	18.79 (0.00-70.61)	18.79 (5.73-70.79)		
	MIP-1a	4.02 (0.01-5.73)	1.22 (0.00-4.75)	4.15 (0.75-6.06)	3.96 (2.48-5.34)	4.64 (2.36-7.23)	4.40 (2.36-5.47)		
	ΜΙΡ-1β	26.41 (19.08-31.87)	26.87 (16.06-28.10)	25.48 (19.07-32.62)	26.30 (21.64-31.36)	24.77 (22.04-32.03)	26.18 (22.04-31.83)		
	GCSF	31.31 (7.11-54.23)	31.31 (20.2-43.44)	31.31 (3.68-69.45)	70.30 (57.12-85.04) [†]	77.34 (55.08-136.6)	77.34 (56.71-117.9) [†]		
	GM-CSF	8.79 (3.64-15.87)	6.70 (4.40-18.55)	9.37 (4.78-14.72)	9.75 (6.70-16.44)	11.28 (4.41-12.81)	9.75 (6.70-12.81)		
IEIVIAI UPUIESIS	IL-2	0.81 (0.22-2.60)	0.81 (0.11-3.05)	0.81 (0.32-2.56)	1.00 (0.27-2.02)	1.19 -0.42-2.11)	1.19 (0.42-2.11)		
	IL-3	2.07 (1.23-3.40)	1.90 (1.43-4.08)	2.11 (1.16-3.45)	2.45 (1.26-2.98)	1.90 (1.23-3.70)	2.04 (1.23-3.00)		
	EGF	43.55 (15.66-67.88)	49.53 (18.04-87.72)	41.66 (15.02-54.28)	32.64 (19.74-72.13)	37.13 (28.86-55.61)	35.01 (23.57-55.61)		
GROWIN FACIORS	VEGF	43.24 (12.33-98.03)	44.52 (9.33-105.0)	64.49 (12.33-95.68)	47.05 (28.92-73.01)	71.80 (28.92-98.03)	57.08 (28.92-83.83)		

Supplemental Table 2. Circulating cytokines and chemokines concentrations according to the BRAF^{V600E} mutation. [†]p<0.05, ^{+†}p<0.005 and ^{++†}p<0.005 versus untreated BRAF mutated ECD patients. Expressed in median (Quartile 1- Quartile 3). Samples with nondetectable biomolecule concentrations were considered to be 0.0 pg/mL. WT and V600E, absence and presence of the BRAF^{V600E} mutation.

				Ν	Aonocytes			Dendritic cells		Neutrophils			Lymph	ocytes		
Pathway		Therapy	Total	CD14 ⁺⁺ CD16 ⁻	CD14 ⁺⁺ CD16 ⁺	CD14 ⁺ CD16 ⁺⁺	pDC	mDC1	mDC2		NK	NKT	Treg	В	СТ	Th
			0.10	0.05	0.10	0.02	0.00	0.05	0.02	0.10	0.12	0.01	0.00	0.02	0.00	0.05
	IL-18		-0.10	-0.05	-0.10	-0.03	-0.06	-0.05	-0.02	-0.10	-0.13	-0.01	-0.06	-0.02	-0.00	-0.05
	н.с.		-0.01	-0.01	-0.14	-0.15	0.00	0.00	-0.00	-0.05	-0.11	0.04	-0.05	-0.04	-0.02	-0.05
	IL-0		0.02	0.00	0.09	0.30	-0.15	-0.07	0.08	-0.16	-0.18	-0.04	-0.01	-0.18	-0.07	-0.11
	IL-7		0.04	0.01	-0.03	-0.05	-0.15	-0.09	0.02	-0.09	-0.19	0.03	-0.12	0.01	-0.09	-0.15
Th1	IL-12p40		0.14	0.12	-0.12	-0.05	0.13	0.06	-0.01	0.02	-0.04	0.03	0.08	0.05	0.13	0.02
	IL-12p70	n ^	-0.03	-0.06	0.05	-0.09	-0.12	-0.09	-0.07	-0.15	-0.20	0.03	-0.16	-0.02	-0.11	-0.14
	11-12	P	-0.01	-0.02	-0.06	0.05	-0.07	-0.10	-0.06	-0.11	-0.21	-0.05	-0.04	0.00	-0.08	-0.11
	IFNα2	Pî	-0.03	-0.05	0.06	0.31	-0.13	-0.07	-0.06	-0.07	-0.07	-0.11	-0.06	0.03	-0.03	-0.14
	IFNγ		-0.03	-0.04	-0.01	0.10	-0.02	0.09	0.02	-0.08	-0.12	0.04	-0.06	0.00	-0.04	-0.05
	TNFα		-0.03	0.00	-0.06	0.02	-0.04	0.3951***	0.20	0.11	0.01	0.02	-0.02	-0.14	-0.03	-0.18
	IL-1ra		0.06	0.11	-0.01	0.08	-0.06	-0.04	0.00	-0.09	-0.11	-0.07	-0.02	-0.09	-0.06	-0.09
	IL-4		0.06	0.03	0.07	-0.02	-0.10	-0.03	-0.03	-0.08	-0.03	0.04	0.04	0.15	-0.05	0.03
Th2	IL-5		0.11	0.11	-0.06	0.28*	-0.03	-0.07	-0.01	0.14	-0.07	-0.02	0.00	0.04	-0.04	-0.05
	IL-10	P↑	0.05	0.10	0.04	0.06	-0.12	-0.05	0.04	-0.10	-0.14	-0.11	-0.06	-0.06	-0.10	-0.14
Th17	IL-17a	• •	0.05	0.03	0.14	-0.12	-0.08	-0.03	0.02	0.01	-0.12	0.10	-0.03	-0.05	-0.01	-0.12
	CCL2	P↑. V↓	0.01	0.04	0.03	0.15	-0.13	-0.13	-0.02	0.02	-0.04	-0.08	0.00	0.01	-0.13	-0.16
	CCL22	P↑	0.18	0.10	-0.11	-0.07	0.13	0.12	-0.07	0.06	-0.06	0.05	0.05	0.04	0.12	0.01
	Eotaxin		0.14	0.11	0.06	0.12	-0.04	-0.07	-0.11	-0.03	0.00	0.07	-0.09	-0.02	-0.08	0.00
	Fractalkine		0.14	0.21	0.25	0.16	0.19	0.04	-0.11	0.30*	0.01	-0.13	0.07	-0.02	-0.09	0.11
	GRO		0.16	0.16	0.06	0.00	0.01	0.04	0.02	-0.13	0.03	0.02	0.00	0.16	0.04	0.10
CHEMOKINES	IL-8		0.08	0.08	0.14	0.23*	-0.19	0.00	0.01	-0.11	-0.09	-0.11	-0.01	-0.13	-0.11	-0.12
	IP-10	P↑	-0.03	0.02	0.03	0.31*	-0.14	-0.05	0.28*	-0.06	-0.16	-0.15	0.00	-0.14	-0.17	-0.17
	MCP-3		0.00	0.00	-0.12	0.08	0.06	0.07	0.03	-0.06	0.29*	-0.05	0.08	0.07	0.09	0.02
	MIP-1a		0.01	0.00	-0.10	-0.05	-0.10	0.00	-0.04	0.10	-0.18	-0.11	-0.14	-0.09	-0.10	-0.15
	ΜΙΡ-1β		0.06	0.05	0.09	0.06	0.10	0.06	0.00	0.12	-0.23	0.02	0 17	0.06	-0.24	0 17
	GCSE	p↑	0.00	-0.05	-0.05 0.14	-0.03	-0.10	-0.00	0.00	-0.13	-0.17	-0.02	0.17	-0.00	-0.07	-0.17
	GM-CSF		-0.01	-0.01	-0.08	-0.03	-0.17	-0.05	-0.06	-0.14	-0.17	0.10	-0.02	0.15	-0.07	-0.15
HEMATOPOIESIS	IL-2		0.00	-0.01	-0.10	-0.10	-0.02	-0.04	-0.06	-0.06	-0.13	0.03	-0.07	-0.03	-0.05	-0.11
	IL-3		0.02	0.01	-0.06	-0.05	-0.09	-0.07	-0.03	-0.10	-0.16	0.09	-0.07	-0.03	-0.07	-0.11
	EGF		0.05	-0.03	0.09	0.03	-0.05	0.00	0.02	-0.11	-0.09	0.05	-0.09	0.18	-0.07	0.05
GROWTH FACTORS	VEGF		0.03	0.02	-0.10	-0.12	-0.05	-0.01	0.03	-0.03	-0.11	0.04	-0.03	-0.05	0.02	-0.09

Supplemental Table 3. Correlation of circulating cytokines and chemokines concentrations with blood leucocytes. Pearson correlation (r) was calculated in the whole ECD cohort (n=75). P. pegylated IFNα. V. vemurafenib. Arrow indicated the effect of the therapy on circulating concentrations of the corresponding biomolecule in *BRAF*-mutated ECD patients; 1. increase; J. decrease. *p<0.05. **p<0.005 and ***p<0.005.

		Untreated ECD							
Circulating	Reference		BRAF ^{V600E} mutation						
immunoglobulins (mg/dL)	Values ¹²⁻¹³	All (n=34)	WT (n=9)	V600E (n=22)					
lgG1	500.0 (280.0-800.0)	589.4 (410.2-755.9)	529.1 (351.5-744.3)	620.9 (471.1-942.7)					
lgG2	300.0 (115.0-570.0)	642.6 (437.9-1063.0)	660.2 (433.3-100.2)	695.4 (491.5-1068.0)					
lgG3	64.0 (24.0-125.0)	53.0 (44.1-77.4)	46.6 (41.0-71.9)	56.3 (35.5-78.1)					
lgG4	34.9 (52.0-125.0)	266.5 (60.7-747.4)	278.8 (21.1-727.0)	334.0 (71.6-907.7)					
IgGs	898.9 (471.0-1620.0)	1880.0 (1126.0-2365.0)	1622.0 (1044.0-2425.0)	1905.0 (1440.0-2987.0)					
IgA	239 (87-576)	444.3 (286.3-595.1)	318.0 (272.9-635.7)	481.6 (294.4-595.1)					
lgM	134 (46-386)	152.2 (68.6-219.9)	121.3 (52.9-283.1)	158.5 (70.1-230.3)					
lgG1/lgG (%)	55.6 (31.1-89.0)	30.3 (22.8-46.9)	23.3 (18.9-49.5)	30.9 (25.3-43.8)					
lgG2/lgG (%)	33.4 (12.8-63.4)	37.9 (27.5-48.4)	45.4 (29.8-54.5)	37.0 (27.5-44.9)					
lgG3/lgG (%)	7.1 (2.67-13.9)	4.45 (2.93-6.92)	4.81 (3.15-7.43)	4.29 (2.81-6.86)					
lgG4/lgG (%)	3.88 (0.58-13.9)	15.5 (6.22-33.2)	10.9 (2.41-35.1)	16.5 (6.51-37.4)					

Supplemental Table 4. Circulating immunoglobulin concentrations in untreated ECD patients according to the BRAF^{V600E} mutation. Expressed in median (Quartile 1- Quartile 3) Reference values for IgGs¹³, IgA¹², and IgM¹² are expressed in median (2.5-97.5 Percentiles). WT and V600E, absence and presence of the BRAF^{V600E} mutation.

Supplemental Figure1

Supplemental Figure 1. **Blood leucocyte cell profiling.** Analysis of blood leucocyte populations from control individuals (Ctrl) and Erdheim-Chester (ECD) patients carrying or not the *BRAF*^{V600E} mutation. A representative panel was shown for each leucocyte subset in Ctrl and ECD.

Supplemental Figure 2. Correction of the IgG1/IgG4 switch by first-line therapies in patients with ECD. Impact of first-line therapies on the percentage of IgG1 (B), IgG2 (C), IgG3 (D) and IgG4 (E). Untreated (n=34) and treated (n=35; pegIFN α =24 and vemurafenib=11) patients with ECD. Difference between groups was tested using a Kruskal-Wallis test. **P*<0.05 and ***P*<0.005 versus untreated patients with ECD.

Supplemental Figure 2