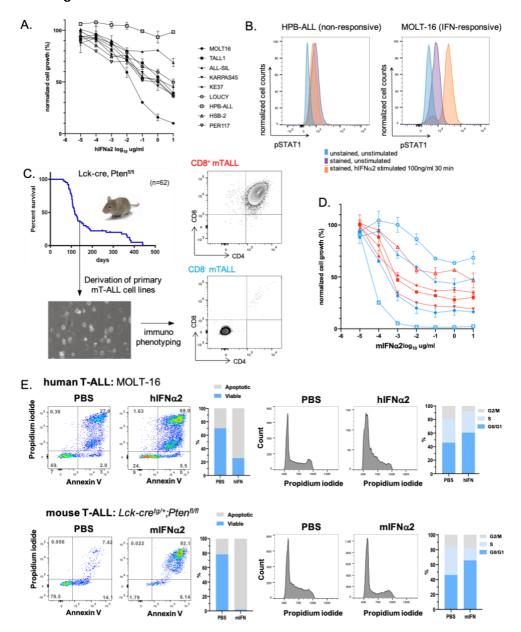
Direct and indirect anti-leukemic properties of activity-on-target interferons for the treatment of T-cell acute lymphoblastic leukemia

Steven Goossens,^{1,2,3,*} Anje Cauwels,^{1,3,4,5,*} Tim Pieters,^{1,3} Renate De Smedt,^{1,3} Sara T'Sas,^{1,3} André Almeida,^{1,3} Willem Daneels,^{1,6} Pieter Van Vlierberghe^{1,3,#} and Jan Tavernier^{1,3,4,5,#}

¹Cancer Research Institute Ghent (CRIG), Ghent University; ²Department of Diagnostic Sciences, Ghent University; ³Department of Biomolecular Medicine, Ghent University; ⁴VIB-UGent Center for Medical Biotechnology; ⁵Orionis Biosciences BV and ⁶Department of Hematology, Ghent University Hospital, Ghent, Belgium

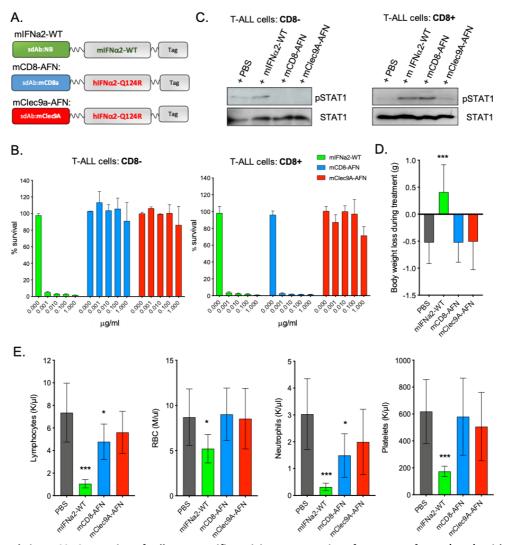
*SG and AC contributed equally as co-first authors.

*PVV and JT contributed equally as co-last authors.


Correspondence:

PIETER VAN VLIERBERGHE - pieter.vanvlierberghe@ugent.be https://doi.org/10.3324/haematol.2021.278913

Direct and indirect anti-leukemic properties of Activity-on-Target interferons for the treatment of T-ALL


Steven Goossens^{1,2,3,*}, Anje Cauwels^{1,3,4,5*}, Tim Pieters^{1,3}, Renate De Smedt^{1,3}, Sara T'Sas^{1,3}, André Almeida^{1,3}, Willem Daneels^{1,6}, Pieter Van Vlierberghe^{1,3,6} and Jan Tavernier^{1,3,4,5,§}

Supplemental Figure S1:

Supplemental Figure S1: Direct anti-leukemic effects of interferon alpha-2 on the progression of T-ALL *in vitro*. (A) Effect of increasing concentration of hIFN α 2 administration on the *in vitro* growth of 9 human T-ALL cell lines using the CellTiter-Glo Luminescent Cell Viability Assay. Results were normalized against the non-treated control. (B) Flow cytometric analysis of phospho-STAT1 (pSTAT1) levels after *in vitro* stimulation with 100 ng/ml hIFN α 2 of a responsive (MOLT-16) and non-responsive (HPB-ALL) T-ALL cell line. (C) Derivation of 8 primary murine T-ALL cell lines and immunophenotypic characterization via flow cytometric analysis, including four CD8+ (red) and four CD8- (blue) cell lines. FACS immune profiling of a representative Thy1+ (pre-gated) CD4+CD8+ and a Thy1+ (pre-gated) CD4-CD8- murine T-ALL primary cell lines are shown (D) Effect of increasing concentrations of recombinant mIFN α 2 administration on the *in vitro* growth of 8 mouse T-ALL cell lines, including four CD8+ (red) and four CD8- (blue) cell lines, using the CellTiter-Glo Luminescent Cell Viability Assay. Results were normalized against the non-treated control. Experiments were performed twice, in duplicate. (E) Increase in percentage of Propidium Iodide+/AnnexinV+ apoptotic cells and mild increase in live GO/G1 cells are seen in MOLT-16 cultures treated for 72 hours with 1µg/ml hIFN α 2 and in primary cultures of *Lck-cre^{tg/+};Pten^{fl/fl}* mouse T-ALL treated for 48 hours with 100 ng/ml mIFN α 2.

Supplemental Figure S2:

Supplemental Figure S2: Generation of cell-type specific Activity-on-Target interferons, AcTaferons (AFN), with improved therapeutic index compared to wild type IFN α 2. (A) Overview of immunocytokines that are generated and used in this study; the wild type mIFN α 2 was fused to a non-binding (NB) single-domain antibody (sdAb) targeting Bcl10, an epitope that is absent in the mouse (mIFN α 2-WT); the mutant hIFN α 2^{Q124R} was fused to sdAb targeting the murine CD8a (mCD8-AFN) or the murine Clec9A (mClec9A-AFN). (B) Direct *in vitro* anti-leukemic properties of mCD8-AFN and mClec9A-AFN versus mIFN α 2-WT. Inhibitory effect of AFNs on growth of CD8⁻ and CD8⁺ mouse T-ALL cell lines, normalized against the non-treated control. Experiment was performed twice, in duplicate. (C) Immunoblot analysis of phospho-STAT1 (pSTAT1) and total STAT1 levels in murine CD8⁻ and CD8⁺ T-ALL cell lines before and after 30 min stimulation with 100 ng/ml mIFN α 2-WT, mCD8-AFN or mClec9A-AFN. (D) body weight loss and (E) automated blood analysis (Hemavet) after 7-day treatment regime with either mIFN α 2-WT, mCD8-AFN, or mClec9A-AFN in non-leukemic C57BL/6 mice.

Supplemental Figure S3:

Supplemental Figure S3: mCD8-AFN is more efficient as compared to wild type mIFN α 2 for the direct treatment of murine T-ALL. Direct anti-leukemic effect of mCD8-AFN in comparison to mIFN α 2-WT treatment (7 consecutive days: 30µg/mouse) versus vehicle control on progression of CD8⁻ and CD8⁺ murine T-ALL cell lines transplanted in immunodeficient NSG mice. Leukemic burden was quantified via *in vivo* bioluminescence imaging during 7-day treatment regime (right) and Kaplan-Meier survival curve (left). Statistical analysis is included for mCD8-AFN treated versus control group (blue), mIFN α 2 versus control (green) and mCD8-AFN versus mIFN α 2 treated groups (black)