Pevonedistat and azacitidine upregulate NOXA (PMAIP1) to increase sensitivity to venetoclax in preclinical models of acute myeloid leukemia

Dan Cojocari,^{1*} Brianna N Smith,^{2-4*}Julie J. Purkal,¹ Maria P. Arrate,³ Jason D. Huska,¹ Yu Xiao,¹ Agnieszka Gorska,³ Leah J. Hogdal,⁵ Haley E. Ramsey,^{3,4} Erwin R. Boghaert,¹ Darren C. Phillips^{1#} and Michael R. Savona^{3,4,6,7#}

¹Oncology Discovery, AbbVie Inc., North Chicago, IL; ²Department of Pediatrics, ³Medicine, and ⁴Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN; ⁵Precision Medicine, AbbVie Inc., North Chicago, IL; ⁶Vanderbilt-Ingram Cancer Center, Nashville, TN and ⁷Center for Immunobiology, Vanderbilt University School of Medicine, Nashville, TN, USA

*DC and BNS contributed equally as co-first authors. *DCP and MRS contributed equally as senior authors.

©2022 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2020.272609

Received: September 17, 2020. Accepted: April 7, 2021. Pre-published: April 15, 2021. Correspondence: *MICHAEL R. SAVONA* - michael.savona@vanderbilt.edu

Supplementary Tables

Supplementary Table 1: Sequences of CRISPR crRNAs and oligonucleotides for PCR and sequencing.

crRNA/DNA	Sequence
BAK1 crRNA	GCTCACCTGCTAGGTTGCAG
BAK1 gDNA-PCR (F)	ATGGTTGTGACATGACAGAG
BAK1-gDNA-PCR (R)	ATTTCTTTCCATGGGTGAGG
BAK1 Sequencing (F)	AGCAACCATGAGAGAAGGGC
BAK1 Sequencing (R)	CTCCCTGACTCCCAGCTTTG
BAX crRNA	TCGGAAAAAGACCTCTCGGG
BAX gDNA-PCR (F)	GCTCCTTCAGGACACAGGAC
BAX-gDNA-PCR (R)	TGAGAGCAGGGATGTAGCCT
BAX Sequencing (F)	CTTGTCCCCTTCCCTTGTCC
BAX Sequencing (R)	TGATACCACGATCCCCAGGT
ATF4 crRNA 1	AGGTCTCTTAGATGATTACC
ATF4 crRNA 2	AGATGACCTTCTGACCACGT

Supplementary Table 2: Primary antibodies used in western blotting and flow cytometry

Antibody	Vendor	Catalog Number	RRID
anti-BCL2	Abcam	ab32124	AB_725644
anti-BCL-X _L	Abcam	ab32370	AB_725655
anti-MCL1	Cell Signaling Technology	#94296	AB_2722740
anti-PUMA	Abcam	ab9645	AB_296538
anti-NOXA	Abcam	ab13654	AB_300536
anti-PARP	BD Biosciences	556494	AB_396433
anti-ATF4	Cell Signaling Technology	#11815	AB_2616025
anti-CHOP	Cell Signaling Technology	#2895	AB_2089254
anti-β-actin	Sigma-Aldrich	A2228	AB_476697
anti-BAX (D2E11)	Cell Signaling Technology	#5023	AB_10557411
anti-BAK	Abcam	ab32371	AB_725624
anti-DNMT1	Cell Signaling Technology	#5032	AB_10548197
anti-BIM	Abcam	ab230531	
human CD45-APC	Biolegend	Clone 2D1	AB_2566371
murine CD45-PE	Biolegend	Clone 30-F11	
human CD33-PE-Cy7	Biolegend	Clone P67.6	

-	PATIENT	MUTATIONS AT BIOPSY	KARYOTYPE	TREATMENTS FAILED
	AML001	DNMT3A, FLT3-ITD, IDH1, NPM1	46 XY	Conventional chemotherapy
	AML002	DNMT3A, FLT3-ITD, IDH2, SRSF2	46 XX, del(12)(p12)[15]	Conventional chemotherapy
	AML003	FLT3-ITD, IDH1	46 XY	VEN/AZA
	AML004	DNMT3A, FLT3-ITD, IDH2, NPM1	46 XX	Conventional chemotherapy + midostaurin
	AML005	TP53, TET2	Complex karyotype	VEN/AZA
	AML006	TP53, FLT3, ASXL1, TET2	47,XY,+8[6]/46,idem,add(8)(p11.2),- 21[cp14]	Decitabine X 1 week
	AML007	TP53, FLT3, TET2	45,XX,- 16,add(17)(p11.2)[18]/46,XX[2]	Conventional chemotherapy
	AML008	TP53, DNMT3A	Complex karyotype	Conventional chemotherapy
	AML 009	FLT3-ITD, WT1	Complex karyotype	Conventional chemotherapy, decitabine + sorafenib

Supplementary Table 3: AML patient samples mutational background, karyotype, and treatment.

Supplementary Materials and Methods

Reagents

PEV, VEN and AZA were prepared in DMSO by AbbVie; or PEV (Takeda), AZA (Sigma-Aldrich), VEN (Selleckchem). *In vivo* formulations: PEV: 20% (2-hydroxypropyl)-β-cyclodextrin; VEN: 60% phosal 50 propylene glycol, 30% polyethylene glycol-400 and 10% ethanol; AZA: 0.9% sodium chloride.

In vivo Murine Modeling for Patient-derived Xenografts

Animal experiments were conducted in accordance with guidelines approved by the IACUC at Vanderbilt University Medical Center. Female NSGS [NOD-scid IL2Rgnull3Tg(hSCF/hGM-CSF/hIL3)] mice, purchased from Jackson laboratories at 7-9 weeks old, were 18-20 grams on arrival. Food and water were provided ad libitum. They were irradiated with 1Gy cesium irradiation 1 week after arrival to facility. Twenty-four hours later, mice were intravenously xenografted with 2×10^6 AML mononuclear cells. Mice were randomized post-cell injection into cages of 5 or 6. Mice without peripheral chimerism of human AML were removed from the study. Chimeric mice were treated with either vehicle, PEV (Takeda) by three times weekly i.p. injection for 4 weeks, AZA (Sigma-Aldrich) daily by i.p. injection for 7 days, VEN (Selleckchem) by gavage for 5d/week for 4 weeks, combination dosing of VEN/AZA, or triple therapy with the same dosing schedules as above. PEV was formulated in 20% (2-hydroxypropyl)- β -cyclodextrin [HPbCD], VEN was formulated in 60 % phosal 50 propylene glycol (PG), 30 % polyethylene glycol (PEG) 400 and 10 % ethanol, and 5-azacytidine was formulated with 0.9 % sodium chloride. Peripheral blood was assessed weekly for human chimerism. Chimerism was assessed in the bone marrow and spleen on the final day of the experiment at time of tissue harvest.

Cell line-derived Xenografts

Female Fox Chase SCID Beige (MV4-11 experiment) and Female NOD SCID gamma (NSG) (OCI-AML2-Red-Fluc experiment) mice were purchased from Charles River Laboratories (Wilmington, MA). Body weights upon arrival were 18-20 g. Food and water were provided ad libitum. Animals were on the light phase of a 12 h light: 12 h dark cycle. All animal studies were conducted in accordance with the guidelines established by the AbbVie Institutional Animal Care and Use Committee.

In the flank xenograft model, female Fox Chase SCID Beige (Charles River Laboratories; Wilmington, MA) mice were inoculated with 5×10^6 MV4-11 cells subcutaneously into the right flank. Mice were injected with a 0.1 mL inoculum of 1:1 cell mixture in culture media and Matrigel (BD Biosciences, Bedford, MA). When tumors reached approximately 225 mm³, the mice were size-matched into treatment and control groups. Mice were treated QD×14 PO 50 mg/kg with venetoclax, QD×14 IP 60mg/kg with pevonedistat or combination of both. Tumor volume was measured twice per week with electronic calipers and calculated according to the formula, (L \times W²)/2. All treatment groups consisted of 8 mice per group.

In the systemic engraftment model, the OCI-AML2-Red-Fluc stable F.luciferase-expressing cell line was generated by infecting the parental OCI-AML2 with the RediFect Red-FLuc-Puromycin lentiviral particles (PerkinElmer, Waltham, MA). Female NOD SCID gamma mice (Charles River Laboratories; Wilmington, MA) were inoculated with 1×10⁶ OCI-AML2-Red-Fluc cells intravenously into the tail vein with 0.2 ml inoculum of culture media. Bioluminescence (BLI) signals were obtained 10 min after IP injection of luciferin (150 mg/kg) using an IVIS imaging system (PerkinElmer, Waltham, MA). Signal intensity was determined by drawing regions of interest around the whole mouse. Data was quantified using Living Image® software (PerkinElmer, Waltham, MA) and mice were size-matched at 3×10^6 signal into treatment and control groups. Mice were treated QD×14 IP 60mg/kg with PEV, QD×14 PO 50 mg/kg with VEN, Q7D×3 IV 8 mg/kg with AZA or various combinations. BLI signal was monitored 1-2 times weekly and mice were euthanized when a BLI signal of 1×10^{10} was observed. Whole body ROI to quantify tumor burden with a signal of photons×sec⁻¹. All treatment groups consisted of 6-8 mice. In all studies all groups received appropriate vehicles. PEV was formulated in 20% (2hydroxypropyl)-β-cyclodextrin [HPbCD], VEN was formulated in 60 % phosal 50 propylene glycol (PG), 30 % polyethylene glycol (PEG) 400 and 10 % ethanol, and 5-azacytidine was formulated with 0.9 % sodium chloride.

Colony-forming Unit (CFU) Assays

Cyropreserved CD34+ bone marrow cells (Lonza Bioscience) or primary patient normal bone marrow mononuclear cells were treated with DMSO, VEN((0.01uM)/AZA(0.3uM), or VEN((0.01uM)/AZA(0.3uM)/PEV(0.3uM)). Cells were plated in Methocult H4034 Optimum (Stem Cell Technologies, Vancouver, Canada) at a density of 500 cells per mL for purchased CD34⁺ cells or 1×10⁴ cells per mL for normal bone marrow mononuclear cells. After 12-14 days, burst forming

unit-erythroid (BFU-E), colony forming unit-granulocyte, macrophage (CFU-GM) and colony forming unit-granulocyte, erythrocyte, macrophage, megakaryocyte (CFU-GEMM) colonies were counted and analyzed.