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Supplementary Methods 

Copy number (CN) analysis 

The study of the CN alterations (CNA) and CNN-LOH was performed using OncoScan 

FFPE Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA). Evaluation and visual 

inspection of the CN data was performed using Nexus Biodiscovery 9.0 (Nexus 

Biodiscovery, El Segundo, USA) using standard settings of two different algorithms, 

TusCan and FASST2. Human reference genome was GRCh37/hg19. Only CNA larger than 

100kb and CNN-LOH larger that 5Mb were considered. Alterations targeting genes involved 

in lymphomagenesis were considered without meeting the aforementioned criteria. DNA 

gains and losses arising from B-cell antigen receptor gene rearrangements at 2p11.2 (IGK), 

14q32.33 (IGH), and 22q11.22 (IGL) were excluded from the analysis.1,2 

According to the literature, cases were considered to carry chromothripsis-like patterns 

when at least 7 switches between two or more CN states were observed on an individual 

chromosome.1 

The proportion of tumor cells (or cancer cell fraction, CCF) carrying each CNA was 

estimated from the OncoScan data using the following formula in which BAF is the mean B-

allel frequency of the CN locus, minor is the minor number of copies of the least frequent 

allele ,and major the major number of copies of the most frequent allele.3 The information of 

the major and minor were obtained from ASCAT (R package v2.5.2). 

       

Losses 

 

   Gains and amplifications 
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Copy number neutral loss of heterozygosity 

 

The predicted CCFs were finally corrected by the tumor purity of the respective samples 

obtained by ASCAT (R package v2.5.2). CCF were only obtained for those samples with 

predicted diploid genotype. CNA were considered as clonal if their CCF was ≥85%, while 

subclonal otherwise.4 

For comparison, CN data of 35 Burkitt lymphoma, BL (SNP 250k sty Gene chip, 

ThermoFisher Scientific inc.)5, 41 Plasma cell myeloma, PCM (Genome-Wide Human SNP 

array 6.0 and 750k Cytoscan, ThermoFisher inc),6,7 49 Activated B-cell like diffuse large B-

cell lymphoma, ABC-DLBCL (Cytoscan HD, ThermoFisher Scientific inc)8 were reanalyzed 

using the same software and criteria described above. 

Library preparation and targeted sequencing approach 

A total of 27 FFPE DNA samples from plasmablastic lymphoma (PBL) were processed 

using SureSelectXT (Agilent Technologies, Santa Clara, CA) and using a panel design 

described in Supplementary Table 2. A total of 100ng of genomic DNA was sheared using 

the Covaris S220 focused-ultra sonicator (Covaris, Woburn, MA) to a target peak size of 

150–200 bp. Library preparation were performed using SureSelectXT Custom Capture 

Library baits as described in SureSelectXT Target Enrichment System protocol (Agilent 

Technologies inc). For amplification of the post capture libraries, 10 to 13 cycles were 

performed depending on the initial sample quality. The libraries were qualified using 

the Bioanalyzer HS (Agilent Technologies inc.), quantified with the KAPA Library 

Quantification Kit (Kapa Biosystems, Wilmington, Massachusetts) and sequenced in a 

MiSeq instrument (Illumina, San Diego, CA) in a paired-end run of 150 bp. The average 

sequencing coverage of the 27 cases across regions was 374x (range 66-1688x) and over 

94% of the targeted regions were covered by at least 50 reads. 
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FASTQ files were generated by MiSeq control software and quality control of the raw data 

was performed using the FastQC tool. Sequencing reads were subsequently aligned to the 

human reference genome (GRCh37/hg19) using the Burrows-Wheeler Aligner–MEM 

algorithm.9 Variant calling was performed using two different variant callers, Somatic 

Variant Caller (Illumina inc.) and Mutect2 (Genome Analysis Toolkit-GATK version 4.0.3)10 

and annotated using the VariantStudio software v3.0 and ANNOVAR, respectively.11 Low 

quality or low coverage calls (total depth <20) were excluded. For Mutect2 variants, low 

quality variants were also excluded using FilterMutectCalls (GATK) with default thresholds. 

Only variants identified by both algorithms were considered. We excluded non-interrogated 

variants (non-exonic) and known polymorphisms described in the Single Nucleotide 

Polymorphism Database (dbSNP138) or ExAC database (release 2015) with more than 

0.1% frequency and synonymous variants. Finally, each variant was also visually inspected 

with the Integrative Genomics Viewer (IGV, Broad Institute, version 2.3) software to exclude 

artifacts. We ended up with 194 exonic mutations and 165 MYC intronic variants 

(Supplementary Fig. 1). MYC intronic mutations were identified but excluded for further 

analysis. The CCF carrying each specific mutation (CCFmut) was calculated using the 

following formula: CCFmut=(((q–2)*CCFCNA+2)*VAFmut)/p, where q is the copy locus number 

for the sample, CCFCNA the CCF of the copy number alteration (0 to 1), VAFmut the VAF of 

the mutation, and p the tumor purity of the sample (0 to 1). 

 

Driver prediction by mutation effect 

Since no germline DNA was available and in order to select somatic variants, potential 

driver mutations were predicted according to previously published criteria in which the 90% 

of the mutations classified as functional were demonstrated to be somatic.8 Inclusion criteria 

were: 1) any variant described previously as somatic or functional on previous reports or 

COSMIC, 2) all truncating variants (nonsense, frameshift, splice donor or acceptor 

mutations; and 3) the remaining missense variants that were predicted to be functionally 

deleterious using Mutation Assessor12 or SIFT predictor if a definitive score was not 
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provided by Mutation Assessor.13 Other predictors such as Polyphen-2 (Polymorphism 

Phenotyping-2)14 and CADD (Combined Annotation Dependent Depletion)15 were also 

used. 

 

Nanostring PanCancer Pathways Panel  

RCC files from the NanoString Digital Analyzer were imported into nSolver4.0 software 

(NanoString, Seattle, WA, USA) and checked for data quality using default QC settings. In 

the 12 samples (8 EBV-positive and 4 EBV-negative PBL or 5 STAT3-mutated and 7 

STAT3-wt PBL) that passed QC, differential expression (DE) and pathway scoring analyses 

were performed using the nCounter Advanced Analysis (version 2.0.115)(NanoString 

Technologies inc.). Pathway scores were fit using the first principal component of each 

gene set's data. They are oriented such that increasing score corresponds to mostly 

increasing expression. For STAT3 mutated and non-mutated comparison EBV status was 

defined as a confounder variable. Data normalization was done using the geNorm 

algorithm, automatically performed by the software. Low count probes were removed using 

default threshold settings of the program pipeline. P-values associated with the fold change 

were derived using the Benjamin-Yekutieli FDR method. Genes with a fold change in 

absolute value greater than 1and FDR lower than 0.2 were considered to be differentially 

expressed. Gene ontology pathway enrichment (KEGG and BIOCARTA) analyses for the 

differentially expressed genes were performed using the DAVID web-tool. 
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 SUPPLEMENTARY FIGURES 

Supplementary Figure S1. Next generation sequencing (NGS) analysis pipeline to identify 

potential driver mutations in 27 PBL. 

 

 

 

 

 



8 
 

Supplementary Figure S2. Recurrent amplifications in PBL. (A) Cumulative plot of 

amplified regions in PBL where y axis is the number of cases with the amplification. (B) 

Minimal regions of amplification with potencial target genes. 
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Supplementary Figure S3. Mutational landscape of 27 PBL. The heatmap shows the 

case specific pattern of driver mutations found by NGS. Each column represents a case 

and each row represents a gene. The right bar graph illustrates the mutation frequency of 

each gene. Only driver mutations are represented. MYC translocation status has been 

added at the top of the oncoprint. 
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Supplementary Figure S4. STAT3 activation and expression depending on 

mutational status. A) pSTAT3 stain in case #2 with positive neoplastic cells. B) 

pSTAT3 stain in case #1 with positive internal control in endothelial cells and 

negativity in tumor cells. C) Boxplot representing STAT3 gene expression (number of 

counts of STAT3 on Nanostring PanCancer Pathways assay) between EBV-positive 

PBL (n=8) and EBV-negative PBL (n=4) and STAT3-mutated (n=5) and STAT3-wt 

(n=7) PBL cases. No differences were observed between STAT3 mutational status 

groups (2457 vs 1897 counts; Wilcoxon-test, P=0.27) whereas higher STAT3 

expression was observed in EBV-positive cases compared to EBV-negative cases 

(2433 vs 1525 counts; Wilcoxon test, p=0.07). 
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Supplementary Figure S5. Unsupervised analysis of PBL. A) Dendrogram shows 

the unsupervised hierarchical clustering of PBL samples based on the expression of 

503 RNAs. B) Principal component analysis in terms of EBV status and C) STAT3 

mutational status. 
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Supplementary Figure S6. Pathway enrichment analysis. A) Heatmap of the 

unsupervised hierarchical clustering based on the pathways scores calculated from 

nCounter Advanced Analysis (version 2.0.115). B) Pathway score comparison 

between EBV-positive and EBV-negative PBL and between STAT3 mutated and 

STAT3 non-mutated PBL. No significant differences were found in relation to the 

STAT3 mutational status (Wilcoxon test; P=0.15), although a tendency to higher 

expression was observed in EBV-positive cases (Wilcoxon test; P=0.1). 
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Supplementary Figure S7. Clonality analysis of recurrent PBL alterations. 

Boxplots represent the CCF of a given alteration in a case. There were included 

recurrent CNA (gain/loss, >25% of the cases) and mutated genes (>10% of the 

cases) with a minimum of 3 cases. The highest CCF is represented if a case have 

more than two mutations affecting the same gene. 
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Supplementary Figure S8. Clonality of recurrent driver mutations in PBL. A diagram of 

the relative positions of driver mutations is shown for STAT3, TP53, NRAS and MYC 

genes. X-axes indicate aminoacid position. Square shape indicates missense mutations 

whereas triangle shape truncating mutations. Colors indicate clonality status of the 

mutation. CCD: coiled coil domain; DBD: DNA-binding domain; TAD: transcription activation 

domain; HLH: helix-loop-helix and LZ: leucine zipper. 
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Supplementary Figure S9. Comparison of PBL versus BL. Comparative plot of copy 

number (CN) and copy number neutral-loss of heterozygosity (CNN-LOH) between 33 PBL 

and 35 BL (250K SNP array, Affymetrix).5 Significant different regions are indicated in the 

plot and the color denotes the enriched group (Fisher’s test; FDR<0.05; min 5 cases). 

Genomic complexity of PBL was 12.2 vs. 5.97 alterations/case (Wilcoxon test; P<0.01).  
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Supplementary Figure S10. Comparison of PBL versus ABC-DLBCL. Comparative plot 

of CN and CNN-LOH between 33 PBL and 49 ABC-DLBCL (Cytoscan HD array, 

Affymetrix).8 Significant different regions are indicated in the plot and the color denotes the 

enriched group (Fisher’s test; FDR<0.05; min 5 cases). Genomic complexity of PBL was 

12.2 vs. 22.1 alterations/case (wilcoxon test; P<0.01).  
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Supplementary Figure S11. Comparison of PBL versus PCM. (A) Comparative 

plot of CN and CNN-LOH between 33 PBL and 41 PCM (750K cytoscan and SNP-

array 6.0, Affymetrix).6,7 Significant different regions are indicated in the plot and the 

color denotes the enriched group (Fisher’s test; FDR<0.05; min 5 cases). Genomic 

complexity of PBL was 12.2 vs. 13 alterations/case (wilcoxon test; P<0.36). 

 

 

 



18 
 

Supplementary Figure S12. Comparison of mutational findings between current 

series and previous NGS analyses on PBL. (A) Liu et al PBL comparison of 17 

commonly interrogated and mutated genes by both studies.16 (B) Garcia-Reyero et al 

PBL comparison of 24 commonly interrogated and mutated genes by both studies.17 

Bars indicate the percentage of mutated cases. Asterisk indicates differentially 

mutated genes between groups (Fisher’s test; P<0.05).  
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Supplementary Tables 

 

Supplementary Table S1. Details of all antibodies used, source and conditions of use 

 Antibody Clone Source Antigen retrieval Dilution 

CD20 L26 

Ventana, 
Roche (Oro 
Walley, AR, 

USA) 

CC1 36’ RTU 

CD79a SP18 
Ventana, 
Roche 

CC1 20’ RTU 

PAX5 SP34 
Ventana, 
Roche 

CC1 52’ RTU 

CD138 B-A38 
Ventana, 
Roche 

CC1 64’ RTU 

CD56 123C3 
Ventana, 
Roche 

CC1 36’ RTU 

HHV-8 13B10 
Ventana, 
Roche 

CC1 64’ RTU 

MUM1/IRF4 MRQ-43 
Ventana, 
Roche  

CC1 64’ RTU 

BCL-2 124 
Ventana, 
Roche 

CC1 64’ RTU 

BCL-6* GI19IE/A8 
Ventana, 
Roche 

CC1 48’ RTU 

HHV8 13B10 
Ventana, 
Roche 

CC1 64’ RTU 

p-STAT3 D3A7 DAKO PT-LINK 1/100 

 
RTU, ready to use. 
According to previous reports, BCL2,18 BCL6 and MUM1 were considered positive when ≥70%, 

≥30% or ≥60% of the cells were positive. MYC was considered positive when more than 40% of 

positive tumor cells were observed, following the criteria Johnson et al.18 All cases were stained 

using an Automated immunostainer (Benchmark XT; Ventana) with ultraView or optiview* 

Universal DAB Detection Kit. 
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Supplementary Table S2. Ninety-four genes sequenced using SureSelectXT Target NGS 

panel including references for inclusion in the mutational analysis and mean coverage by 

gene and amplicon. 

Provided in excel format 

Supplementary Table S3. Gene expression profile by NanoString PanCancer 

Pathways Panel. Information of the 12 cases analyzed. NanoString PanCancer Pathways 

Panel design and probe details. Differentially expressed genes in STAT3-mutated PBL 

(n=5) vs STAT3-non-mutated PBL (n=7) and EBV-negative PBL (n=4) vs EBV-positive PBL 

(n=8) PBL. Gene ontology and pathway enrichment of the differential expressed genes. 

Provided in excel format 

Supplementary Table S4. Copy number, copy number neutral loss of heterozygosity and 

copy number clonality information of 33 PBL cases (Human reference genome 

GRCh37/hg19)  

Provided in excel format 

Supplementary Table S5. List of 194 somatic mutations in 27 PBL including driver 

prediction of amino acid changes that affect protein function (MA, SIFT, Polyphen2, 

CADD).8 

Provided in excel format. 
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Supplementary Table S6. p-STAT3 IHC of PBL and PCM according to STAT3 mutational 

and EBV status. 

Aria 
EBV 
status 

STAT3 
MUTATION 

STAT3 
IHC 

PBL2 pos S614R (44) + 

PBL4 neg Y640F (34) NV 

PBL30  D641Y (42) scattered 

PBL6 pos WT scattered 

PBL1 neg WT - 

PBL5 pos WT - 

PBL8 neg WT + 

PCM1  
 - 

PCM2  
 - 

PCM3  
 - 

PCM4  
 - 

  NV: not valorable; WT: wild type 

 

Supplementary Table S7. 184 MYC mutations (including 14 exonic, 5 synonymous and 

165 intronic mutations). 

Provided in excel format. 
Supplementary Table S8. Novel agents and targets in lymphoma treatment. 

Pathway Drug name Mechanism Entity Clinical trials 

MAPK 

Selumetinib MEK1/2 inhibitor 

PCM  (Phase II) NCT01085214 

  Sorafenib Multikinase inhibitor PCM  (Phase I) NCT00474929 

  Vemurafenib BRAF inhibitor PCM  (Phase II) NCT01524978 

  Cobimetinib BRAF inhibitor PCM  (Phase I) NCT03312530 

 JAK-STAT Ruxolitinib JAK2 inhibitor PCM  (Phase I) NCT00639002 

  SC99 JAK2/STAT3 inhibitor  Preclinical phase 

 Siltuximab anti-IL-6 Ab PCM,B-NHL, solid tumor Multiple (phase I/II)19 

 Tocilizumab anti-IL-6R Ab CLL, solid tumor Multiple (phase I/II)19 

 OPB-51602 STAT3 SH2 binder PCM, NHL, AML, ALL, CML Multiple (phase I)19 

  AZD9150 STAT3 antisense oligo-nt DLBCL (Phase I) NCT03527147 

TP53 PRIMA-1/PRIMA-1MET antimutant p53 agents CLL, solid tumor Multiple (phase I/II)20 

MYC JQ1 BET inhibitor PCM Preclinical phase21 

EBV Arginine butyrate + antiviral agents  EBV-positive lymphomas (Phase 2) NCT00917826 

  ganciclovir     
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