# Unique ethnic features of *DDX41* mutations in patients with idiopathic cytopenia of undetermined significance, myelodysplastic syndrome, or acute myeloid leukemia

Eun-Ji Choi,<sup>1\*</sup> Young-Uk Cho,<sup>2\*</sup> Eun-Hye Hur,<sup>1</sup> Seongsoo Jang,<sup>2</sup> Nayoung Kim,<sup>3</sup> Han-Seung Park,<sup>1</sup> Jung-Hee Lee,<sup>1</sup> Kyoo-Hyung Lee,<sup>1</sup> Si-Hwan Kim,<sup>2</sup> Sang-Hyun Hwang,<sup>2</sup> Eul-Ju Seo,<sup>2</sup> Chan-Jeoung Park<sup>2</sup> and Je-Hwan Lee<sup>1</sup>

<sup>1</sup>Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine; <sup>2</sup>Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine and <sup>3</sup>Asan Institution for Life Sciences and Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea

\*E-JG and Y-UC contributed equally as co-first authors.

©2022 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2020.270553

Received: August 27, 2020. Accepted: February 2, 2021. Pre-published: February 25, 2021.

Correspondence: JE-HWAN LEE - jhlee3@amc.seoul.kr

# Supplementary Appendix

Supplementary Table 1. List of genes selected for targeted next-generation sequencing

| Gene    | Transcript     | Gene   | Transcript     |
|---------|----------------|--------|----------------|
| ABL1    | NM_005157.5    | KIT    | NM_000222.2    |
| ANKRD26 | NM_014915.2    | KMT2A  | NM_005933.3    |
| ASXL1   | NM_015338.5    | KRAS   | NM_033360.3    |
| ATM     | NM_000051.3    | LUC7L2 | NM_016019.5    |
| BCOR    | NM_001123383.1 | MALTI  | NM_006785.3    |
| BCORL1  | NM_021946.4    | MPL    | NM_005373.2    |
| BRAF    | NM_004333.4    | MYD88  | NM_002468.4    |
| CALR    | NM_004343.3    | NF1    | NM_000267.3    |
| CBL     | NM_005188.3    | NOTCH1 | NM_017617.4    |
| CDKN2A  | NM_000077.4    | NPM1   | NM_002520.6    |
| CEBPA   | NM_004364.4    | NRAS   | NM_002524.4    |
| CSF3R   | NM_156039.3    | PHF6   | NM_001015877.1 |
| DDX41   | NM_016222.3    | PTEN   | NM_000314.6    |
| DNMT1   | NM_001379.3    | PTPN11 | NM_002834.4    |
| DNMT3A  | NM_022552.4    | RAD21  | NM_006265.2    |
| EED     | NM_003797.4    | RUNX1  | NM_001754.4    |
| EP300   | NM_001429.3    | SETBP1 | NM_015559.2    |
| ETNK1   | NM_018638.4    | SETD2  | NM_014159.6    |
| ETV6    | NM_001987.4    | SF1    | NM_004630.3    |
| EZH2    | NM_004456.4    | SF3B1  | NM_012433.3    |
| FBXW7   | NM_033632.3    | SMC1A  | NM_006306.3    |
| FLT3    | NM_004119.2    | SMC3   | NM_005445.3    |
| GATA1   | NM_002049.3    | SRSF2  | NM_003016.4    |
| GATA2   | NM_032638.4    | STAG2  | NM_001042749.2 |
| HRAS    | NM_005343.3    | STAT3  | NM_139276.2    |
| IDH1    | NM_005896.3    | TET2   | NM_001127208.2 |
| IDH2    | NM_002168.3    | TP53   | NM_000546.5    |
| IKZF1   | NM_006060.5    | U2AF1  | NM_001025203.1 |
| JAK2    | NM_004972.3    | WT1    | NM_024426.4    |
| JAK3    | NM_000215.3    | ZRSR2  | NM_005089.3    |
| KDM6A   | NM_021140.3    |        |                |

## Supplementary Table 2. DDX41 variants, concurrent mutations in other genes, and karyotypes at diagnosis in the 28 patients with germline DDX41 mutations

| Patient | Sex | Age | Diagnosis, | BM    | Probable ger | rmine <i>DDX4</i> | 1 variants | Somatic DD | X41 variants |      | Concurrent mutations      | Karyotype                         |
|---------|-----|-----|------------|-------|--------------|-------------------|------------|------------|--------------|------|---------------------------|-----------------------------------|
|         |     |     | 2016 WHO   | blast | Nucleotide   | AA                | VAF (%)    | Nucleotide | AA           | VAF  | (VAF, %)                  |                                   |
|         |     |     | criteria   | (%)   | change       | change            |            | change     | change       | (%)  |                           |                                   |
| 1       | M   | 54  | ICUS       | 3.6   | c.776A>G     | p.Y259C           | 44.7       | c.1574G>A  | p.R525H      | 5.3  |                           | 46,XY[20]                         |
| 2       | M   | 54  | ICUS       | 4.0   | c.455T>G     | p.V152G           | 48.7       | c.1126G>A  | p.A376T      | 10.2 |                           | 46,XY[20]                         |
| 3       | M   | 54  | ICUS       | 2.0   | c.1496dup    | p.A500fs          | 50.8       | c.1679C>T  | p.P560L      | 41.1 | DNMT3A p.R604fs (38.2)    | 46,XY[20]                         |
| 4       | M   | 65  | ICUS       | 3.4   | c.455T>G     | p.V152G           | 40.7       | c.1480A>G  | p.K494E      | 25.4 | CBL p.I383M (5.8), KMT2A  | 46,XY[20]                         |
|         |     |     |            |       |              |                   |            |            |              |      | p.T548A (2.6)             |                                   |
| 5       | M   | 67  | ICUS       | 2.0   | c.776A>G     | p.Y259C           | 50.0       | c.1759G>C  | p.G587R      | 3.3  | ETNK1 p.Q28H (7.8),       | 46,XY[20]                         |
|         |     |     |            |       |              |                   |            |            |              |      | ASXL1 p.H633fs (3.3)      |                                   |
| 6       | M   | 64  | MDS-MLD    | 1.6   | c.455T>G     | p.V152G           | 49.6       | c.1574G>A  | p.R525H      | 27.4 | ASXL1 p.Q1142* (4.3),     | 46,Y,t(X;3)(q28;q12)[3]/46,XY[17] |
|         |     |     |            |       |              |                   |            |            |              |      | TP53 p.G266V (2.1)        |                                   |
| 7ª      | M   | 76  | MDS-MLD    | 4.0   | c.455T>G     | p.V152G           | 53.5       | c.680C>T   | p.T227M      | 14.5 | EZH2 p.R684C (3.9)        | 46,XY[20]                         |
| 8       | M   | 58  | MDS-EB-1   | 6.6   | c.776A>G     | p.Y259C           | 45.5       | c.1574G>A  | p.R525H      | 14.5 | NF1 p.L1411V (14.3), TP53 | 46,XY[20]                         |
|         |     |     |            |       |              |                   |            |            |              |      | p.R273C (11.2), PHF6      |                                   |
|         |     |     |            |       |              |                   |            |            |              |      | p.M1T (8.5), PHF6 p.R116* |                                   |
|         |     |     |            |       |              |                   |            |            |              |      | (3.6)                     |                                   |
| 9ª      | M   | 63  | MDS-MLD    | 3.2   | c.455T>G     | p.V152G           | 46.9       | c.680C>T   | p.T227M      | 12.1 | PHF6 p.G248D (6.8), CBL   | 46,XY[20]                         |
|         |     |     |            |       |              |                   |            |            |              |      | p.P6825fs (5.1)           |                                   |
| 10      | M   | 76  | MDS-EB-1   | 6.5   | c.455T>G     | p.V152G           | 47.9       | c.1574G>A  | p.R525H      | 10.6 | EZH2 c.625+1G>A (2.2)     | 46,XY[20]                         |
| 11      | M   | 71  | MDS-EB-1   | 7.0   | c.776A>G     | p.Y259C           | 47.6       | c.1574G>A  | p.R525H      | 13.6 | CBL p.R420L (10.8), NF1   | 46,XY,add(7)(11.2)[4]/46,XY[16]   |

|                 |   |    |          |      |           |          |      |           |         |      | p.A2625T (10.4), ASXL1    |                                        |
|-----------------|---|----|----------|------|-----------|----------|------|-----------|---------|------|---------------------------|----------------------------------------|
|                 |   |    |          |      |           |          |      |           |         |      | p.D784fs (7.7)            |                                        |
| 12              | M | 61 | MDS-EB-2 | 18.2 | c.19G>T   | p.E7*    | 50.4 | c.682G>T  | p.G228C | 14.0 | SRSF2 p.P95H (11.9),      | 46,XY[20]                              |
|                 |   |    |          |      |           |          |      |           |         |      | ETNK1 p.N244S (8.6)       |                                        |
| 13              | M | 78 | MDS-EB-1 | 6.8  | c.455T>G  | p.V152G  | 55.6 | c.680C>T  | p.T227M | 25.4 | ETNK1 p.G245A (19.4)      | 45,X,-Y[6]/46,XY[19]                   |
| 14 <sup>a</sup> | M | 61 | MDS-MLD  | 0.8  | c.776A>G  | p.Y259C  | 43.5 | c.680C>T  | p.T227M | 6.5  | NF1 p.K1423Q (5.0)        | 46,XY[20]                              |
| 15 <sup>a</sup> | M | 65 | MDS-EB-1 | 8.0  | c.776A>G  | p.Y259C  | 48.9 | c.1574G>A | p.R525H | 14.5 |                           | 46,XY[10]                              |
| 16 <sup>a</sup> | M | 79 | MDS-EB-1 | 5.6  | c.983T>G  | p.L328R  | 48.1 | c.1588G>A | p.G530S | 22.5 |                           | 46,XY[20]                              |
| 17ª             | M | 71 | MDS-EB-1 | 6.2  | c.776A>G  | p.Y259C  | 53.2 | c.1574G>A | p.R525H | 7.7  | DNMT3A p.W893fs (13.6),   | 46,XY,del(7)(q22q31)[16]/46,XY[14]     |
|                 |   |    |          |      |           |          |      |           |         |      | NF1 p.H1605dup (7.2),     |                                        |
|                 |   |    |          |      |           |          |      |           |         |      | DNMT1 p.Y940N (3.0),      |                                        |
|                 |   |    |          |      |           |          |      |           |         |      | PHF6 p.C20F (2.6)         |                                        |
| 18              | M | 75 | MDS-EB-1 | 6.0  | c.19G>T   | p.E7*    | 48.1 |           |         |      | KDM6A p.C1331S (5.0),     | 46,XY,del(20)(q11.2q13.3)[3]/46,XY[17] |
|                 |   |    |          |      |           |          |      |           |         |      | TP53 p.R280I (3.1)        |                                        |
| 19 <sup>a</sup> | M | 41 | MDS-EB-2 | 19.2 | c.1496dup | p.A500fs | 46.0 | c.1574G>A | p.R525H | 7.7  | CBL p.K389M (6.4)         | 46,XY[4]                               |
| $20^{a}$        | M | 62 | MDS-MLD  | 3.4  | c.455T>G  | p.V152G  | 43.4 | c.1574G>A | p.R525H | 18.7 | DNMT3A p.F752del (21.7),  | 46,XY[20]                              |
|                 |   |    |          |      |           |          |      |           |         |      | IKZF1 p.N159S (3.1)       |                                        |
| 21ª             | M | 72 | MDS-SLD  | 3.4  | c.455T>G  | p.V152G  | 48.0 | c.1127C>T | p.A376V | 28.9 |                           | 46,XY[20]                              |
| 22ª             | M | 65 | MDS-MLD  | 4.8  | c.455T>G  | p.V152G  | 50.8 | c.680C>T  | p.T227M | 35.8 |                           | 46,XY[20]                              |
| 23ª             | M | 75 | MDS-EB-2 | 13.8 | c.1496dup | p.A500fs | 46.9 | c.1032C>G | p.D344E | 3.2  | TET2 p.E1728* (3.3), PHF6 | 46,XY[20]                              |
|                 |   |    |          |      |           |          |      |           |         |      | p.M1T (2.9)               |                                        |
| 24              | M | 75 | MDS-EB-1 | 7.2  | c.776A>G  | p.Y259C  | 43.6 | c.1574G>A | p.R525H | 5.7  | TET2 p.H1921R (6.6), JAK2 | 46,XY[20]                              |
|                 |   |    |          |      |           |          |      |           |         |      | p.V617F (4.1)             |                                        |

| 25 | M | 74 | AML NOS | 24.0 | c.1496dup | p.A500fs | 45.5 | c.1574G>A | p.R525H | 2.0  | EZH2 c.2196-1G>C (2.0) | 46,XY[20]                |
|----|---|----|---------|------|-----------|----------|------|-----------|---------|------|------------------------|--------------------------|
| 26 | M | 63 | AML NOS | 20.2 | c.19G>T   | p.E7*    | 49.2 | c.1574G>A | p.R525H | 2.7  | PHF6 p.M1V (3.8)       | 46,XY[20]                |
| 27 | F | 71 | AML NOS | 23.6 | c.1496dup | p.A500fs | 50.9 | c.1574G>A | p.R525H | 15.8 | SETBP1 p.D868N (15.4), | 46,XX[20]                |
|    |   |    |         |      |           |          |      |           |         |      | ASXL1 p.W796fs (15.1)  |                          |
| 28 | M | 69 | AML NOS | 65.2 | c.1496dup | p.A500fs | 47.9 | c.1574G>A | p.R525H | 23.2 | ASXL1 p.R693* (25.7),  | 48,XY,+1,+8[8]/46,XY[12] |
|    |   |    |         |      |           |          |      |           |         |      | NRAS p.G12D (7.1)      |                          |

WHO: World Health Organization; BM: bone marrow; AA: amino acid; VAF: variant allele frequency; M: male; F: female; ICUS: idiopathic cytopenia of undetermined significance; MDS: myelodysplastic syndrome; MDS-MLD: MDS with multilineage dysplasia; MDS-EB: MDS with excess blasts; MDS-SLD: MDS with single lineage dysplasia; AML NOS, acute myeloid leukemia not otherwise specified.

<sup>&</sup>lt;sup>a</sup>These patients were confirmed to have germline *DDX41* variants by targeted NGS assay using sorted blood T-cells.

**Supplementary Table 3.** Interpretation of probable germline *DDX41* mutations according to the Genome Aggregation Database<sup>1</sup> and the recommendation of the American College of Medical Genetics and Genomics<sup>2</sup>

| Patient | Nucleotide | AA change | Somatic | gnomAD, | KRGDB   | dbSNP       | SIFT/PolyPhen-2/ | ACMG recommendation |                        | Causality |
|---------|------------|-----------|---------|---------|---------|-------------|------------------|---------------------|------------------------|-----------|
|         | change     |           | DDX41   | total   |         |             | MutationTaster   | Criteria            | Interpretation         | _         |
| 1       | c.776A>G   | p.Y259C   | Present | 2.84e-5 | 5.82e-4 | rs139780256 | D/ProD/DC        | PS4                 | Uncertain significance | Causal    |
| 2       | c.455T>G   | p.V152G   | Present | 7.96e-6 | 2.94e-4 | rs758775538 | D/B/DC           | PS4                 | Uncertain significance | Causal    |
| 3       | c.1496dupC | p.A500fs  | Present | 7.96e-6 | 0       |             |                  | PVS1 + PS4          | Pathogenic             | Causal    |
| 4       | c.455T>G   | p.V152G   | Present | 7.96e-6 | 2.94e-4 | rs758775538 | D/B/DC           | PS4                 | Uncertain significance | Causal    |
| 5       | c.776A>G   | p.Y259C   | Present | 2.84e-5 | 5.82e-4 | rs139780256 | D/ProD/DC        | PS4                 | Uncertain significance | Causal    |
| 6       | c.455T>G   | p.V152G   | Present | 7.96e-6 | 2.94e-4 | rs758775538 | D/B/DC           | PS4                 | Uncertain significance | Causal    |
| 7       | c.455T>G   | p.V152G   | Present | 7.96e-6 | 2.94e-4 | rs758775538 | D/B/DC           | PS4                 | Uncertain significance | Causal    |
| 8       | c.776A>G   | p.Y259C   | Present | 2.84e-5 | 5.82e-4 | rs139780256 | D/ProD/DC        | PS4                 | Uncertain significance | Causal    |
| 9       | c.455T>G   | p.V152G   | Present | 7.96e-6 | 2.94e-4 | rs758775538 | D/B/DC           | PS4                 | Uncertain significance | Causal    |
| 10      | c.455T>G   | p.V152G   | Present | 7.96e-6 | 2.94e-4 | rs758775538 | D/B/DC           | PS4                 | Uncertain significance | Causal    |
| 11      | c.776A>G   | p.Y259C   | Present | 2.84e-5 | 5.82e-4 | rs139780256 | D/ProD/DC        | PS4                 | Uncertain significance | Causal    |
| 12      | c.19G>T    | p.E7*     | Present | 0       | 0       | rs749405703 |                  | PVS1 + PS4 + PM2    | Pathogenic             | Causal    |
| 13      | c.455T>G   | p.V152G   | Present | 7.96e-6 | 2.94e-4 | rs758775538 | D/B/DC           | PS4                 | Uncertain significance | Causal    |
| 14      | c.776A>G   | p.Y259C   | Present | 2.84e-5 | 5.82e-4 | rs139780256 | D/ProD/DC        | PS4                 | Uncertain significance | Causal    |
| 15      | c.776A>G   | p.Y259C   | Present | 2.84e-5 | 5.82e-4 | rs139780256 | D/ProD/DC        | PS4                 | Uncertain significance | Causal    |
| 16      | c.983T>G   | p.L328R   | Present | 0       | 0       |             | D/ProD/DC        | PM2                 | Uncertain significance | Causal    |
| 17      | c.776A>G   | p.Y259C   | Present | 2.84e-5 | 5.82e-4 | rs139780256 | D/ProD/DC        | PS4                 | Uncertain significance | Causal    |
| 18      | c.19G>T    | p.E7*     | Absent  | 0       | 0       | rs749405703 |                  | PVS1 + PS4 + PM2    | Pathogenic             | Causal    |

| 19 | c.1496dupC | p.A500fs | Present | 7.96e-6 | 0       |             |           | PVS1 + PS4       | Pathogenic             | Causal |
|----|------------|----------|---------|---------|---------|-------------|-----------|------------------|------------------------|--------|
| 20 | c.455T>G   | p.V152G  | Present | 7.96e-6 | 2.94e-4 | rs758775538 | D/B/DC    | PS4              | Uncertain significance | Causal |
| 21 | c.455T>G   | p.V152G  | Present | 7.96e-6 | 2.94e-4 | rs758775538 | D/B/DC    | PS4              | Uncertain significance | Causal |
| 22 | c.455T>G   | p.V152G  | Present | 7.96e-6 | 2.94e-4 | rs758775538 | D/B/DC    | PS4              | Uncertain significance | Causal |
| 23 | c.1496dupC | p.A500fs | Present | 7.96e-6 | 0       |             |           | PVS1 + PS4       | Pathogenic             | Causal |
| 24 | c.776A>G   | p.Y259C  | Present | 2.84e-5 | 5.82e-4 | rs139780256 | D/ProD/DC | PS4              | Uncertain significance | Causal |
| 25 | c.1496dupC | p.A500fs | Present | 7.96e-6 | 0       |             |           | PVS1 + PS4       | Pathogenic             | Causal |
| 26 | c.19G>T    | p.E7*    | Present | 0       | 0       | rs749405703 |           | PVS1 + PS4 + PM2 | Pathogenic             | Causal |
| 27 | c.1496dupC | p.A500fs | Present | 7.96e-6 | 0       |             |           | PVS1 + PS4       | Pathogenic             | Causal |
| 28 | c.1496dupC | p.A500fs | Present | 7.96e-6 | 0       |             |           | PVS1 + PS4       | Pathogenic             | Causal |

AA: amino acid; gnomAD: Genome Aggregation Database; KRGDB: Korean Reference Genome Database; B: benign; D: deleterious; DC: disease-causing; P: polymorphism; ProD: probably damaging; T: tolerated; ACMG, American College of Medical Genetics and Genomics.

**Supplementary Table 4.** Odds ratio of probable germline *DDX41* mutations for developing ICUS/MDS/AML in the Korean population

| Variants              | Patients (n=457) | Controls (n=1,722) <sup>a</sup> | Odds ratio (95% CI) |
|-----------------------|------------------|---------------------------------|---------------------|
| Total                 | 29 <sup>b</sup>  | 15                              | 7.7 (4.1–14.5)      |
| p.V152G               | 10               | 1                               | 38.5 (4.9–301.6)    |
| p.Y259C               | 9ь               | 2                               | 17.3 (3.7–80.2)     |
| p.A500fs              | 6                | 0                               | 49.6 (2.8–882.1)    |
| p.E7*                 | 3                | 0                               | 26.5 (1.4–514.5)    |
| p.L328R               | 1                | 0                               | 11.3 (0.5 – 278.4)  |
| ICUS/MDS <sup>c</sup> | 25 <sup>b</sup>  | 15                              | 10.9 (5.7 – 21.0)   |
| p.V152G               | 10               | 1                               | 62.6 (8.0 – 490.8)  |
| p.Y259C               | 9ь               | 2                               | 28.0 (6.0 – 130.5)  |
| p.A500fs              | 3                | 0                               | 42.7 (2.2 – 828.5)  |
| p.E7*                 | 2                | 0                               | 30.4 (1.5 – 634.5)  |
| p.L328R               | 1                | 0                               | 18.2 (0.7 – 447.0)  |
| $AML^d$               | 4                | 15                              | 2.7 (0.9 – 8.3)     |
| p.A500fs              | 3                | 0                               | 71.1 (3.7 – 1383.0) |
| p.E7*                 | 1                | 0                               | 30.1 (1.2 – 742.5)  |

Abbreviations: AML, acute myeloid leukemia; CI, confidence interval; ICUS, idiopathic cytopenia of undetermined significance; MDS, myelodysplastic syndrome.

<sup>a</sup>Frequencies of *DDX41* variants in healthy controls were based on the Korean Reference Genome Database (<a href="http://coda.nih.go.kr/coda/KRGDB/index.jsp">http://coda.nih.go.kr/coda/KRGDB/index.jsp</a>). <sup>b</sup>A patient of MDS harboring p.Y259C was considered as non-causal owing to an absence of the somatic *DDX41* mutation was included. <sup>c</sup>The number of patients was 285. <sup>d</sup>The number of patients was 172.

**Supplementary Table 5.** Types of germline *DDX41* mutations and the concurrent somatic *DDX41* mutations according to the type of hematologic malignancy

|                                        | ICUS/MDS (n=24) | AML (n=4) |
|----------------------------------------|-----------------|-----------|
| Type of germline DDX41 mutations       |                 |           |
| p.V152G (%) <sup>a</sup>               | 10 (41.7)       | 0         |
| p.Y259C (%) <sup>a</sup>               | 8 (33.3)        | 0         |
| p.A500fs (%)                           | 3 (12.5)        | 3 (75.0)  |
| p.E7* (%)                              | 2 (8.3)         | 1 (25.0)  |
| p.L328R                                | 1 (4.2)         | 0         |
| Concurrent somatic DDX41 mutations (%) | 23 (95.8)       | 4 (100.0) |
| p.R525H (%)                            | 10 (43.5)       | 4 (100.0) |
| p.T227M (%)                            | 5 (21.7)        | 0         |
| Others (%)                             | 8 (34.8)        | 0         |
|                                        |                 |           |

AML: acute myeloid leukemia; ICUS: idiopathic cytopenia of undetermined significance; MDS: myelodysplastic syndrome; VAF: variant allele frequency.

Bold indicates the significant differences. <sup>a</sup>The combined frequency of p.V152G and p.Y259C was significantly higher in the ICUS/MDS (75.0%) than in the AML (0%) patients (*P*=0.01).

**Supplementary Table 6.** Concurrent somatic *DDX41* mutations according to the three most common germline *DDX41* mutations

|             | Ge             | rmline <i>DDX41</i> mutat | tion             | P <sup>a</sup>              |
|-------------|----------------|---------------------------|------------------|-----------------------------|
|             | p.V152G (n=10) | p.Y259C (n=8)             | p.A500fs (n = 6) |                             |
| p.R525H (%) | 3 (30.0)       | 6 (75.0)                  | 4 (66.7)         | <b>0.032</b> , 0.129, 1.000 |
| p.T227M (%) | 4 (40.0)       | 1 (12.5)                  | 0                | 0.314, 0.234, 1.000         |
| Others (%)  | 3 (30.0)       | 1 (12.5)                  | 2 (33.3)         | 0.588, 1.000, 0.538         |

VAF: variant allele frequency.

Bold indicates the significant differences. <sup>a</sup>P values were derived from comparisons between p.V152G and p.Y259C, p.V152G and p.A500fs, and p.Y259C and p.A500fs, respectively.

## **Supplementary Table 7.** Clinical courses of the patients with *DDX41* mutations

| No.             | Sex | Age | Dx   | Subtype  | Probable | Somatic | Clinical course                                                                                                           |
|-----------------|-----|-----|------|----------|----------|---------|---------------------------------------------------------------------------------------------------------------------------|
|                 |     |     |      |          | germline |         |                                                                                                                           |
| 1               | M   | 54  | ICUS |          | p.Y259C  | p.R525H | Evolved to MDS-EB-1 77.9 months after ICUS diagnosis; Scheduled for allogeneic HCT.                                       |
| 2               | M   | 64  | ICUS |          |          | p.T227M | Lost to follow-up; Died of unknown cause after 35.9 months from diagnosis.                                                |
|                 |     |     |      |          |          | p.Q63fs |                                                                                                                           |
| 3               | M   | 54  | ICUS |          | p.V152G  | p.A376T | Evolved to MDS-EB-1 17.6 months after ICUS diagnosis; Progressed to MDS-EB-2 two months after MDS-EB-1 diagnosis;         |
|                 |     |     |      |          |          |         | Alive without relapse four years after allogeneic HCT from a haploidentical donor (patient's son).                        |
| 4               | M   | 54  | ICUS |          | p.A500fs | p.P560L | Lost to follow-up.                                                                                                        |
| 5               | M   | 65  | ICUS |          | p.V152G  | p.K494E | Alive without evidence of disease evolution 31.3 months after ICUS diagnosis; A family history of Hodgkin lymphoma        |
|                 |     |     |      |          |          |         | (patient's son).                                                                                                          |
| 6               | M   | 67  | ICUS |          | p.Y259C  | p.G587R | Evolved to MDS-EB-2 nine months after ICUS diagnosis with a gain of PTPN11 mutation; One course of azacitidine; After the |
|                 |     |     |      |          |          |         | best supportive care for four months.                                                                                     |
| 7               | M   | 54  | MDS  | MDS-MLD  | p.V152G  | p.R525H | Died of pneumonia 3.4 months after allogeneic HCT from a matched unrelated donor.                                         |
| 8               | M   | 52  | MDS  | MDS-U    | p.Y259C  |         | Received two courses of azacitidine (SD) before HCT; Alive without relapse 44 months after allogeneic HCT from a          |
|                 |     |     |      |          |          |         | haploidentical donor (patient's son).                                                                                     |
| 91              | M   | 76  | MDS  | MDS-MLD  | p.V152G  | p.T227M | Received danazol for 1.5 years; Alive in SD without HI.                                                                   |
| 10              | M   | 58  | MDS  | MDS-EB-1 | p.Y259C  | p.R525H | Progressed to MDS-EB-2 49.8 months after MDS diagnosis; Alive without relapse 16.5 months after allogeneic HCT from a     |
|                 |     |     |      |          |          |         | matched unrelated donor.                                                                                                  |
| 11 <sup>1</sup> | M   | 62  | MDS  | MDS-MLD  | p.V152G  | p.T227M | Not responded to cyclosporine, erythropoietin-stimulating agent, and one course of decitabine.                            |
| 12              | M   | 76  | MDS  | MDS-EB-1 | p.V152G  | p.R525H | Lost to follow-up.                                                                                                        |
| 13              | M   | 71  | MDS  | MDS-EB-1 | p.Y259C  | p.R525H | Achieved HI with decitabine treatment; Progressed to MDS-EB-2 after 23 courses of decitabine; Died of unknown cause one   |
|                 |     |     |      |          |          |         | year after progression.                                                                                                   |

| 14       | M | 60 | MDS | MDS-EB-2 | p.E7*    | p.G228C | Received eight courses of decitabine (SD) before HCT; Alive without relapse 8.7 months after allogeneic HCT from a         |
|----------|---|----|-----|----------|----------|---------|----------------------------------------------------------------------------------------------------------------------------|
|          |   |    |     |          |          |         | haploidentical donor (patient's son without DDX41 mutation).                                                               |
| 15       | M | 78 | MDS | MDS-EB-1 | p.V152G  | p.T227M | Progressed to MDS-EB-2 50.2 months after MDS diagnosis; Achieved PR after six courses of azacitidine; Loss of the response |
|          |   |    |     |          |          |         | after 21 courses of azacitidine; Died of infection.                                                                        |
| $16^{1}$ | M | 61 | MDS | MDS-MLD  | p.Y259C  | p.T227M | Progressed to MDS-EB-1 91.5 months after MDS diagnosis; Received six courses of decitabine (SD).                           |
| 171      | M | 64 | MDS | MDS-EB-1 | p.Y259C  | p.R525H | Alive in stable disease 13.6 months after MDS diagnosis; Scheduled for allogeneic HCT.                                     |
| $18^{1}$ | M | 79 | MDS | MDS-EB-1 | p.L328R  | p.G530S | Received danazol for one year; Alive in SD without HI.                                                                     |
| $19^{1}$ | M | 71 | MDS | MDS-EB-1 | p.Y259C  | p.R525H | Received 13 courses of azacitidine; Alive in SD.                                                                           |
| 20       | M | 75 | MDS | MDS-EB-1 | p.E7*    |         | Lost to follow-up.                                                                                                         |
| 211      | M | 41 | MDS | MDS-EB-2 | p.A500fs | p.R525H | Received four courses of decitabine (SD) before HCT; Alive without relapse four months after allogeneic HCT from a matched |
|          |   |    |     |          |          |         | unrelated donor.                                                                                                           |
| 221      | M | 62 | MDS | MDS-MLD  | p.V152G  | p.R525H | Died of pneumonia after one course of decitabine.                                                                          |
| 231      | M | 72 | MDS | MDS-SLD  | p.V152G  | p.A376V | Alive without disease progression seven months after MDS diagnosis.                                                        |
| 241      | M | 65 | MDS | MDS-MLD  | p.V152G  | p.T227M | Progressed to MDS-EB-1 33.6 months after MDS diagnosis; Alive without relapse eight weeks after allogeneic HCT from a      |
|          |   |    |     |          |          |         | matched unrelated donor.                                                                                                   |
| 251      | M | 75 | MDS | MDS-EB-2 | p.A500fs | p.D344E | Received nine courses of azacitidine (SD).                                                                                 |
| 26       | M | 74 | MDS | MDS-MLD  | p.Y259C  | p.R525H | Alive without disease progression six months after MDS diagnosis.                                                          |
| 27       | M | 53 | MDS | MDS-EB-1 | p.D139G  |         | Progressed to MDS-EB-2 29.6 months after MDS diagnosis; Progressed to AML 31.0 months after MDS diagnosis.                 |
| 28       | M | 76 | AML | NOS      | p.A500fs | p.R525H | Achieved CR with Guadecitabine; Relapsed; Died of disease progression                                                      |
| $29^{2}$ | F | 59 | AML | RGA      | p.E3K    |         | Relapsed 7.7 months after the end of consolidation chemotherapy; Achieved the second CR with salvage chemotherapy; Alive   |
|          |   |    |     |          |          |         | without relapse 15 months after allogeneic HCT from a matched unrelated donor.                                             |
| 30       | M | 57 | AML | NOS      | p.Y33C   |         | Achieved CR with intensive chemotherapy; Alive without relapse 13.6 months after allogeneic HCT from a matched unrelated   |
|          |   |    |     |          |          |         | donor.                                                                                                                     |
| 31       | F | 66 | AML | RGA      | p.D139G  |         | Relapsed 13 months after the end of consolidation chemotherapy; Achieved the second CR with salvage chemotherapy;          |
|          |   |    |     |          |          |         |                                                                                                                            |

|          |   |    |     |       |          |         | Underwent allogeneic HCT from a haploidentical donor (patient's son).                                                          |
|----------|---|----|-----|-------|----------|---------|--------------------------------------------------------------------------------------------------------------------------------|
| 32       | M | 20 | AML | APL   | p.K187R  |         | Relapsed 11 months after the end of consolidation chemotherapy; Achieved the second CR with arsenic trioxide; Alive without    |
|          |   |    |     |       |          |         | relapse 15.8 months after allogeneic HCT from a haploidentical donor (patient's father).                                       |
| 33       | F | 62 | AML | NOS   |          | p.R525H | Relapsed 4 years after allogeneic HCT in the first CR from a matched sibling donor; Achieved the second CR with salvage        |
|          |   |    |     |       |          |         | chemotherapy; alive without relapse 9.8 months after the second allogeneic HCT from a haploidentical donor (patient's son).    |
| 34       | M | 79 | AML | MRC   |          | p.A488T | Received four courses of decitabine; Died of pneumonia and persistent disease.                                                 |
| 35       | M | 67 | AML | NOS   | p.E7*    | p.R525H | Relapsed 4 years after allogeneic HCT in the first CR from a haploidentical donor (patient's son); Achieved the second CR with |
|          |   |    |     |       |          |         | salvage chemotherapy; Alive without relapse 3.4 months after the second allogeneic HCT from a matched unrelated donor.         |
| $36^{3}$ | F | 47 | AML | t-AML |          | p.P560L | History of alkylating agents-containing chemotherapy for metastatic ovarian cancer; Achieved CR with intensive chemotherapy;   |
|          |   |    |     |       |          | p.P321L | Under consolidation chemotherapy.                                                                                              |
| 37       | F | 71 | AML | MPAL  | p.A500fs | p.R525H | Refractory to intensive induction chemotherapy; Achieved CR after 2 courses of LDAC; Under LDAC chemotherapy.                  |
| 38       | M | 69 | AML | NOS   | p.A500fs | p.R525H | Lost to follow-up; Died of unknown cause one month after diagnosis                                                             |
| 39       | M | 54 | AML | RGA   |          | p.A100E | Achieved CR with intensive chemotherapy; Under consolidation chemotherapy.                                                     |
|          |   |    |     |       |          |         |                                                                                                                                |

Abbreviations: AML, acute myeloid leukemia; APL, acute promyelocytic leukemia; CR, complete remission; Dx, diagnosis; EB, excess blasts; HCT, hematopoietic cell transplantation; HI, hematologic improvement; ICUS, idiopathic cytopenia of undetermined significance; LDAC, low-dose cytarabine; MDS, myelodysplastic syndrome; MLD, multilineage dysplasia; MRC, myelodysplasia-related changes; No., number; NOS, not otherwise specified; PR, partial remission; RGA, recurrent genetic abnormalities; SD, stable disease; SLD, single lineage dysplasia; t-AML, therapy-related AML; U, unclassifiable.

**Supplementary Figure 1.** (A) Overall survival curves according to the presence of *DDX41* mutations. (B) Event-free survival curves according to the presence of *DDX41* mutations.



### **REFERENCE**

- 1. Karczewski KJ, Francioli LC, Tiao G, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581(7809):434-443.
- Richards S, Aziz N, Bale S, et al: Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405-423.