Unusual survival of a twin with homozygous α^{0} -thalassemia due to chimerism

Dejian Pang,^{1#} Xuan Shang,^{1,2,3#} Decheng Cai,¹ Fang Yang,⁴ Huijie Lu,¹ Yi Cheng,¹ Xiaofeng Wei,¹ Fei He¹ and Xiangmin Xu^{1,2,3}

¹Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University; ²Guangdong Genetics Testing Engineering Research Center; ³Guangdong Provincial Key Laboratory of Single Cell Technology and Application and ⁴Center of Prenatal Diagnosis, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China

*DP and XS contributed equally as co-first authors.

Correspondence: XIANGMIN XU - xixm@smu.edu.cn doi:10.3324/haematol.2020.262600

Supplemental Information

Unusual survival of a twin with homozygous α^0 -thalassemia due to

Chimerism

Dejian Pang^{1,#}, Xuan Shang^{1,2,3,#}, Decheng Cai¹, Fang Yang⁴, Huijie Lu¹, Yi Cheng¹,

Xiaofeng Wei¹, Fei He¹, Xiangmin Xu^{1,2,3}

¹Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
²Guangdong Genetics Testing Engineering Research Centre, Guangzhou, Guangdong, China
³Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong, China
⁴Centre of prenatal diagnosis, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China

[#]*These authors contributed equally to this work.*

Correspondence: Xiangmin Xu (xixm@smu.edu.cn)

Supplemental information includes:

- 1. Methods
- 2. Tables
- 3. References

Methods

Subjects and clinical data collection

The patient (II1) was a two year old boy from Zhaoqing city, in Guangdong Province, southern China (Figure 1A). He was diagnosed as a thalassemia patient at 16 days old and received blood transfusions once a month. The conventional biochemical investigations did not reveal anything unusual, such as G6PD, CK, AST, LDH, CRP, PT, Electrolyte, TBIL, TBA, T3, etc. Detection of common α -globin and β -globin gene mutations in Chinese populations identified him as homozygous for the SEA deletion (--^{SEA}/--^{SEA}), which is the most common genotype of homozygous α^0 -thalassemia patients in China. His parents were not aware that they carried the SEA deletion (--^{SEA}/ $\alpha\alpha$) until the diagnosis of II1. This meant that the mother received routine antenatal care and prenatal diagnosis of thalassemia was not performed. The younger twin, II2, died soon after birth and homozygous α^0 -thalassemia was proposed as a possible cause, due to the hydropic features at birth and the genotype of his parents. Twin to twin transfusion syndrome was excluded due to normal amniotic fluid volume and bladder of both twins before 31 weeks of gestational age, using ultrasound (Table S2). However, further diagnosis of II2 was refused by his parents. With approval from the Ethics Committee of Nanfang Hospital of Southern Medical University and with informed consent, in accordance with the Helsinki declaration, the peripheral blood leucocytes from II1 and

his parents, II1's hair follicle and buccal mucosa were obtained for further study in our laboratory. Hematological parameters were analyzed as in a previous study¹. Data on patient and parent characteristics, availability of antenatal care, antenatal ultrasonographic findings, perinatal course, presence of congenital malformations, subsequent neonatal and long-term neurodevelopmental outcome were collected. These data were compared with the data from 69 cases of homozygous α^0 -thalassemia survivors^{2, 3} and 308 cases of Hb H disease^{4, 5}.

Molecular analysis

Genomic DNA was extracted with the TIANamp Micro DNA Kit (DP316, TIANGEN, China). Total RNA was isolated with TRIzol Reagents (Thermo Fisher Scientific, USA), in accordance with the manufacturer's instructions.

The β -globin gene mutations were analyzed by direct DNA sequencing. Three common α -thalassemia deletions ($-\alpha^{3.7}$, $-\alpha^{4.2}$ and $--^{SEA}$) were detected by Gap-PCR. To detect copy number variations, a multiplex ligation dependent probe amplification (MLPA) assay (SALSA P140-C1 and P102-C1 kit, MRC-Holland, Amsterdam, Netherlands) was performed. Threshold ratios for deletion and duplication were set at <0.7 and >1.3, respectively.

The DNA and RNA levels of the α -globin gene and β -globin gene were

determined by quantitative real-time PCR (qRT-PCR), using the protocol provided by the manufacturer (Takara, Japan).

To analyze the source of the α -globin gene in the patient, the single nucleotide polymorphism (SNP) of rs57397665 by direct DNA sequencing was selected as it is inconsistent between the parents and located in the SEA deletion region. To analyze the source and ratio of chimerism, we used the technology of PCR-short tandem repeat (PCR-STR) as described in previous study⁶. The 19 STR loci and a segment of the X-Y homologous amelogenin gene were co-amplified using the MicroreaderTM 20A ID System (Microread Genetics Incorporation, China), following the manufacturer's instructions. Six STR loci (D12S391, FGA, D18S51, vWA, TPOX and Penta E) were selected, which chimeric genotype must be identified and STR peak must not be disturbed by stutter peaks. All primers for the PCR assay are listed in Table S4.

				Deletional Hb	No-deletional Hb	Survivors ^{\$} with
Index	II1	II2	Normal	H disease ^{4, 5}	H disease ^{4, 5}	homozygous α^0 -
						thalassemia ^{2,3}
Perinatal period						
Polyhydramnios	No	Yes	No	No	No	15%
Intrauterine intervention	No	No	No	No	No	No
Gestational weeks at birth	34	34	38-42	38-42	38-42	23-39
Means of delivery	Caesarean	Caesarean	NA	NA	NA	Caesarean (57%)
Birth weight of \geq 10th centile	Yes	NA	Yes	Yes	Yes	81%
Hydropic feature at birth	No	Yes	No	No	No	55%
Neonatal period						
Apgar scores 1 min	9	1	7-10	7-10	7-10	0-6
Apgar scores 5 min	10	1	7-10	7-10	7-10	1-8
Required mechanical and/or	Yes	NA	No	No	No	66%
assisted ventilation	105		110	110		0070
Duration of mechanical						
and/or assisted ventilation	14	NA	No	No	No	4-60
required (days)						
Transfusion with the first 24 hours	No	NA	No	No	No	Yes
Congenital malformations						
Urogenital abnormalities	Hydrocele	NA	NA	NA	NA	48%

Table S1General clinical characteristics of II1 and II2

Limb abnormalities	No	NA	NA	NA	NA	16%
Atrial septal defect	No	NA	NA	NA	NA	10%
Long-term outcomes						
Growth retardation	No	NA	No	Rare	15%	approximately 50%
Neurodevelopmental retardation	No	NA	No	NA	NA	43.5%
Hemoglobin data						
Hemoglobin (g/dL)	9.5	NA	NA	5.7-10.2	4.6-9.9	3.7-8.0
Age at first transfusion	14 d	NA	NA	11±5.5 Y	1.5±2.1 Y	1 d
Transfusion frequency per year	12	NA	NA	0-10.7	0.12-8.0	10.4-26
Hepatosplenomegaly after	Yes	NA	NA	NA	NA	Yes
transfusion	105	INA	INA	INA	ina	105

NA not available.

^{\$} These survivors did not receive intrauterine intervention.

	Gestation	al weeks							
Anatomic	nic13		23		25	25		31	
area	II1	112	II1	II2	II1	II2	II1	II2	
Head	Roundnes	s and	Intact ring of skull, centered line of cerebrum, ventricle without dilation,						
	ventricle v	vithout	posterio	or cranial foss	a without di	lation and v	isible muff	le	
	dilation								
Neck	NA		With no	impression a	and streamer	of umbilica	al cord		
Spine	Vertebrae	in order							
Chest	Normal sh	ape	Normal	cardiothorac	ic proportion	n, regular he	eart rhythm,	normal	
			atriove	ntricular ratio	and cardiac	structure			
Abdomen	Normal sh	ape	Normal	liver, stomac	ch vesicle, de	ouble kidne	y and bladd	er	
Extremities	Visible		Visible	long bone an	d without ab	onormal	Some	limbs unclear ^{\$}	
			shape						
Umbilical cord&	NA		2.78ª	2.88ª	3.25ª	3.33ª	2.86 ^a	2.88ª	
	NA		145 ^b	152 ^b	146 ^b	150 ^b	153 ^b	145 ^b	

Table S2. Pre-natal clinical characteristics of II1 and II2

Placenta [!]	22		26		37		30	
Amniotic fluid ^{&@}	48	47	62	63	70	72	68	73
	10	.,	02		, 0		00	10

NA, not available.

^{\$} Due to fetal position and gestational age

& These data are unclear between II1 and II2 due to the lack of tags

^a Ratio of fetal umbilical artery systolic and diastolic

^b Heart rate (beats per minute)

¹ Location in anterior wall of the uterus and thickness (millimeter)

[@] The largest diameter line (millimeter)

Complication ^{\$}	Maternal condition	
Previous pregnancies		
Abortion	No	
Still birth/neonatal death	No	
Antepartum		
Polyhydramnios	Yes	
Oligohydramnios	No	
Intrauterine infection	No	
Preeclampsia	Yes	
Abruptio placenta	No	
Delivery		
Preterm delivery	Yes	
Malpresentation	Yes	
Assisted vaginal delivery	No	
Caesarean section	Yes	
Postpartum		
Postpartum hemorrhage	No	

Table S3. Maternal complications

^{\$} Reference from report of Songdej D, Blood, 2017

Primer name	Primer sequences (5'-3')
βF	AACTCCTAAGCCAGTGCCAGAAGAGC
βR	ATGCACTGACCTCCCACATTCCCT
α2/3.7-F	CCCCTCGCCAAGTCCACCC
α2-R	AAAGCACTCTAGGGTCCAGCG
3.7-R	AGACCAGGAAGGGCCGGTG
4.2-F	GGTTTACCCATGTGGTGCCTC
4.2-R	CCCGTTGGATCTTCTCATTTCCC
SEA-F	CGATCTGGGCTCTGTGTTCTC
SEA-R	AGCCCACGTTGTGTTCATGGC
SNP-F	CACCCCCAGAAGAGACCAAA
SNP-R	GTGCATCCCTGCTCATGAAA
α-F1	CTGACTGTGAGTCGGCCAAA
α-R1	AGTTCTCCAAACTACCGGGC
β-F1	GAAATTGGACAGCAAGAAAGCGA
β-R1	AAGAATTCACCCCACCAGTGC
α-F2	TGCCGACAAGACCAACGTCA
α-R2	GTGGGGAAGGACAGGAACAT
β-F2	ATGGTGCATCTGACTCCTGA
β-R2	TGGACAGATCCCCAAAGGAC
ζ-F	CGGTCAACTTCAAGCTCCTGT

Table S4. Primer sequences for molecular studies

ζ-R	CGGTCAGGACAGAGGATACG
GAPDH F	ACCCACTCCTCCACCTTTGA
GAPDH R	CTGTTGCTGTAGCCAAATTCGT

References

1. Pang D, Shang X, Cai D, et al. Thalassaemia intermedia caused by coinheritance of a betathalassaemia mutation and a de novo duplication of alpha-globin genes in the paternal allele. Br J Haematol. 2019;186(4):620-624.

2. Songdej D, Babbs C, Higgs DR, Consortium BI. An international registry of survivors with Hb Bart's hydrops fetalis syndrome. Blood. 2017;129(10):1251-1259.

3. Vichinsky EP. Clinical manifestations of alpha-thalassemia. Cold Spring Harb Perspect Med. 2013;3(5):a011742.

4. Lin PC, Chang TT, Liao YM, et al. Clinical Features and Genotypes of Patients with Hemoglobin H Disease in Taiwan. Lab Med. 2019;50(2):168-173.

5. Fucharoen S, Viprakasit V. Hb H disease: clinical course and disease modifiers. Hematology Am Soc Hematol Educ Program. 2009:26-34.

6. Fernandez-Aviles F, Urbano-Ispizua A, Aymerich M, et al. Serial quantification of lymphoid and myeloid mixed chimerism using multiplex PCR amplification of short tandem repeat-markers predicts graft rejection and relapse, respectively, after allogeneic transplantation of CD34+ selected cells from peripheral blood. Leukemia. 2003;17(3):613-620.