Antithrombotic prophylaxis for surgery-associated venous thromboembolism risk in patients with inherited platelet disorders. The SPATA-DVT Study

Francesco Paciullo,¹ Loredana Bury,¹ Patrizia Noris,² Emanuela Falcinelli,¹ Federica Melazzini,² Sara Orsini,¹ Carlo Zaninetti,^{2,3} Rezan Abdul-Kadir,⁴ Deborah Obeng-Tuudah,⁴ Paula G. Heller,^{5,6} Ana C. Glembotsky,^{5,6} Fabrizio Fabris,⁷ Jose Rivera,⁸ Maria Luisa Lozano,⁸ Nora Butta,⁹ Remi Favier,¹⁰ Ana Rosa Cid,¹¹ Marc Fouassier,¹² Gian Marco Podda,¹³ Cristina Santoro,¹⁴ Elvira Grandone,^{15,16} Yvonne Henskens,¹⁷ Paquita Nurden,⁸ Barbara Zieger,¹⁹ Adam Cuker,²⁰ Katrien Devreese,²¹ Alberto Tosetto,²² Erica De Candia,^{23,24} Arnaud Dupuis,²⁵ Koji Miyazaki,²⁶ Maha Othman²⁷ and Paolo Gresele¹

¹Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Italy; ²Department of Internal Medicine, IRCCS Policlinico S. Matteo Foundation, University of Pavia, Pavia, Italy; 3PhD program in Experimental Medicine, University of Pavia, Pavia, Italy; ⁴Haemophilia Centre and Haemostasis Unit, The Royal Free Foundation Hospital and University College London, London, UK; ⁵Hematología Investigación, Instituto de Investigaciones Médicas Alfredo Lanari, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina; ⁶Universidad de Buenos Aires, Instituto de Investigaciones Médicas -IDIM-, Buenos Aires, Argentina; ⁷Clinica Medica 1 - Medicina Interna CLOPD, Dipartimento Assistenziale Integrato di Medicina, Azienda-Ospedale Università di Padova, Dipartimento di Medicina, Università di Padova, Padova, Italy; *Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguery Centro Regional de Hemodonación, IMIB-Arrixaca, Universidad de Murcia, Murcia, Spain; ⁹Unidad de Hematología, Hospital Universitario La Paz-IDIPaz, Madrid, Spain; ¹⁰Assistance Publique-Hôpitaux de Paris, Armand Trousseau Children's Hospital, French Reference Centre for Inherited Platelet Disorders, Paris, France: ¹¹Unidad de Hemostasia v Trombosis, Hospital Universitario v Politecnico La Fe, Valencia, Spain; ¹²Consultations d'Hémostase - CRTH, CHU de Nantes, Nantes, France; 13 Medicina III, ASST Santi Paolo e Carlo, Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy; ¹⁴Hematology, Department of Translational and Precision Medicine, La Sapienza University of Rome, Rome, Italy; 15Unità di Ricerca in Aterosclerosi e Trombosi, I.R.C.C.S. "Casa Sollievo della Sofferenza", S. Giovanni Rotondo, Foggia. Italy; 16Ob/Gvn Department of the First I.M. Sechenov Moscow State Medical University, Moscow, The Russian Federation; ¹⁷Hematological Laboratory, Maastricht University Medical Centre, Maastricht, the Netherlands; ¹⁸Reference Centre for Platelet Disorders, Bordeaux University Hospital Centre, Rythmology and Cardiac Modeling Institute (LIRYC), Xavier Arnozan Hospital, Pessac, France; ¹⁹Division of Pediatric Hematology and Oncology, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany; 20Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; ²¹Coagulation Laboratory, Department of Laboratory Medicine, Ghent University Hospital, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium; ²²Hematology Department, S. Bortolo Hospital, Vicenza, Italy; ²³Hemostasis and Thrombosis Unit, Insitute of Internal Medicine, Policlinico Agostino Gemelli Foundation, IRCCS, Rome, Italy; ²⁴Institute of Internal Medicine and Geriatrics, Università Cattolica del Sacro Cuore, Rome, Italy; 25 Université de Strasbourg, Institut National de la Santé et de la Recherche Médicale, Etablissement Français du Sang Grand Est, Unité Mixte de Recherche-S 1255, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France; 26Department of Transfusion and Cell Transplantation Kitasato University School of Medicine, Sagamihara, Japan and ²⁷Department of Biomedical and Molecular Sciences, School of Medicine, Queen's University, Kingston, Ontario, Canada

©2020 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2019.227876

Received: May 28, 2019. Accepted: September 25, 2019. Pre-published: September 26, 2019. Correspondence: *PAOLO GRESELE* - paolo.gresele@unipg.it

SUPPLEMENTAL METHODS

Study population

SPATA was a multicenter, international, retrospective observational study including patients with a definite diagnosis of IPD established according to well-defined laboratory and/or molecular genetic criteria²⁵⁻²⁷ undergoing surgery ¹⁷. IPDs were subdivided into inherited platelet number disorders (IPNDs), when low platelet count was the main phenotypic characteristic, and inherited platelet function disorders (IPFDs), when platelet dysfunction was the dominant phenotypic feature. Patients with acquired platelet disorders of any etiology were excluded ¹⁷.

In the current sub-study we included all the surgical procedures performed in patients for whom thromboprophylaxis should have been considered according to current guidelines, including major and minor invasive interventions^{3, 11,28}. The decision to apply thromboprophylaxis was made by the attending physicians on an individual basis. Patients under 16 years of age were excluded due to the lower intrinsic VTE-risk in younger age^{29, 30}. Major surgery was defined as any procedure in which a body cavity was entered, a mesenchymal barrier was crossed, a facial plane was opened, an organ was removed or normal anatomy was altered while minor invasive procedures were defined as any surgical procedure in which only skin, mucous membranes or superficial connective tissue were manipulated ^{17, 28}. Given the significant in situ thrombotic risk of central venous catheter insertion interventions ³¹, these were also considered in the analysis as minor procedures and minor surgery not requiring immobilization were excluded.

Among the 829 surgical procedures included in the SPATA study, all those potentially amenable to thromboprophylaxis were identified ⁴ and the participating investigators were asked to review their records to extract additional data and, when data were not available in the records, to contact the surgeon who carried out the intervention or, when this was not possible, the patient or his/her relatives. A 48-item structured questionnaire on VTE-risk, thrombotic and bleeding events and antithrombotic prophylaxis had to be filled in for each at-risk procedure. Individual bleeding risk was estimated according to the type of IPD and previous individual bleeding history as assessed by the WHO-bleeding score ¹⁷.

The Institutional Review Board of the coordinating center approved this sub-study (CEAS Umbria, Italy, Approval n. 13138/18), each participating center complied with local ethical rules, and all patients or their legal representatives signed written informed consent.

25

Thromboembolic risk

VTE-risk associated with the individual surgical procedures was estimated using the Caprini Score ³², a validated method to predict VTE-risk based on clinical and laboratory parameters, such as type of intervention, comorbidities, previous VTE and thrombophilia, derived from a prospective study including patients undergoing general surgery ³³. The enrolled procedures were subdivided into four classes of risk depending on the Caprini score (very low risk: 0; low risk: 1-2; moderate risk: 3-4; high risk: \geq 5). Surgical procedures were also classified according to procedure-related VTE-risk in three groups as suggested by the 2008 ACCP guidelines (low risk: minor surgery and interventions not requiring patient immobilization; moderate risk: abdominal, thoracic, gynecological and urological open surgery; high risk: hip or knee arthroplasty, hip fracture surgery, spinal cord injury and procedures associated with high bleeding risk)³. Both the Caprini and the procedure-related VTErisk scores were centrally calculated based on the replies given by the participating investigators to the 48-item questionnaires.

Thrombotic outcomes

Thrombotic outcomes were defined as any symptomatic thrombosis (deep venous, including distal, and superficial) and/or pulmonary embolism occurring within one month after surgery. Diagnosis had to be confirmed using a validated method, including compression ultrasonography (CUS), phlebography, contrast enhanced computed tomography or ventilation/perfusion scintigraphy.

Supplementary table 1. Characteristics of patients and procedures according to the type of defect.

IPFD	Number of procedures (%)	Age median (IQR)	WHO-BS bleeding score median (IQR)	Platelet count at surgery (x10 [°] /L) median (IQR)	Caprini class median (IQR)	Procedure- related VTE risk median (IQR)	Thrombo prophylaxis (%)	LMWH (%)	Mechanical (%)	Any excessive post-surgical bleeding (%)
α2-adrenergic receptor defect	2 (1.8)	58 (58- 59)	1 (1-1)	163.2(162- 163.2)	3 (3-3)	1 (1-1)	0	0	0	0
Combined / granule deficiency	1 (0.9)	43	2 (2-2)	NA	4	1	1 (100)	0	1 (100)	1 (100)
Bernard-Soulier Syndrome (biallelic)	11 (10)	53 (46- 56)	3 (2-3)	60 (35.6-66.5)	4 (2-4)	2 (1-2)	0	0	0	7 (63)
Collagen receptors defect	2 (1.8)	47 (38- 47)	2 (2-2)	58 (58-58)	2 (2-3)	2.5 (2-3)	2 (100)	2 (100)	1 (50)	0
CalDAG-related platelet disorder	1 (0.9)	NA	3	NA	3	2	1	1 (100)	0	0
Delta granule deficiency	20 (18.2)	50 (30- 57)	3(1-3)	NA	3(2-3)	2 (2-3)	13 (65)	1 (5)	12 (60)	2 (10)
Gray platelet syndrome	6 (5.5)	60 (28- 69)	2 (2-2)	NA	2 (1-3)	2 (2-2)	2 (33)	1(16.7)	1 (16.7)	2 (33)
Glanzmann thrombasthenia	33 (30)	49 (37- 60)	3 (1-3)	185(142-212.5)	3 (2-4)	2 (1-2)	5 (15)	4 (12.1)	1 (3)	10 (30)
Glanzmann thrombasthenia variant form	5 (4.5)	32 (21- 38)	2 (2-3)	NA	2 (2-3)	2 (1-2)	0	0	0	1 (20)
Hermansky–Pudlak syndrome	2 (1.8)	52 (52- 52)	2 (2-2)	197.5 (194- 197.5)	4 (4-4)	2 (1-2)	0	0	0	1(50)
P2Y12 deficiency	3 (2.7)	NA	2 (2-2)	NA	2 (1-2)	2 (2-2)	0	0	0	0
Primary secretion defect	18 (16.4)	37 (28- 59)	3(2-3)	245 (194-245)	2 (3-2)	3(3-3)	12 (67)	1 (5.6)	11 (61)	5 (27)
Platelet-type Von Willebrand Disease	4 (3.6)	31 (23- 58)	3 (3-3)	180 (112-180)	1 (1-1)	2 (2-2)	1 (25)	1 (25)	0	2 (50)
Scott syndrome	1 (0,9)	43	NA	NA	3	1	0	0	0	0
Thromboxane A2 receptor defect	1 (0.9)	24	2	NA	4	1 (1-1)	0	0	0	0
Total	110	48 (31-57)	4 (3-4)	145 (59 -200)	2 (1-4)	1 (1-2)	38 (34.5)	12 (10.9)	27 (24.5)	31 (14.7)

IPND	Number of procedures (%)	Age, median (IQR)	WHO- BS, median (IQR)	Platelet count at surgery (x 10 ⁹ /L), median (IQR)	Caprini class, median (IQR)	Procedure- related VTE risk median (IQR)	Thrombo prophylaxis (%)	LMWH (%)	Mechanical (%)	Any excessive post- surgical bleeding (%)
ACTN1-related thrombocytopenia	5 (5)	54 (19- 64)	2 (1-2)	NA	3 (2-3)	1 (1-2)	0	0	0	0
ANKRD26-related thrombocytopenia	32 (32)	44 (29- 56)	1 (0-2)	NA	3 (2-4)	2 (1-2)	1 (3.1)	1 (3.1)	0	4(12.5)
Familial platelet disorder and predisposition to acute myelogenous leukemia	4 (4)	26 (21- 57)	2 (0-2)	NA	2 (1-3)	2 (2-3)	1 (25)	1 (25)	1 (25)	3 (75)
Bernard-Soulier Syndrome (monoallelic)	26 (26)	40 (31- 56)	0 (0-2)	120 (120- 782.5)	2 (1-4)	2 (2-2)	3 (11)	3 (11.5)	0	4 (15.4)
MYH9-related disease	30 (30)	37 (25- 50)	2 (1-2)	39.5 (34.5- 92.5)	3 (2-4)	2(1-2)	4 (13.3)	3 (10)	1 (3.3)	8 (26.7)
TRPM7 channel defect	1(1)	34	0	8	4	2 (2-2)	1	1 (100)	1 (100)	0
TUBB1-related thrombocytopenia	1(1)	33	2	88	3	1 (1-1)	1	1 (100)	0	0
X-linked thrombocytopenia	1(1)	26	2	NA	2	2 (2-2)	0	0	0	0
Total	100	41 (26-54)	3(1-3)	88 (40-120)	2(1-3)	2 (1-2)	11	10	3	19

WHO-BS: World Health Organization bleeding assessment scale; *LMWH*: low molecular weight heparin; *IPFD*: inherited platelet function disorders, *IPND*: inherited platelet number disorders; *NA*: not applicable, missing data

Supplementary table 2. Characteristics of patients with FV Leiden mutation and cancer

	F V Leiden	Malignancy
N (% of total)	2 (0.9)	11 (5.2)
Age median (IQR)	26	59 (55-72)
Mechanical tromboprophylaxis N	0 (0)	5 (45)
(%)		
LMWH thromboprophylaxis N (%)	0 (0)	4 (36)
Pro-hemostatic preoperatory	1 (50)	
prophylaxis N (%)	1 (50)	6 (54.5)
Type of surgery N (%)		
Orthopedic	0 (0)	1 (9.1)
Abdominal	0 (0)	1 (9.1)
Cardiovascular	0 (0)	2 (18.1)
Gynecological	2 (100)	2 (18.1)
Neuro/spine surgery	0 (0)	1 (9.1)
Thoracic	0 (0)	3 (27.2)
Urological	0 (0)	1 (9.1)
Post-surgical hemorrhage N (%)	0 (0)	3 (27)

Supplementary table 3. Logistic regression analysis of parameters associated with LMWH use.

	OR	CI	P value
Gender (female)	0.587	0.117-2.950	0.518
Age	1.053	1.007-1.100	0.023
Caprini class of risk			0.002
Very low risk	0.169	0.016-1.733	0.134
Low risk	0.066	0.007-0.608	0.016
Moderate risk	0.060	0.011-0.330	0.001
High risk	1		
Obesity	0.617	0.129-2.958	0.546
Surgery			0.680
Orthopedic	1		
Abdominal	0.152	0.027-0.869	0.034
Cardiovascular	-	-	-
Gynecological	1.543	0.253-9.416	0.638
Neuro/spine surgery	0.161	0.005-4.295	0.295
Thoracic	0.286	0.015-5.566	0.408
Urological	0.298	0.020-4.396	0.378
WHO-BS			0.505
WHO 0	0.086	0.005-1.435	0.088
WHO 1	0.870	0.162-4.671	0.871
WHO 2	0.543	0.090-3.263	0.504
WHO 3	_	-	_
WHO 4	1		

LMWH: low molecular weight heparin; *WHO-BS:* World Health Organization bleeding assessment scale. Surgey risk: VTE class of risk according to surgery.

Supplementary table 4. Logistic regression analysis of the parameters associated with the need of emergency treatment of post-surgical bleeding

	OR	CI	P value
LMWH use	0.737	0.236-2.302	0.599
WHO Bleeding			0.000
score			0.002
WHO 0	0.054	0.005-0.636	0.020
WHO 1	0.620	0.129-2.2969	0.549
WHO 2	0.283	0.064-1.250	0.096
WHO 3	1.239	0.288-5.327	0.773
WHO 4	1		
Gender (female)	1.210	0.564-2.596	0.625
IPFD vs IPND	1.070	0.448-2.554	0.879
Any preoperative			
antihemorrhagic	1.556	0.631-3.836	0.337
prophylaxis			

LMWH: low molecular weight heparin; *IPFD*: inherited platelet function disorders; *IPND*: inherited platelet number disorders; *WHO-BS*: World Health Organization bleeding assessment scale.

Supplementary table 5. Logistic regression analysis of predictors of unsuccessful control of	
bleeding	

	OR	CI	P value
LMWH use	2.057	0.496-8.536	0.321
WHO-BS			0.904
WHO 0	-	-	-
WHO 1	0.298	0.020-4.447	0.380
WHO 2	0.407	0.036-4.567	0.466
WHO 3	0.551	0.051-6.001	0.625
WHO 4	1		
Gender (female)	0.355	0.114-1.101	0.625
IPFD vs IPND	6.760	1.139-40.123	0.879
Any prophylaxis	0.524	0.127-2.170	0.337
Caprini class of risk			0.449
Very low risk	1		
Low risk	0.403	0,049-3,320	0,398
Moderate risk	0.944	0.143-6.205	0.952
High risk	1.597	0.277-9.209	0.601

Logistic regression. *LMWH*: low molecular weight heparin; *IPFD*: inherited platelet function disorders; *IPND*: inherited platelet number disorders; *WHO-BS*: World Health Organization bleeding assessment scale.