Pre-treatment maximum standardized uptake value predicts outcome after frontline therapy in patients with advanced stage follicular lymphoma

Paolo Strati, ${ }^{1}$ Mohamed Amin Ahmed, ${ }^{1}$ Nathan H. Fowler, ${ }^{1}$ Loretta J. Nastoupil, ${ }^{1}$ Felipe Samaniego, ${ }^{1}$ Luis E. Fayad, ${ }^{1}$ Fredrick B. Hagemeister, ${ }^{1}$ Jorge E. Romaguera, ${ }^{1}$ Alma Rodriguez, ${ }^{1}$ Michael Wang, ${ }^{1}$ Jason R. Westin, ${ }^{1}$ Chan Cheah, ${ }^{1}$ Mansoor Noorani, ${ }^{1}$ Lei Feng, ${ }^{2}$ Richard E. Davis ${ }^{1}$ and Sattva S. Neelapu ${ }^{1}$
${ }^{1}$ Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center and ${ }^{2}$ Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
©2020 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2019.230649
Received: June 28, 2019.
Accepted: October 4, 2019.
Pre-published: October 10, 2019.
Correspondence: SATTVA S. NEELAPU - sneelapu@mdanderson.org

Supplementary Data

Pre-Treatment Maximum Standardized Uptake Value Predicts Outcome after Frontline Therapy in Patients with Advanced Stage Follicular Lymphoma

Strati et al.

Supplementary Table. Analysis of multiple single unit increments of SUV max and PFS in 346 patients included in the study. A starting threshold of 13 was selected, based on historical association between SUV max and risk of transformation. No significant association between SUV $_{\max }$ thresholds and PFS could be observed when limiting the analysis to the 294 patients with $S U V_{\max }<18$

SUV ${ }_{\text {max }}$	Patients $(\mathrm{N}=346)$	Events	Median PFS (months)	HR [95\% CI]	p-value
$\begin{array}{r} <=13 \\ >13 \end{array}$	$\begin{aligned} & 224 \\ & 122 \\ & \hline \end{aligned}$	$\begin{aligned} & 85 \\ & 44 \\ & \hline \end{aligned}$	Not reached Not reached	1 [0.73-1.5]	0.82
$\begin{array}{r} <=14 \\ >14 \end{array}$	$\begin{aligned} & 240 \\ & 106 \end{aligned}$	$\begin{aligned} & 90 \\ & 39 \end{aligned}$	145 Not reached	1 [0.71-1.5]	0.85
$\begin{array}{r} <=15 \\ >15 \end{array}$	$\begin{gathered} 250 \\ 96 \end{gathered}$	$\begin{aligned} & 94 \\ & 35 \end{aligned}$	145 Not reached	1 [0.69-1.5]	0.91
$\begin{array}{r} <=16 \\ >16 \end{array}$	$\begin{gathered} 270 \\ 76 \end{gathered}$	$\begin{gathered} 100 \\ 29 \end{gathered}$	Not reached Not reached	1.1 [0.74-1.7]	0.61
$\begin{array}{r} <=17 \\ >17 \end{array}$	$\begin{gathered} 283 \\ 63 \end{gathered}$	$\begin{gathered} 104 \\ 25 \end{gathered}$	Not reached 114	1.2 [0.80-1.9]	0.34
$\begin{array}{r} <=18 \\ >18 \end{array}$	$\begin{gathered} 294 \\ 52 \end{gathered}$	$\begin{gathered} 106 \\ 23 \\ \hline \end{gathered}$	Not reached 114	1.5 [0.95-2.3]	0.08
$\begin{array}{r} <=19 \\ >19 \end{array}$	$\begin{gathered} 302 \\ 44 \end{gathered}$	$\begin{gathered} 111 \\ 18 \end{gathered}$	Not reached 114	1.3 [0.79-2.2]	0.29
$\begin{array}{r} <=20 \\ >20 \end{array}$	$\begin{gathered} 305 \\ 41 \end{gathered}$	$\begin{gathered} 112 \\ 17 \end{gathered}$	Not reached 114	1.4 [0.82-2.3]	0.23

