# Transforming activities of the NUP98-KMT2A fusion gene associated with myelodysplasia and acute myeloid leukemia

James N. Fisher,<sup>1,2\*</sup> Angeliki Thanasopoulou,<sup>1,2\*</sup> Sabine Juge,<sup>1,2</sup> Alexandar Tzankov,<sup>3</sup> Frederik O. Bagger,<sup>1,2</sup> Max A. Mendez,<sup>1,2</sup> Antoine H.F.M. Peters<sup>4,5</sup> and Juerg Schwaller<sup>1,2</sup>

<sup>1</sup>University Children's Hospital Basel (UKBB); <sup>2</sup>Department of Biomedicine, University of Basel; <sup>3</sup>Institute for Pathology, University of Basel; <sup>4</sup>Faculty of Sciences, University of Basel and <sup>5</sup>Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland

\*JNF and ATh contributed equally as co-first authors.

©2020 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol2019.219188

Received: March 1, 2019. Accepted: September 24, 2019. Pre-published: September 26, 2019. Correspondence: *JUERG SCHWALLER* - j.schwaller@unibas.ch Supplementary materials for

## Transforming activities of the *NUP98-KMT2A* fusion gene associated with myelodysplasia and acute myeloid leukemia

James N. Fisher, Angeliki Thanasopoulou, Sabine Juge, Alexandar Tzankov,

Frederik O. Bagger, Max A. Mendez, Antoine H.F.M. Peters, Juerg Schwaller

<u>Correspondence</u>: Juerg Schwaller MD Email: <u>J.Schwaller@unibas.ch</u>

This supplementary file includes:

supplementary methods, 3 supplementary figures, 5 supplementary tables.

#### **Supplementary Methods**

#### Establishment of rtTA;NUP98-KMT2A transgenic mice

A human full-length *NUP98-KMT2A* cDNA was cloned and fully sequenced before cloning it into the *p2Lox* targeting vector and electroporation into A2Lox-Cre ES cells. The transgene is targeted into a region upstream of the *Hprt* locus on the X chromosome. *rtTA;NUP98-KMT2A* double transgenic mice were established (here referred as "iNUP98-KMT2A") and backcrossed for over 10 generations to C57BL/6 mice.

#### Bone marrow reconstitution experiments

Prior to BM transplantation (BMT), recipient mice (6-10 week-old C57BL/6) were irradiated: 1 dose of 600 cGy (sublethal) or 2 doses of 600 cGy 4 hours apart (lethal) (Gammacell 40 Exactor, Best Theratronics, Canada). Donor mice were sacrificed by asphyxiation with CO<sub>2</sub> and total BM was isolated from the long bones, the hips and the spine. Where indicated, C57BL/6 wild type (WT) support BM cells were isolated in a similar manner and mixed with donor cells prior to injection. Recipient mice were provided with DOX-impregnated chow pellets or normal chow from the day of transplant.

#### **Blood Analysis**

Peripheral blood (PB) was isolated by tail vein bleeding or from cardiac puncture after sacrifice, diluted in 0.9% saline solution and analyzed using an Advia 2120 hematology analyzer (Siemens).

#### Histology and PB smear staining

Mouse organs were fixed in 4% buffered formaldehyde, cut in two halves along long respective axes, dehydrated, embedded in paraffin blocks, sectioned (4µm), automatically H&E-stained and covered analogously to the accredited standard operating procedures at the Institute of Pathology of the University Hospital Basel. PB smears were stained with Wright Giemsa solution.

#### qPCR of iNUP98-KMT2A hematopoietic stem and progenitor cell mRNA

Total RNA was extracted from fresh and frozen cells using the NucleoSpin<sup>®</sup> RNA XS kit (Macherey-Nagel, Germany). 0.5-1 µg of total RNA was reverse transcribed with High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, USA) using random hexamer primers. cDNA was analyzed by quantitative real-time PCR (ABI prism 7700, Applied Biosystems) using power SYBR PCR (Applied Biosystems, USA) using the primers listed in **Supplementary Table S1**. Ct values for each sample were normalized to *Gapdh* mRNA levels.

#### **Bioinformatic Analysis**

From raw Ct values on qPCR arrays, deltaCt values was calculated by subtraction of the average values of housekeeping genes: Actb, B2m, Gapdh, Gusb, and Hsp90ab. A linear model was set up using limma[22] for R, and the model formular was "~ 0 + Group", where Group is a factor reflecting passage (late or early) and mutation status (iNUP98-KMT2A or Control). In order to account for the batch effect of the experiments having been performed at different dates, and by different experimentalists, the linear model fitted was while regressing out this effect. Briefly. the function *duplicateCorrelation* was used to identify the inter subject correlation, and the ImFit was called providing this trimmed average estimated inter-duplicate correlation as input. Furthermore, information about batch was provided as a blocking factor. This batch correction method fits the model, while simultaneously removing the effect of batch. In order to calculate moderated t-statistics for each gene between Groups eBayes was applied for the desired comparisons (contrasts).

### **Supplementary Figure 1**

- **A.** Peripheral blood values for control (WT), iNUP98-KMT2A mice on DOX, and iNUP98-KMT2A mice kept off DOX (mean age: 56 weeks).
- B. Breakdown of number of total BM cells immunophenotyped as either myeloid (Mac-1<sup>+</sup>, Gr-1<sup>+</sup>, n=4), B-cells (B220<sup>+</sup>, n=2), or T-cells (CD3<sup>+</sup>, n=2).
- C. Percentages of apoptotic total BM cells immunophenotyped as either myeloid (Mac-1<sup>+</sup>, Gr-1<sup>+</sup>), erythroid (CD71<sup>+</sup>/Ter119<sup>+</sup>), B-cells (B220<sup>+</sup>), or Tcells (CD3<sup>+</sup>) (n=4).
- D. Absolute number of LSK collected from control (WT) and iNUP98-KMT2A mice. The mean +/-SD of 3 biological replicates is shown.
- E. The percentage of iNUP98-KMT2A total BM cells immunophenotyped as either myeloid (Mac-1<sup>+</sup>, Gr-1<sup>+</sup>), erythroid (CD71<sup>+</sup>/Ter119<sup>+</sup>), B-cells (B220<sup>+</sup>), or T-cells (CD3<sup>+</sup>) in G<sub>0</sub>, G<sub>1</sub>, or G<sub>2</sub>/M phase of the cell cycle. The mean +/-SD of 3 biological replicates is shown. \*<0.05, paired t-test, n=3.</p>

## **Supplementary Figure 2**

- A. Histological sections and peripheral blood smears from 6 leukemic iNUP98-KMT2A mice. Images for M1-4 are repeated from Fig. 3B and are included for completeness. Scale bars: BM: 100µm; liver: 100µm; PB: 10µm; lung: 100µm; spleen: 100µm.
- B. Percentages of total BM cells stained with Mac-1 and Gr-1-binding antibodies. Data for M1-4 is repeated from Fig. 3C and is included for completeness.
- C. Percentages of total BM cells stained with CD3 and B220-binding antibodies.N.A.: data not available for these mice.

D. Percentages of total BM cells stained with FcyRII/III and c-Kit-binding antibodies.

#### **Supplementary Figure 3**

- A. Kaplan-Meier curves indicating the disease-free survival times for iNUP98-KMT2A mice given DOX food and exposed or not to sublethal irradiation.
   \*\*<0.01, log-rank test, n=5.</li>
- B. The growth of Lin-negative BM cells from control (WT) and iNUP98-KMT2A mice grown *in vitro* was assessed over a period of seven days in the presence of DOX (1µg/mL). The mean values +/-SD of triplicate cultures are shown, \*<0.05, \*\*<0.01, unpaired t-test, n=5.</p>
- C. NUP98-KMT2A expression was analyzed by qPCR after 6 days *in vitro*.
   \*<0.05, \*\*<0.01, unpaired t-test, n=3.</li>
- D. Numbers of colonies formed after 5000 control (WT) and iNUP98-KMT2A Linnegative BM cells were grown in methylcellulose (MC) containing cytokines and DOX (1µg/mL). The mean +/-SD is reported. No significant differences were observed.
- E. The percentage of iNUP98-KMT2A Lin<sup>-</sup> cells in G<sub>0</sub>, G<sub>1</sub>, or G<sub>2</sub>/M phase of the cell cycle. The mean +/-SD of 3 biological replicates is shown. \*<0.05, paired t-test, n=3.</p>
- F. The growth of control (WT) and iNUP98-KMT2A MEF in liquid medium at early passage is shown. The mean +/-SD of two biological replicates is shown.

G. The growth of control (WT) and iNUP98-KMT2A MEF in liquid medium at late passage is shown. The mean +/-SD of two biological replicates is shown.
\*<0.05, \*\*<0.01, 2-way ANOVA.</p>

## **Supplementary Table 1**

Primers used in the current study for qPCR.

## Supplementary Table 2

Values derived from analysis of NUP98-KMT2A MEF by RT<sup>2</sup> qPCR array. Values represent late passage MEF and show the expression levels of 79 genes in NUP98-KMT2A positive MEF relative to control MEF cultures.

## Supplementary Table 3

Mouse characteristics and PB data for primary-induced NUP98-KMT2A and BMT mice.

## Supplementary Table 4

Mouse characteristics and PB data for primary-induced NUP98-KMT2A mice which developed AML.

## Supplementary Table 5

Mouse characteristics and PB data for sublethally-irradiated NUP98-KMT2A mice.

## Fisher et al. Sup. Figure 1



## Fisher et al. Sup. Figure 2



## Fisher et al. Sup. Figure 3



Fisher et al. Sup. Table 1. Primers used in the current study for qPCR analysis.

| Target      | FWD (5'-3')                   | REV (5'-3')                    |
|-------------|-------------------------------|--------------------------------|
| Gapdh       | ATG ACA TCA AGA AGG TGG TG    | CAT ACC AGG AAA TGA GCT TG     |
| HoxA5       | CTC ATT TTG CGG TCG CTA TCC   | ATC CAT CGG ATT GTA GCC GTA    |
| HoxA9       | AGACCGAGCAAAAGACGAG           | CTGAGGTTAGAGCCGCTTT            |
| HoxA10      | CAC CAC CCA CTC TGG TTT G     | TGC ATT TTC GCC TTT GGA ACT    |
| HoxB3       | GCA CCT GGA GGG TGA CTA C     | CCC CCG TTA TTG CTG TTG C      |
| HoxB4       | CAG AGC GAT TAC CTA CCC AGC   | CGT AGC GCT GCA CAG TGC AC     |
| HoxB6       | GCT CTA CTC GTC TGG CTA TGC   | GTG GGT AAT AGG AGG ACG CC     |
| HoxB8       | ACA GCT CTT TCC CTG GAT GC    | CGT GCG ATA CCT CGA TCC TC     |
| НохС6       | AAT TCC ACC GCC TAT GAT CCA   | ACA TTC TCC TGT GGC GAA TAA AA |
| NUP98-KMT2A | CCAGCAGCACATCAATAGTC          | AGCTGAATTTCGGTCAGAGC           |
| NUP98       | CCAGGAGCCAGTTCCAGATT          | GCAATGATGCTTTCATGATCTGT        |
| Sirt1       | GGAGCAGATTAGTAAGCGGCTTG       | GTTACTGCCACAGGAACTAGAGG        |
| Prkcd       | ACA TTC TGC GGC ACT CCT GAC T | CCG ATG AGC ATT TCG TAC AGG AG |
| Twist1      | GATTCAGACCCTCAAACTGGCG        | AGACGGAGAAGGCGTAGCTGAG         |
| Vim         | CGGAAAGTGGAATCCTTGCAGG        | AGCAGTGAGGTCAGGCTTGGAA         |
| Tert        | GAAAGTAGAGGATTGCCACTGGC       | CGTATGTGTCCATCAGCCAGAAC        |
| Rbl2        | TCT CGG TGT CTA AGT GCT GCC T | GTT CTC CTG AAC ATA CCT CAC GC |

## Fisher et al. Sup. Table 2. NUP98-KMT2A MEF RT<sup>2</sup> qPCR array data.

|          | logFC      | AveExpr    | P.Value    |
|----------|------------|------------|------------|
| Prkcd    | -2.6644001 | 5.48562532 | 0.00069013 |
| Twist1   | -2.6574001 | 3.98449998 | 0.00259186 |
| Rbl2     | -2.0243998 | 6.73387532 | 0.02600805 |
| Col1a1   | -1.7269001 | -0.7655003 | 0.03363591 |
| Tert     | -2.3943996 | 9.6901248  | 0.03741225 |
| Sirt1    | -1.4443989 | 6.00712495 | 0.04294075 |
| lgf1r    | -0.9944    | 3.68249945 | 0.04409883 |
| Vim      | -1.270401  | -1.242625  | 0.04509946 |
| Ccna2    | 1.11509991 | 2.66387491 | 0.05176579 |
| Ets1     | 1.44460011 | 6.00012546 | 0.05717406 |
| Morc3    | -1.1644001 | 6.27487474 | 0.05946814 |
| lng1     | -1.3023996 | 5.02162485 | 0.06098824 |
| Akt1     | -1.2409    | 2.92337494 | 0.06176317 |
| Cdkn2d   | -1.4778995 | 8.15124946 | 0.06821009 |
| Cdk6     | -2.6798992 | 6.0486248  | 0.0692436  |
| Map2k6   | -4.6549005 | 8.59662514 | 0.07330706 |
| E2f1     | -1.0313997 | 6.51449995 | 0.08244486 |
| Cdk2     | 1.01660061 | 4.39487486 | 0.08267551 |
| Terf2    | -0.9274006 | 6.04237514 | 0.08372268 |
| Col3a1   | -3.1904001 | -1.4281249 | 0.08851775 |
| Ccnd1    | 1.27610016 | 0.52149992 | 0.09286648 |
| Creg1    | 1.15209961 | 4.03825025 | 0.09821737 |
| Cdkn1c   | -4.0764007 | 4.74350004 | 0.1082637  |
| Cdkn2c   | -1.2614002 | 4.75650005 | 0.11512015 |
| Ccnb1    | 1.3621006  | 4.15812497 | 0.1152938  |
| ld1      | -1.6243992 | 2.09275012 | 0.14494891 |
| Mdm2     | 0.88159943 | 2.05237537 | 0.14717842 |
| Pten     | -1.0524006 | 1.75724964 | 0.16026999 |
| Cdkn2b   | 1.27909947 | 2.51612477 | 0.16990731 |
| Sod2     | 0.79610062 | 2.98262505 | 0.18763854 |
| lgfbp7   | 0.7571001  | 1.37037497 | 0.23163661 |
| Irf3     | 0.95410061 | 4.17887526 | 0.24069374 |
| Trp53bp1 | -0.9478989 | 6.11200004 | 0.24214803 |
| Serpine1 | 2.72659969 | 0.95425015 | 0.25481097 |
| Nbn      | 0.57159996 | 5.56637506 | 0.28216403 |
| Ccne1    | 1.16660023 | 6.05687528 | 0.29694269 |
| Tbx2     | -1.2838993 | 9.21412496 | 0.30803044 |
| Ets2     | -0.6939011 | 6.13900023 | 0.32067927 |
| lgfbp3   | -3.8539    | 2.76312475 | 0.32640552 |
| Pik3ca   | -0.5634003 | 3.77525024 | 0.33372849 |

| Map2k1  | -0.7059002 | 4.17312532 | 0.34318979 |
|---------|------------|------------|------------|
| Rb1     | 0.53760052 | 4.98587518 | 0.34793639 |
| Abl1    | -0.7349014 | 6.21287518 | 0.34842797 |
| Plau    | 0.86959935 | 5.15500026 | 0.35944757 |
| Sparc   | -0.6244001 | -1.8087499 | 0.36002515 |
| Egr1    | -1.1279001 | 0.98024993 | 0.3721072  |
| Calr    | 0.44609928 | -0.9050002 | 0.38371221 |
| Pcna    | -0.5474005 | 2.98700027 | 0.38981351 |
| Atm     | -0.482399  | 6.59862523 | 0.3918157  |
| Cdc25c  | 0.52109909 | 6.47999983 | 0.40403863 |
| Nfkb1   | -0.6004    | 4.01587491 | 0.41140048 |
| Cdkn1b  | -0.6373997 | 3.27300005 | 0.41251743 |
| Aldh1a3 | -0.9548988 | 9.26649957 | 0.42027465 |
| Bmi1    | -0.3383999 | 3.7048748  | 0.42443822 |
| Nox4    | -0.4988995 | 6.57824974 | 0.44734398 |
| Cdk4    | -0.3873997 | 1.96049981 | 0.47344011 |
| Chek2   | -0.8658991 | 7.74075012 | 0.48662207 |
| Hras    | 0.36209965 | 3.17775016 | 0.4962286  |
| Tgfb1i1 | 0.33759975 | 2.22287516 | 0.49645811 |
| Sod1    | 0.38910008 | 1.14075022 | 0.50411162 |
| Rbl1    | 0.42410088 | 4.88637524 | 0.50594409 |
| Glb1    | -0.4798994 | 5.11462503 | 0.55873858 |
| Gadd45a | 0.68710041 | 6.4563747  | 0.56363706 |
| Thbs1   | 0.55659962 | -2.1503746 | 0.57609433 |
| Мус     | 0.29109955 | 4.80524998 | 0.58141749 |
| lgf1    | -0.7289009 | 4.26425033 | 0.66266563 |
| Trp53   | 0.16359997 | 4.76512508 | 0.70395286 |
| Chek1   | 0.22510147 | 7.13312512 | 0.7226313  |
| Cdkn1a  | -0.1769009 | 2.2937501  | 0.74135841 |
| Tgfb1   | 0.11359978 | 3.51762466 | 0.79719852 |
| Cd44    | 0.28759956 | 2.20762496 | 0.80264652 |
| E2f3    | 0.08060074 | 5.38312511 | 0.8513705  |
| Mapk14  | 0.10560036 | 4.754      | 0.85772016 |
| Irf5    | 0.21859932 | 8.65649991 | 0.8760064  |
| Fn1     | -0.0864    | -0.803375  | 0.88341639 |
| Map2k3  | 0.08759976 | 4.22662477 | 0.90376734 |
| Cdkn2a  | 0.13610077 | 3.67325001 | 0.9273292  |
| Gsk3b   | 0.03209877 | 2.79812508 | 0.95737138 |
| Cited2  | -0.0049    | 1.86862497 | 0.99228674 |

Fisher et al. Sup. Table 3. Data for primary-induced NUP98-KMT2A and BMT mice.

|              |          |          |          |          |          |          |          |          |          |          |          |          | _        |          |          |          | <br>  |       |       |        |       |        |        |        |        |        |        |
|--------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-------|-------|-------|--------|-------|--------|--------|--------|--------|--------|--------|
| iver (mg)    | 1760     | 1874     | 1780     | 1723     | 1350     | 2351     | 1694     | 1630     | 4600     | 1700     | NA       | 1300     | 1230     | 2000     | 1000     | 1000     | 1000  | 1000  | 1000  | 1000   | 1000  | NA     | 1360   | 1390   | 780    | 1410   | 934    |
| en (mg) L    | 50       | 181      | 210      | 324      | 119      | 159      | 126      | 297      | 197      | 100      | NA       | 100      | 80       | 113      | 80       | 130      | 75    | 80    | 80    | 80     | 150   | 60     | 130    | 140    | 70     | 107    | 70     |
| ric (%) Spl  | 1.35     | 4.21     | 4.90     | 6.74     | 2.73     | 8.00     | 3.08     | 3.50     | 6.96     | 6.07     | 2.87     | 5.67     | 3.16     | 2.80     | 3.42     | 1.78     | 5.04  | 2.87  | 2.84  | 4      | 5.9   | NA     | 8.59   | 6.18   | 4.59   | NA     | NA     |
| Is/L) RET    | 128.4    | 331.2    | 396.0    | 573.3    | 251.1    | 362.1    | 214.5    | 323.7    | 307.8    | 495.0    | 275.1    | 484.8    | 333.9    | 283.8    | 362.1    | 157.5    | 248.1 | 261   | 278.7 | 360.3  | 521.1 | AN     | 729.9  | 479.1  | 378    | NA     | NA     |
| (x 10^9cel   |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |       |       |       |        |       |        |        |        |        |        |        |
| (%) RETIC    | 1.60     | 0.50     | 1.00     | 2.50     | 0.20     | 2.80     | 1.30     | 1.60     | 2.10     | 4.00     | 0.70     | 0.80     | 0.01     | 0.40     | 3.00     | 1.10     | 1.9   | 4.4   | 0.6   | 3.6    | 1.8   | AN     | 0.6    | 1.4    | 1      | NA     | NA     |
|              | 0.06     | 0.03     | 0.03     | 0.21     | 0.00     | 0.06     | 0.06     | 0.06     | 0.00     | 0.27     | 0.03     | 0.06     | 2.70     | 0.03     | 0.21     | 0.06     | 0.15  | 0.24  | 0.06  | 0.18   | 0.15  | ΝA     | 0.06   | 0.12   | 0.06   | NA     | NA     |
| IC (x 10^9c  |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |       |       |       |        |       |        |        |        |        |        |        |
| hils (%) LU  | 0.00     | 0.10     | 0.20     | 0.30     | 0.20     | 0.40     | 0.40     | 0.80     | 0.80     | 0.10     | 0.30     | 0.30     | 0.50     | 0.20     | 0.30     | 0.10     | 0.3   | 1.1   | 0.2   | 0.4    | 0.3   | ΝA     | 0.5    | 0.7    | 0.2    | AN     | NA     |
| (%) Basop    | 0.00     | 3.20     | 3.10     | 3.30     | 4.40     | 5.20     | 4.60     | 1.70     | 2.80     | 2.50     | 2.00     | 0.60     | 4.00     | 1.70     | 3.70     | 1.40     | 2.1   | 3.5   | 2     | 2.2    | 3.3   | NA     | 5.1    | 2.6    | 7.2    | NA     | NA     |
| Eosinophils  |          |          |          |          |          |          |          | -        |          |          |          |          |          |          |          |          |       |       |       |        |       |        |        |        |        |        |        |
| cotes (%)    | 1.7      | 1.3      | 1.3      | 2.9      | 3.9      | 6.5      | 3.7      | 4.9      | 5.5      | 2.5      | 1.1      | 12.3     | 2.3      | 3.2      | 2.4      | 0.6      | 1.2   | 0.4   | 1.6   | 1.43   | 2.9   | NA     | 3.1    | 2      | 4.3    | NA     | NA     |
| mom (%)      | 88.7     | 91.3     | 90.2     | 75.2     | 48.6     | 77.8     | 72.2     | 69.0     | 73.0     | 56.1     | 89.7     | 79.6     | 82.4     | 87.8     | 81.8     | 53.8     | 84.4  | 66.7  | 92.2  | 81     | 73.6  | NA     | 51     | 65.1   | 59.7   | NA     | NA     |
| mphocytes    |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |       |       |       |        |       |        |        |        |        |        |        |
| hils (%) Lv  | 6.2      | 3.6      | 4.2      | 15.9     | 42.7     | 7.3      | 17.9     | 12.0     | 15.9     | 34.7     | 6.2      | 6.4      | 9.9      | 6.7      | 8.8      | 43.0     | 10.1  | 23.9  | 3.3   | 11.5   | 18.1  | NA     | 39.7   | 28.2   | 27.7   | AN     | NA     |
| Neutrop      | 73       | 66       | 26       | 86       | 55       | 22       | 34       | 60       | 8        | 00       | 33       | 19       | 51       | 88       | 4        | 29       | 35    | 80    | 4     | 83     | 22    | IA     | 37     | 17     | 39     | PI     | IA     |
| 1v9 cells/L) | - 10     | 36       | 7        | 75       | 11       | 2        | 11       | 15(      | 1        | 15(      | 15       | 17:      | õ        | 15,      | 12       | 16:      | 56    | 13    | 11(   | 12(    | 80    | ~      | 2      | 13.    |        | ~      | ~      |
| () PLT (x 1  | . 6;     | 9        | 5        | 9        | 4        | 9        | 5        | 6        | 5        | Ŀ.       | 5        | 89       | 4        | 7        | 7        | 1        | 5     | 5     | 89    | 4      | 9     | A      | 4      | 9      | e,     | A      | A      |
| ) RDW (9     | 47 15    | 35 15    | 20 16    | 38 15    | 38 12    | 87 14    | 38 15    | 32 12    | 50 18    | 38 14    | 35 12    | 14 13    | 53 13    | 47 12    | 56 12    | 29 13    | 35 17 | 29 13 | 35 12 | 23     | 11    | A      | 50     | 38 16  | 20 14  | A N    | A N    |
| HGB (g/L     | ÷        | 1        | 7        | 2        | 1        |          | 1        | 10       | -        | 5        | 1        | 1        | 1        | ÷        | 5        | 5 1      | 2 1   | 9     | 1     | 9      | 2 1   | 4      | 9      | Ē      | 1      | 2      | 4      |
| 2 cells/L)   | 3.6      | 7.8      | 8.0      | 8.5      | 9.2      | 4.5      | 6.9      | 9.1      | 4.4      | 8.1      | 9.6      | 8.5      | 10.5     | 10.1     | 10.5     | 8.8      | 4.9   | 9.0   | 9.8   | •      | 8.8   | Ñ      | 8.4    | 7.7    | 8.2    | Ż      | N      |
| BC (x 10^1)  |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |       |       |       |        |       |        |        |        |        |        |        |
| ells/L) R    | 3.33     | 3.78     | 2.82     | 8.55     | 3.93     | 1.65     | 5.55     | 4.20     | 0.45     | 6.72     | 5.76     | 7.95     | 4.29     | 7.80     | 7.14     | 4.74     | 7.95  | 5.46  | 9.75  | 5.13   | 8.22  | NA     | 8.37   | 7.74   | 5.55   | NA     | NA     |
| 10 (x10^9 c  |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |       |       |       |        |       |        |        |        |        |        |        |
| veeks) WB    |          |          |          |          |          |          |          |          |          |          |          |          | _        |          |          |          | _     | _     | _     |        | _     |        | _      |        |        |        |        |
| Latency (w   | 25       | 30       | 29       | 29       | 21       | 72       | 72       | 79       | 106      | 65       | 33       | 21       | 39       | 43       | 13       | 41       | 30    | 32    | 32    | 32     | 34    | 34     | 46     | 48     | 50     | 81     | 81     |
| Sex          | u.       | u.       | u.       | u.       | u.       | Σ        | Σ        | u.       | Σ        | u.       | ш     | u.    | u.    | u.     | u.    | u.     | u.     | u.     | u.     | u.     | u.     |
| I setting    | MT2A     |       |       |       |        |       | ε      | ε      | ε      | ε      | ε      | ε      |
| rimenta      | U P98-KN | U P98-Kh | J P98-Kh | J P98-Kh | J P98-Kh | U P98-Kh | U P98-Kh | J P98-Kh | U P98-Kh | U P98-Kh | U P98-Kh | U P98-Kh | NH-864 U | U P98-Kh | J P98-Kh | U P98-Kh | XOQ + | XOQ + | XOQ + | XOQ +. | XOQ + | DOX re |
| Expe         | 2 1° N   | 7 1° NI  | 2 1° NI  | 3 1° NI  | 4 1° NI  | 3 1° NI  | 4 1° NI  | 4 1° NI  | 7 1° NI  | 4 1° N(  | 3 1° N(  | 5 1° NI  | 5 1° NI  | 2 1° NI  | 0 1° NI  | 1 1° NI  | 7 BMT | 8 BMT | 9 BMT | 0 BMT  | 1 BMT | 6 BMT  | 7 BMT  | 8 BMT  | 1 BMT  | D BMT  | 9 BMT  |
| use ID       | 80       | 16       | 21.      | 21:      | 26       | 29       | 29       | 30       | 43       | 53       | 73.      | 75:      | 75       | 94.      | 95       | 95.      | 110   | 110   | 110   | 111    | 111.  | 113,   | 113    | 113,   | 114.   | 114    | 113    |
| β            |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |       |       |       |        |       |        |        |        |        |        |        |

| Fisher et al. Sup. Table 4. Data for primary-induced NUP98-KMT2A mice which d | leveloped |
|-------------------------------------------------------------------------------|-----------|
| AML.                                                                          |           |

| AIVIL                   | ••             |                |                |                |                |                |
|-------------------------|----------------|----------------|----------------|----------------|----------------|----------------|
| -iver (mg)              | 1556           | 2900           | 1800           | 1300           |                | 1100           |
| oleen (mg) L            | 374            | 1400           | 200            | 190            |                | 100            |
| RETIC (%) SI            | 3.69           | 25.54          | 3.80           | 2.06           | _              | 3.59           |
| tETIC (x 10^9cells/L) F | 345.0          | 1788.9         | 365.1          | 218.4          |                | 314.4          |
| LUC (%) R               | 2.30           | 19.10          | 3.20           | 0.50           |                | 20.60          |
| .UC (x 10^9cells/L)     | 0.51           | 3.90           | 0.42           | 0.06           |                | 1.83           |
| Basophils (%) L         | 0.20           | 13.00          | 1.80           | 0.30           |                | 0.80           |
| osinophils (%)          | 0:30           | 0.30           | 2.20           | 4.30           |                | 2.20           |
| Monocytes (%)           | 0.8            | 1.9            | 2.5            | 1.3            |                | 1.5            |
| Lymphocytes (%)         | 88.0           | 67.7           | 64.2           | 70.07          |                | 66.0           |
| Neutrophils (%)         | 8.3            | 11.1           | 26.0           | 23.6           |                | 8.9            |
| PLT (x 10^9 cells/L)    | 1245           | 237            | 678            | 843            |                | 1935           |
| RDW (%)                 | 14.1           | 22.0           | 14.8           | 15.3           |                | 13.0           |
| HGB (g/L)               | 135            | 84             | 129            | 165            |                | 126            |
| RBC (x 10^12 cells/L)   | 9.33           | 6.99           | 9.60           | 10.62          |                | 8.76           |
| WBC (x10^9 cells/L)     | 22.32          | 20.52          | 13.38          | 12.42          |                | 8.94           |
| Latency (weeks)         | 108            | 38             | 81             | 43             | 70             | 106            |
| Sex                     | ш              | u.             | Σ              | u.             | u.             | Σ              |
| Experimental setting    | 1° NUP98-KMT2A |
| Mouse ID                | 49             | 253            | 436            | 532            | 533            | 438            |

Fisher et al. Sup. Table 5. Data for primary-induced sublethally-irradiated NUP98-KMT2A

mice.

|                       | _                   | _                   | _                   | _                   | _                   | _                   |
|-----------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| Liver (mg)            | 2055                | 1350                | 1045                | 1740                | 1850                | 1400                |
| èpleen (mg)           | 234                 | 80                  | 84                  | 200                 | 523                 | 490                 |
| RETIC (%)             |                     |                     |                     |                     |                     |                     |
| ETIC (x 10^9cells/L)  | 429.9               | 439.8               | 339                 | 182.4               | 182.4               | 124.5               |
| .UC (%) Rt            | 15                  | 2.1                 | 1.4                 | 4.2                 | 1.5                 | 1.5                 |
| JC (x 10^9cells/L) I  | 0.33                | 0.18                | 0.06                | 0.15                | 0.09                | 0.51                |
| Basophils (%) LL      | 7.9                 | 0.3                 | 0.7                 | 2                   | 1.3                 | 1.5                 |
| Eosinophils (%)       | 1.9                 | 1.2                 | 2.6                 | 9.0                 | 0.5                 | 0.6                 |
| Monocytes (%)         | 9.0                 | 1.9                 | 0.3                 | 0.3                 | 0.2                 | 8.2                 |
| Lymphocytes (%)       | 67.9                | 87.7                | 91.7                | 90.8                | 95.2                | 81.6                |
| Neutrophils (%)       | 14.6                | 6.8                 | 3.3                 | 2                   | 1.4                 | 9.9                 |
| LT (x 10^9 cells/L)   | 294                 | 1590                | 1113                | 666                 | 204                 | 486                 |
| RDW (%) PI            | 27.6                | 13.3                | 14.1                | 16.9                | 15.9                | 13.3                |
| HGB (g/L)             | 138                 | 147                 | 123                 | 117                 | 111                 | 138                 |
| RBC (x 10^12 cells/L) | 7.23                | 10.44               | 8.31                | 6.93                | 6.78                | 9.48                |
| WBC (x10^9 cells/L)   | 2.16                | 9.33                | 5.01                | 3.81                | 4.92                | 33.33               |
| Late ncy (weeks)      | 24                  | 27                  | 24                  | 8                   | 34                  | 22                  |
| Şex                   | u.                  | u.                  | u.                  | u.                  | u.                  | u.                  |
| Experimental setting  | 1° NUP98-KMT2A + IR |
| Mouse ID              | 374                 | 978                 | 375                 | 979                 | 980                 | 981                 |