Genetic evolution of in situ follicular neoplasia to aggressive B-cell lymphoma of germinal center subtype

Antonio Vogelsberg, ${ }^{1}$ Julia Steinhilber, ${ }^{1}$ Barbara Mankel, ${ }^{1}$ Birgit Federmann, ${ }^{1}$ Janine Schmidt, ${ }^{1}$ Ivonne A. Montes-Mojarro, ${ }^{1}$ Katrin Hüttl, ${ }^{2}$ Maria Rodriguez-Pinilla, ${ }^{3}$ Praveen Baskaran, ${ }^{4}$ Sven Nahnsen, ${ }^{4}$ Miguel A. Piris, ${ }^{3}$ German Ott, ${ }^{2}$ Leticia Quintanilla-Martinez, ${ }^{1}$ Irina Bonzheim, ${ }^{1 \#}$ and Falko Fend ${ }^{1 \#}$
${ }^{1}$ Institute of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany; ${ }^{2}$ Department of Clinical Pathology, Robert-Bosch-Krankenhaus, and Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology,
Stuttgart, Germany; ³Department of Pathology, Fundación Jiménez Díaz, Madrid, Spain and ${ }^{4}$ Quantitative Biology Center, University of Tübingen, Tübingen, Germany
\#IB and FF contributed equally as co-senior authors.

©2021 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2020.254854
Received: April 8, 2020.
Accepted: August 12, 2020.
Pre-published: August 27, 2020.
Correspondence: FALKO FEND - falko.fend@med.uni-tuebingen.de
IRINA BONZHEIM - irina.bonzheim@med.uni-tuebingen.de

Supplementary Information

Vogelsberg et al.

Supplementary methods 1
Supplementary tables 9
Supplementary figures 17

Supplementary methods

Diagnosis of in situ follicular neoplasia (ISFN)

The diagnosis of ISFN was based on the criteria published in the update of the $4^{\text {th }}$ Edition of the WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. ${ }^{1}$ Specifically, a diagnosis of ISFN was made when (1) the lymph node architecture was completely preserved, with normally sized follicles, and routine hematoxylin and eosin (H\&E) stains gave no evidence of FL involvement, (2) all germinal centers involved by ISFN, as evidenced by strongly BCL2+ and CD10+ centrocytes, had a clearly preserved and well-delineated mantle zone, and (3) BCL2 and CD10 stains failed to show any indication of extrafollicular spread of ISFN cells.

Microdissection and DNA isolation

Laser microdissection of ISFN samples was performed from 10 to 20 serial H\&E sections with the first and every sixth slide stained for BCL2 to localize the ISFN lesions. After microdissection of between 13 and 65 germinal centers per slide, the tissue was pooled and digested with proteinase K (Merck, Darmstadt, Germany) and DNA extracted applying standard phenol/chloroform purification procedures. ${ }^{2}$ If macrodissection of paraffin sections was performed, DNA was extracted using the Maxwell 16 MDx Instrument (Promega, Mannheim, Germany) according to the manufacturer's instructions.

Immunohistochemistry and fluorescence in situ hybridization (FISH)

Immunohistochemistry was performed on an automated immunostainer (Ventana Medical Systems, Tucson, AZ, USA). All ISFN samples were stained for BCL2, CD20, MIB1 (DAKO,

Hamburg, Germany) and CD10 (Novocastra, Wetzlar, Germany). High-grade B-cell lymphoma (HGBL), diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL) samples were additionally stained for CD3 (DCS, Hamburg, Germany), BCL6 (Zytomed, Berlin, Germany), MUM1 (DAKO), MYC (Roche, Penzberg, Germany) and P53 (Novacastra). All aggressive B-cell lymphomas (BCLs) were sub-classified according to the Hans algorithm. ${ }^{3}$ Images were taken with the Axioskop 2 Plus microscope (Zeiss, Oberkochen, Germany) and the Jenoptik ProgRes C10 Plus camera and software (Jenoptik, Jena, Germany). Objectives used were Plan-Neofluar $x 1.25 / 0.035, ~ x 2.5 / 0.075, ~ x 10 / 0.30, ~ x 20 / 0.50$ and $\mathrm{x} 40 / 0.75$ (Zeiss). FISH analysis was performed using Vysis LSI BCL2, LSI BCL6 and LSI MYC Dual Color Break Apart Rearrangement Probes (Abbott Molecular, Wiesbaden, Germany) for the detection of BCL2, MYC and BCL6 translocations, respectively. Case 5 was also analyzed with the Vysis LSI IGH/BCL2 Dual Color Dual Fusion Translocation Probe (Abbott Molecular) and the ZytoLight SPEC IGH Dual Color Break Apart Probe (ZytoVision, Bremershaven, Germany). For ISFN lesions, FISH for BCL6 and MYC was performed only if the respective rearrangement had been detected in the paired aggressive BCL. Samples that carried a TP53 mutation were analyzed with the Vysis LSI TP53 SpectrumOrange/CEP 17 SpectrumGreen Probe (Abbott Molecular) to investigate a loss of the second TP53 allele.

PCR and Sanger sequencing of the $\mathbf{t}(14 ; 18)$ breakpoint region

Forward primers used were 5' TTAGAGAGTTGCTTTACGTGGCCTG 3' for the major breakpoint region (MBR) ${ }^{4}$, 5' TCGTTCTCAGTAAGTGAGAGTGC 3' for the intermediate cluster region (ICR) ${ }^{5}$ and 5' CGTGCTGGTACCACTCCTG 3' for the minor cluster region $(\mathrm{MCR})^{6}$ as well as eight additional primers that cover a region of about 1 kilobase downstream of the MCR primer. The joining region consensus primer 5' CTTACCTGAGGAGACGGTGACC 3 ' was used as the reverse primer. ${ }^{7}$ PCR was performed with 100 ng of purified DNA in a final volume of $25 \mu \mathrm{l}$ using $0.4 \mathrm{mM} \mathrm{dNTPs} ,1.5 \mathrm{mM} \mathrm{MgCl}_{2}$, $0.4 \mu \mathrm{M}$ of each primer and 1.25 U Taq polymerase (AmpliTaq Gold DNA Polymerase; Applied Biosystems, Foster City, CA, USA). Cycling involved an initial denaturation at $95^{\circ} \mathrm{C}$ for 5 min followed by 45 cycles of denaturation $\left(95^{\circ} \mathrm{C}\right.$ for 45 s), annealing (60 s at $57^{\circ} \mathrm{C}$ for

MBR and MCR, 60 s at $56^{\circ} \mathrm{C}$ for the ICR) and elongation ($72^{\circ} \mathrm{C}$ for 60 s), with a final elongation at $72^{\circ} \mathrm{C}$ for 10 min . To increase the detection rate, we additionally used the IdentiClone BCL2/JH Translocation Assay, which was performed according to the manufacturer's instructions (Invivoscribe, San Diego, CA, USA). PCR products were purified using Agencourt AMPure XP magnetic beads (Beckman Coulter, Brea, CA, USA) and mixed with $1 \mu \mathrm{l}$ of the respective primer $(10 \mu \mathrm{M})$ and $2 \mu \mathrm{l}$ of the GenomeLab DTCS-Quick Start Kit (Beckman Coulter) to a final volume of $10 \mu \mathrm{l}$ for the sequencing reaction according to the manufacturer's protocol. Sequencing reactions were purified (CleanSEQ; Beckman Coulter), analyzed in a GenomeLab GeXP Genetic Analysis System (Beckman Coulter) and evaluated by the GenomeLab GeXP software 11.0 (Beckman Coulter) to investigate the $\mathrm{t}(14 ; 18)$ breakpoint sequence.

For the ISFN samples of cases 3 and 9, primers specific to the breakpoint of the corresponding aggressive BCL were designed using the Primer3web software 4.1.0 (http://primer3.ut.ee/), with primers binding to the respective BCL2 and $\mathrm{t}(14 ; 18)$ de novo sequences. ${ }^{8}$ Forward BCL2 primers used were 5' AACACAGACCCACCCAGAG 3، (Case 3) and 5' GCTTTCTCATGGCTGTCCTT 3' (Case 9). Reverse de novo sequence primers used were 5‘ ATACCGTACGTCCGAAAGCA 3‘ (Case 3) and 5’ GGGACCACATCGAGAAGC 3' (Case 9). PCR was performed with 100 ng of genomic DNA and modified annealing temperatures ($54^{\circ} \mathrm{C}$ and $53^{\circ} \mathrm{C}$). A successful amplification in the respective ISFN lesion was seen as evidence of the same $t(14 ; 18)$ breakpoint. Primer specificity was ensured using clonally unrelated $\mathrm{t}(14 ; 18)+$ samples as negative controls. Additionally, all PCR products were sequenced as stated above.

Clonality analysis

PCRs for the detection of immunoglobulin gene rearrangements were performed in duplicate with two different concentrations of genomic DNA using 1 U AmpliTaq Gold DNA polymerase (Applied Biosystems) and BIOMED-2 FR2, FR3, JH, and Vk, Jk, IntronRSS and Kde primers. ${ }^{7}$ Modified amplification conditions were carried out with an initial denaturation step of $95^{\circ} \mathrm{C}(7 \mathrm{~min}), 40$ cycles $\left(95^{\circ} \mathrm{C}\right.$ for $30 \mathrm{~s}, 60^{\circ} \mathrm{C}$ for $45 \mathrm{~s}, 72^{\circ} \mathrm{C}$ for 45 s) and a final step of $72^{\circ} \mathrm{C}$
for 4 min. The JH, JK1-4, JK5 and Kde primers were modified with D4 fluorescent dyes (Sigma-Aldrich, St. Louis, MO, USA). For cases 6 and 10, clone-specific primers were designed based on the respective DLBCL framework region and complementaritydetermining region 3 using the Primer3web software 4.1.0 (http://primer3.ut.ee/). ${ }^{8}$ Forward primers used were 5' GAATATGCTGCGTCGGTGAA 3' (Case 6) and 5' ATGGAGTTGAGGAGGCTGAC 3' (Case 10). Reverse primers used were 5' TGTGGCTACGGACCTCTCTA 3' (Case 6) and 5' GCCCCAGACGTCCATAACAT 3' (Case 10). Reverse primers were modified with D4 fluorescent dyes (Sigma-Aldrich) and PCR was performed with 100 ng of genomic DNA and modified annealing temperatures $\left(54^{\circ} \mathrm{C}\right.$ and $53^{\circ} \mathrm{C}$). For GeneScan analysis 1μ of the PCR products were mixed with sample loading solution containing 30μ I DNA Size Standard 400 (Beckman Coulter). The products were separated by capillary electrophoresis on the GenomeLab GeXP Genetic Analysis System and analyzed by the GenomeLab GeXP software 11.0 (Beckman Coulter).

Immunoglobulin sequence analysis

Next generation sequencing (NGS) of the immunoglobulin genes was performed with the LymphoTrack Dx IGH FR1, FR2 and FR3 Assay - PGM (Invivoscribe) according to the manufacturer's instructions. Libraries were purified and quantified applying Agencourt AMPure XP (Beckman Coulter) magnetic beads and the Ion Library Quantitation Kit (Thermo Fisher Scientific, Waltham, MA, USA) on the LightCycler 480 real-time PCR system (Roche Molecular Systems, Pleasanton, CA, USA). Generated libraries were run on the Ion Torrent Personal Genome Machine (PGM; Thermo Fisher Scientific). NGS data were analyzed with the LymphoTrack Dx Software - PGM (Invivoscribe) and interpreted according to the manufacturer's protocol, which allows the detection of clonal immunoglobulin rearrangements with variable and joining gene usage and sequence information. Clonal sequences were submitted to IMGT/V-QUEST (http://www.imgt.org/ IMGT vquest/vquest) and IgBlast (https://www.ncbi.nlm.nih.gov/igblast/) for analysis. ${ }^{9,10} \mathrm{~N}$-glycosylation motifs were identified by the consensus sequence Asn-X-Ser/Thr, where X can be any amino acid except proline. ${ }^{11}$ To investigate intraclonal heterogeneity, the ten most prevalent clone-
specific sequences (i.e. subclones) of each sample were identified through the alignment of their sequence with that of the respective dominant rearrangement. Clear-cut sequencing artifacts, i.e. insertions/deletions (InDels) in homopolymer regions, InDels at the beginning of a sequence and changes of the first nucleotide were manually corrected to the sequence of the major clone. To calculate the share of each subclone, the sequence count was divided by the total number of clone-specific reads.

Phylogenetic tree construction

Phylogenetic trees for cases 1, 2, 4, 7, and 9 were built using the ten most prevalent subclones of the respective samples and the corresponding unmutated VDJ germline sequence, which was determined with IMGT/V-QUEST (http://www.imgt.org/ IMGT vquest/vquest) and IgBlast (https://www.ncbi.nIm.nih.gov/igblast/). ${ }^{9,10}$ Multiple sequence alignments were generated using MAFFT (Version 7.4) with localpair alignment mode and max iteration of $1000 .{ }^{12}$ jModelTest (Version 2.1) was used to find the best-fit substitution model for each multiple sequence alignment based on Bayesian information criteria strategy. ${ }^{13}$ In summary, JC69 (Case 2), K80 + I (Case 4), and K80 (Cases 1, 7, and 9) were determined as most suitable. The construction of phylogenetic trees was done using the maximum likelihood method implemented in RAxML (Version 8.2). ${ }^{14}$ The corresponding plots were generated in R (Version 3.4) (http://www.R-project.org/) using the "ape" and "phytools" packages. ${ }^{15-17}$

Library preparation and sequencing

Amplicon library preparation and semiconductor sequencing were performed according to the manufacturer's instructions (Thermo Fisher Scientific). For each reaction, 10 ng of DNA were mixed with AmpliSeq HiFi Mix (Thermo Fisher Scientific) and the respective primer pool to amplify the target regions. Subsequently, primer end sequences were partially digested using FuPa reagent (Thermo Fisher Scientific), followed by the ligation of barcoded sequencing adapters (Ion Xpress Barcode Adapters; Thermo Fisher Scientific). The final libraries were purified and quantified as described in "Immunoglobulin sequence analysis".

Libraries were diluted to 100 pM each and pooled. In the next step, DNA fragments were attached to Ion Sphere Particles (ISPs) and clonally amplified using the Ion PGM Hi-Q OT2 Kit (Thermo Fisher Scientific) and the Ion OneTouch Instrument (Thermo Fisher Scientific). The amount of template-positive ISPs was determined with the Qubit 3.0 Fluorometer (Life Technologies, Darmstadt, Germany) and the Ion Sphere Quality Control Kit (Thermo Fisher Scientific). Afterwards, the Ion OneTouch ES (Thermo Fisher Scientific) was used to enrich template-positive ISPs. In a last step, sequencing primers were attached to the DNA fragments bound to the ISPs, which were subsequently loaded on a semiconductor chip (Ion 318 Chip Kit; Thermo Fisher Scientific). Finally, sequencing was performed using the Ion PGM Hi-Q Sequencing Kit and the Ion Torrent PGM platform (Thermo Fisher Scientific).

Targeted NGS data analysis

Detection of variants in comparison to the human reference sequence (hg19) was performed using the Torrent Suite (Version 5.6.0) and the Ion Torrent Variant Caller (5.8.0.19) (Thermo Fisher Scientific). Detection thresholds were set at an allele frequency of 5%. Variants were annotated and filtered against the dbSNP and COSMIC databases using the Annotate variants single sample workflow of the Ion Reporter Software (Version 5.6) (Thermo Fisher Scientific). The Integrative Genomics Viewer (Version 2.3.94) (Broad Institute, Cambridge, MA, USA) software was used to inspect each detected variant to exclude possible artifacts. ${ }^{18}$ Variants considered to be artifacts were those only detected in one sequencing direction and InDels at sites of homopolymer regions. ${ }^{19}$ Caution was also exercised when variants occurred in regions with low coverage, especially concerning CG>TA transitions and/or alterations with VAFs $<10 \%{ }^{20}$ All sequences that harbored an alteration in at least one sample of a case were specifically reviewed in paired samples, even when not called by the Ion Reporter Software. If the mutation could not be detected in a paired sample, but the coverage was low (<100 reads), the location was reevaluated with bidirectional single amplicon sequencing to avoid a false negative result. Prediction of the deleteriousness of variants was done using the Combined Annotation Dependent Depletion (CADD) predictor (http://cadd.gs.washington.edu/home). ${ }^{21}$ For the construction of clonal evolution patterns,
synonymous and 5' untranslated region (5'UTR) mutations of BCL2 were taken into account as additional markers (Supplementary Table S5). Sequencing data are deposited in the European Nucleotide Archive (Accession number PRJEB34446).

Variant validation and single amplicon sequencing

To further exclude sequencing artifacts, the majority of variants were validated (see Supplementary Table S4). If TP53 was mutated in an aggressive BCL, single amplicon sequencing was used to investigate if the mutation could be detected in paired ISFN and FL samples. Single amplicons were prepared following the Ion Amplicon Library Preparation Fusion Method protocol (Thermo Fisher Scientific). Primers were designed using the primer3 software 4.1.0 (http://primer3.ut.ee/). ${ }^{8}$ The primers were composed of either the A adapter or the trP1 adapter, the barcode sequence and barcode adapter sequence, and the target primer sequence (Supplementary Table S2). Each gene region was amplified using two primer pairs (A Forward and trP1 Reverse or A Reverse and trP1 Forward) to enable bidirectional sequencing. Library preparation was done according to the manufacture's protocol (Thermo Fisher Scientific).

References

1. Swerdlow SH, Campo E, Harris NL, et al. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Revised 4th ed. Lyon: IARC Press, 2017.
2. Schmidt J, Salaverria I, Haake A, et al. Increasing genomic and epigenomic complexity in the clonal evolution from in situ to manifest $t(14 ; 18)$-positive follicular lymphoma. Leukemia. 2014;28(5):1103-1112.
3. Hans CP, Weisenburger DD, Greiner TC, et al. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood. 2004;103(1):275-282.
4. Stetler-Stevenson M, Raffeld M, Cohen P, Cossman J. Detection of occult follicular lymphoma by specific DNA amplification. Blood. 1988;72(5):1822-1825.
5. Albinger-Hegyi A, Hochreutener B, Abdou MT, et al. High frequency of $t(14 ; 18)$ translocation breakpoints outside of major breakpoint and minor cluster regions in follicular lymphomas: improved polymerase chain reaction protocols for their detection. Am J Pathol. 2002;160(3):823-832.
6. Gribben JG, Freedman A, Woo SD, et al. All advanced stage non-Hodgkin's lymphomas with a polymerase chain reaction amplifiable breakpoint of bcl-2 have residual cells containing the bcl-2 rearrangement at evaluation and after treatment. Blood. 1991;78(12):3275-3280.
7. van Dongen JJ, Langerak AW, Bruggemann M, et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia. 2003;17(12):2257-2317.
8. Untergasser A, Cutcutache I, Koressaar T, et al. Primer3--new capabilities and interfaces. Nucleic Acids Res. 2012;40(15):e115.
9. Brochet X , Lefranc MP, Giudicelli V. IMGT/V-QUEST: the highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis. Nucleic Acids Res. 2008;36(Web Server issue):W503-508.
10. Ye J, Ma N, Madden TL, Ostell JM. IgBLAST: an immunoglobulin variable domain sequence analysis tool. Nucleic Acids Res. 2013;41(Web Server issue):W34-40.
11. Berg DT, Grinnell BW. Pro to Gly (P219G) in a silent glycosylation site results in complete glycosylation in tissue plasminogen activator. Protein Sci. 1993;2(1):126127.
12. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772-780.
13. Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nature methods. 2012;9(8):772.
14. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312-1313.
15. R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
16. Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019;35(3):526-528.
17. Revell LJ. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol. 2012;3(2):217-223.
18. Robinson JT, Thorvaldsdottir H, Winckler W, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29(1):24-26.
19. Mardis ER. Next-generation sequencing platforms. Annu Rev Anal Chem (Palo Alto Calif). 2013;6:287-303.
20. Wong SQ, Li J, Tan AY, et al. Sequence artefacts in a prospective series of formalinfixed tumours tested for mutations in hotspot regions by massively parallel sequencing. BMC Med Genomics. 2014;7:23.
21. Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2019;47(D1):D886-D894.

Supplementary tables

Supplementary Table S1. Genes analyzed with AmpliSeq Custom Panels.

Gene	Position (GRCh37/hg19)	Exon(s)	Amplicons
BCL2	chr18: $60,795,858-60,985,965$	CDS	9
BCL6	chr3: $187,440,246-187,451,481$	CDS	27
BTG1	chr12: $92,537,856-92,539,311$	CDS	7
BTG2	chr1: $203,274,735-203,276,566$	CDS	6
CARD11	chr7: $2,946,272-2,998,140$	CDS	54
CD79B	chr17: $62,006,586-62,009,621$	CDS	11
CREBBP	chr16: $3,777,719-3,929,917$	CDS	96
EP300	chr22: $41,489,009-41,574,960$	CDS	63
EZH2	chr7: $148,508,712-148,508,817$	16	1
FOXO1	chr13: $41,133,660-41,240,349$	CDS	10
GNA13	chr17: $63,010,375-63,052,711$	CDS	8
HIST1H1B	chr6: $27,834,627-27,835,307$	CDS	6
HIST1H1C	chr6: $26,056,015-26,056,656$	CDS	6
HIST1H1D	chr6: $26,234,496-26,235,161$	CDS	6
HIST1H1E	chr6: $26,156,619-26,157,278$	CDS	5
IGLL5	chr22: $23,230,234-23,237,874$	CDS	8
KMT2D	chr12: $49,415,563-49,449,107$	CDS	120
IRF4	chr6: $393,153-407,598$	CDS	18
MEF2B	chr19: $19,256,503-19,261,544$	CDS	11
MYD88	chr3: $38,181,350-38,182,777$	$2-5$	11
PIM1	chr6: $37,138,079-37,141,867$	CDS	16
PRDM1	chr6: $106,534,429-106,555,361$	CDS	29
TBL1XR1	chr3: $176,743,286-176,782,765$	CDS	32
TNFAIP3	chr6: $138,192,365-138,202,456$	CDS	29
TNFRSF14	chr1: $2,488,104-2,494,712$	CDS	11

CDS, coding sequence.

Supplementary Table S2. Primer sequences for targeted resequencing including the sequences of the A or trP1 adapter and the barcodes.

Primer	Sequence $\mathbf{5}^{\prime}$-3'
GNA13 Ex4 326 BC50 AF	CCATCTCATCCCTGCGTGTCTCCGACTCAGCGGACAATGGCGATTCCCCACTGCTTAAGAGACG
GNA13 Ex4 326 trP1F	CCTCTCTATGGGCAGTCGGTGATTCCCCACTGCTTAAGAGACG
GNA13 Ex4 326 BC50 AR	CCATCTCATCCCTGCGTGTCTCCGACTCAGCGGACAATGGCGATTCCGTGTTGATAGCAGTGGT
GNA13 Ex4 326 trP1R	CCTCTCTATGGGCAGTCGGTGATTCCGTGTTGATAGCAGTGGT
TP53 Ex8 273 BC51 AF	CCATCTCATCCCTGCGTGTCTCCGACTCAGTTGAGCCTATTCGATTTGCTTCTCTTTTCCTATCCTGA
TP53 Ex8 273 trP1F	CCTCTCTATGGGCAGTCGGTGATTTGCTTCTCTTTTCCTATCCTGA
TP53 Ex8 273 BC51 AR	CCATCTCATCCCTGCGTGTCTCCGACTCAGTTGAGCCTATTCGATTCTTGCGGAGATTCTCTTCCT
TP53 Ex8 273 trP1R	CCTCTCTATGGGCAGTCGGTGATTCTTGCGGAGATTCTCTTCCT
CREBBP Ex7 551 BC52 AF	CCATCTCATCCCTGCGTGTCTCCGACTCAGCCGCATGGAACGATTCCAATGAACATTCCAGCAGG
CREBBP Ex7 551 trP1F	CCTCTCTATGGGCAGTCGGTGATTCCAATGAACATTCCAGCAGG
CREBBP Ex7 551 BC52 AR	CCATCTCATCCCTGCGTGTCTCCGACTCAGCCGCATGGAACGATCAGGGTCTTACTTTGTGGCC
CREBBP Ex7 551 trP1R	CCTCTCTATGGGCAGTCGGTGATCAGGGTCTTACTTTGTGGCC
CREBBP Ex30 1680 BC60 AF	CCATCTCATCCCTGCGTGTCTCCGACTCAGTCTAGCTCTTCGATCTTCCTCACCCTCGCCAG
CREBBP Ex30 1680 trP1F	CCTCTCTATGGGCAGTCGGTGATCTTCCTCACCCTCGCCAG
CREBBP Ex30 1680 BC60 AR	CCATCTCATCCCTGCGTGTCTCCGACTCAGTCTAGCTCTTCGATATGCAGAGCGTGGACCAC
CREBBP Ex30 1680 trP1R	CCTCTCTATGGGCAGTCGGTGATATGCAGAGCGTGGACCAC
KMT2D Ex31 2623 BC61 AF	CCATCTCATCCCTGCGTGTCTCCGACTCAGTCACTCGGATCGATTGTCCCCACTACGCCCTC

KMT2D Ex31 2623 trP1F	CCTCTCTATGGGCAGTCGGTGATTGTCCCCACTACGCCCTC
KMT2D Ex31 2623 BC61 AR	CCATCTCATCCCTGCGTGTCTCCGACTCAGTCACTCGGATCGATGATCGCTGTGAGGCTCCAT
KMT2D Ex31 2623 trP1R	CCTCTCTATGGGCAGTCGGTGATGATCGCTGTGAGGCTCCAT
KMT2D Ex22 1739 BC62 AF	CCATCTCATCCCTGCGTGTCTCCGACTCAGTTCCTGCTTCACGATACACTTCCGTTCTGTCCACA
KMT2D Ex22 1739 trP1F	CCTCTCTATGGGCAGTCGGTGATACACTTCCGTTCTGTCCACA
KMT2D Ex22 1739 BC62 AR	CCATCTCATCCCTGCGTGTCTCCGACTCAGTTCCTGCTTCACGATTCTTCTCATCCCCTTCAGCT
KMT2D Ex22 1739 trP1R	CCTCTCTATGGGCAGTCGGTGATTCTTCTCATCCCCTTCAGCT
TP53 Ex5 150 BC63 AF	CCATCTCATCCCTGCGTGTCTCCGACTCAGCCTTAGAGTTCGATGCCAAGACCTGCCCTGTG
TP53 Ex5 150 trP1F	CCTCTCTATGGGCAGTCGGTGATGCCAAGACCTGCCCTGTG
TP53 Ex5 150 BC63 AR	CCATCTCATCCCTGCGTGTCTCCGACTCAGCCTTAGAGTTCGATCATGTGCTGTGACTGCTTGT
TP53 Ex5 150 trP1R	CCTCTCTATGGGCAGTCGGTGATCATGTGCTGTGACTGCTTGT
BCL2 Ex2 101-113 BC64 AF	CCATCTCATCCCTGCGTGTCTCCGACTCAGCTGAGTTCCGACGATACCTGACCCTCCGCCA
BCL2 Ex2 101-113 trP1F	CCTCTCTATGGGCAGTCGGTGATACCTGACCCTCCGCCA
BCL2 Ex2 101-113 BC64 AR	CCATCTCATCCCTGCGTGTCTCCGACTCAGCTGAGTTCCGACGATGGTGAAGGGCGTCAGGT
BCL2 Ex2 101-113 trP1R	CCTCTCTATGGGCAGTCGGTGATGGTGAAGGGCGTCAGGT
BCL2 Ex2 33 BC65 AF	CCATCTCATCCCTGCGTGTCTCCGACTCAGTCCTGGCACATCGATCAGAGGGGCTACGAGTGG
BCL2 Ex2 33 trP1F	CCTCTCTATGGGCAGTCGGTGATCAGAGGGGCTACGAGTGG
BCL2 Ex2 33 BC 65 AR	CCATCTCATCCCTGCGTGTCTCCGACTCAGTCCTGGCACATCGATGGGCTGGGAGGAGAAGATG
BCL2 Ex2 33 trP1R	CCTCTCTATGGGCAGTCGGTGATGGGCTGGGAGGAGAAGATG
BCL2 Ex2 6 BC66 AF	CCATCTCATCCCTGCGTGTCTCCGACTCAGCCGCAATCATCGATGCGAGAGGTGCCGTTG
BCL2 Ex2 6 trP1F	CCTCTCTATGGGCAGTCGGTGATGCGAGAGGTGCCGTTG
BCL2 Ex2 6 BC66 AR	CCATCTCATCCCTGCGTGTCTCCGACTCAGCCGCAATCATCGATACTTCATCACTATCTCCCGGT
BCL2 Ex2 6 trP1R	CCTCTCTATGGGCAGTCGGTGATACTTCATCACTATCTCCCGGT
CREBBP Ex27 1503 BC57 AF	CCATCTCATCCCTGCGTGTCTCCGACTCAGTCTGGCAACGGCGATATTGCCACCCACCTGATCAA
CREBBP Ex27 1503 trP1F	CCTCTCTATGGGCAGTCGGTGATATTGCCACCCACCTGATCAA
CREBBP Ex27 1503 BC57 AR	CCATCTCATCCCTGCGTGTCTCCGACTCAGTCTGGCAACGGCGATGGATGATCCGCTCTGCAAAC
CREBBP Ex27 1503 trP1R	CCTCTCTATGGGCAGTCGGTGATGGATGATCCGCTCTGCAAAC
CARD11 Ex20 871 BC58 AF	CCATCTCATCCCTGCGTGTCTCCGACTCAGTCCTAGAACACGATAGGGCCTGACTGATTGATAAAT
CARD11 Ex20 871 trP1F	CCTCTCTATGGGCAGTCGGTGATAGGGCCTGACTGATTGATAAAT
CARD11 Ex20 871 BC58 AR	CCATCTCATCCCTGCGTGTCTCCGACTCAGTCCTAGAACACGATCTGAAGGAGCTGGCCAAAA
CARD11 Ex20 871 trP1R	CCTCTCTATGGGCAGTCGGTGATCTGAAGGAGCTGGCCAAAA
TP53 Ex5 179 BC70 AF	CCATCTCATCCCTGCGTGTCTCCGACTCAGCCTACTGGTCGATCAAGCAGTCACAGCACATGA
TP53 Ex5 179 trP1F	CCTCTCTATGGGCAGTCGGTGATCAAGCAGTCACAGCACATGA
TP53 Ex5 179 BC70 AR	CCATCTCATCCCTGCGTGTCTCCGACTCAGCCTACTGGTCGATCTGCTCACCATCGCTATCTG
TP53 Ex5 179 trP1R	CCTCTCTATGGGCAGTCGGTGATCTGCTCACCATCGCTATCTG
BCL2 Ex2 20-43 BC55 AF	CCATCTCATCCCTGCGTGTCTCCGACTCAGTCCACCTCCTCGATCCCCGTTGCTTTTCCTCTG
BCL2 Ex2 20-43 trP1F	CCTCTCTATGGGCAGTCGGTGATCCCCGTTGCTTTTCCTCTG
BCL2 Ex2 20-43 BC55 AR	CCATCTCATCCCTGCGTGTCTCCGACTCAGTCCACCTCCTCGATGGGCTGGGAGGAGAAGATG
BCL2 Ex2 20-43 trP1R	CCTCTCTATGGGCAGTCGGTGATGGGCTGGGAGGAGAAGATG
CD79B Ex5 196 BC56 AF	CCATCTCATCCCTGCGTGTCTCCGACTCAGCAGCATTAATTCGATGATCTCCATCCCTCTCCGC
CD79B Ex5 196 trP1F	CCTCTCTATGGGCAGTCGGTGATGATCTCCATCCCTCTCCGC
CD79B Ex5 196 BC56 AR	CCATCTCATCCCTGCGTGTCTCCGACTCAGCAGCATTAATTCGATCCCAACCACACCAGCAGATA
CD79B Ex5 196 trP1R	CCTCTCTATGGGCAGTCGGTGATCCCAACCACACCAGCAGATA
KMT2D Ex39 4473 BC57 AF	CCATCTCATCCCTGCGTGTCTCCGACTCAGTCTGGCAACGGCGATGAACCAGCAACCACCTCCT
KMT2D Ex39 4473 trP1F	CCTCTCTATGGGCAGTCGGTGATGAACCAGCAACCACCTCCT
KMT2D Ex39 4473 BC57 AR	CCATCTCATCCCTGCGTGTCTCCGACTCAGTCTGGCAACGGCGATAATGTGCCCGTTGATCTCAG
KMT2D Ex39 4473 trP1R	CCTCTCTATGGGCAGTCGGTGATAATGTGCCCGTTGATCTCAG
GNA13 Ex4 203 BC58 AF	CCATCTCATCCCTGCGTGTCTCCGACTCAGTCCTAGAACACGATCGCATTACTTCGGGATTAATAGG
GNA13 Ex4 203 trP1F	CCTCTCTATGGGCAGTCGGTGATCGCATTACTTCGGGATTAATAGG
GNA13 Ex4 203 BC58 AR	CCATCTCATCCCTGCGTGTCTCCGACTCAGTCCTAGAACACGATTCTGACCACCTACATCAACCA
GNA13 Ex4 203 trP1R	CCTCTCTATGGGCAGTCGGTGATTCTGACCACCTACATCAACCA
TNFRSF14 Ex6 187 BC59 AF	CCATCTCATCCCTGCGTGTCTCCGACTCAGTCCTTGATGTTCGATTGCCTCTCCCACGTCCTC
TNFRSF14 Ex6 187 trP1F	CCTCTCTATGGGCAGTCGGTGATTGCCTCTCCCACGTCCTC
TNFRSF14 Ex6 187 BC59 AR	CCATCTCATCCCTGCGTGTCTCCGACTCAGTCCTTGATGTTCGATTGTGGAGCAAACAATGACGA
TNFRSF14 Ex6 187 trP1R	CCTCTCTATGGGCAGTCGGTGATTGTGGAGCAAACAATGACGA
CARD11 Ex23 1046 BC60 AF	CCATCTCATCCCTGCGTGTCTCCGACTCAGTCTAGCTCTTCGATCTCAGAAGGCAGAAGACGGA
CARD11 Ex23 1046 trP1F	CCTCTCTATGGGCAGTCGGTGATCTCAGAAGGCAGAAGACGGA
CARD11 Ex23 1046 BC60 AR	CCATCTCATCCCTGCGTGTCTCCGACTCAGTCTAGCTCTTCGATCATCCAACCTCCCAGTCCC
CARD11 Ex23 1046 trP1R	CCTCTCTATGGGCAGTCGGTGATCATCCAACCTCCCAGTCCC
CREBBP Ex27 1482 BC54 AF	CCATCTCATCCCTGCGTGTCTCCGACTCAGCCGGAGAATCGCGATCCTGTCCTCCAAGTGAAGGA
CREBBP Ex27 1482 trP1F	CCTCTCTATGGGCAGTCGGTGATCCTGTCCTCCAAGTGAAGGA
CREBBP Ex27 1482 BC54 AR	CCATCTCATCCCTGCGTGTCTCCGACTCAGCCGGAGAATCGCGATCAGTCGTTTTGGCTTGGGTA
CREBBP Ex27 1482 trP1R	CCTCTCTATGGGCAGTCGGTGATCAGTCGTTTTGGCTTGGGTA
BCL2 Ex2 79-90 BC57 AF	CCATCTCATCCCTGCGTGTCTCCGACTCAGTCTGGCAACGGCGATCATCTTCTCCTCCCAGCCC
BCL2 Ex2 79-90 trP1F	CCTCTCTATGGGCAGTCGGTGATCATCTTCTCCTCCCAGCCC
BCL2 Ex2 79-90 BC57 AR	CCATCTCATCCCTGCGTGTCTCCGACTCAGTCTGGCAACGGCGATGTAGCGGGGGGAGAAGTC
BCL2 Ex2 79-90 trP1R	CCTCTCTATGGGCAGTCGGTGATGTAGCGGCGGGAGAAGTC
PIM1 Ex1 1 BC61 AF	CCATCTCATCCCTGCGTGTCTCCGACTCAGTCACTCGGATCGATTGCGCCGACATCCTGGA
PIM1 Ex1 1 trP1F	CCTCTCTATGGGCAGTCGGTGATTGCGCCGACATCCTGGA
PIM1 Ex1 1 BC61 AR	CCATCTCATCCCTGCGTGTCTCCGACTCAGTCACTCGGATCGATTTGGTGGCGTGCAGGTC
PIM1 Ex1 1 trP1R	CCTCTCTATGGGCAGTCGGTGATTTGGTGGCGTGCAGGTC
KMT2D Ex10 468-477 BC62 AF	CCATCTCATCCCTGCGTGTCTCCGACTCAGTTCCTGCTTCACGATGGAATCACCCACGTCCCC
KMT2D Ex10 468-477 trP1F	CCTCTCTATGGGCAGTCGGTGATGGAATCACCCACGTCCCC
KMT2D Ex10 468-477 BC62 AR	CCATCTCATCCCTGCGTGTCTCCGACTCAGTTCCTGCTTCACGATAGGTGCAATGCCTCAGGA
KMT2D Ex10 468-477 trP1R	CCTCTCTATGGGCAGTCGGTGATAGGTGCAATGCCTCAGGA
GNA13 Ex1 53-54 BC63 AF	CCATCTCATCCCTGCGTGTCTCCGACTCAGCCTTAGAGTTCGATTATGTGAAGCGGCTGGTGAA
GNA13 Ex1 53-54 trP1F	CCTCTCTATGGGCAGTCGGTGATTATGTGAAGCGGCTGGTGAA
GNA13 Ex1 53-54 BC63 AR	CCATCTCATCCCTGCGTGTCTCCGACTCAGCCTTAGAGTTCGATTCCTGCCCGTGGATGATC
GNA13 Ex1 53-54 trP1R	CCTCTCTATGGGCAGTCGGTGATTCCTGCCCGTGGATGATC
GNA13 Ex4 222 BC64 AF	CCATCTCATCCCTGCGTGTCTCCGACTCAGCTGAGTTCCGACGATGAAGACCCACCAAAGGCATC
GNA13 Ex4 222 trP1F	CCTCTCTATGGGCAGTCGGTGATGAAGACCCACCAAAGGCATC
GNA13 Ex4 222 BC64 AR	CCATCTCATCCCTGCGTGTCTCCGACTCAGCTGAGTTCCGACGATTCCTTTCTGATCTCTGACCACC
GNA13 Ex4 222 trP1R	CCTCTCTATGGGCAGTCGGTGATTCCTTTCTGATCTCTGACCACC

MEF2B Ex5 77 BC65 AF	CCATCTCATCCCTGCGTGTCTCCGACTCAGTCCTGGCACATCGATCCAACCGCCTCTTCCAGTAT
MEF2B Ex5 77 trP1F	CCTCTCTATGGGCAGTCGGTGATCCAACCGCCTCTTCCAGTAT
MEF2B Ex5 77 BC65 AR	CCATCTCATCCCTGCGTGTCTCCGACTCAGTCCTGGCACATCGATGAGGATGTCAGTGTTGGTGC
MEF2B Ex5 77 trP1R	CCTCTCTATGGGCAGTCGGTGATGAGGATGTCAGTGTTGGTGC
HIST1H1D Ex1 77 BC50 AF	CCATCTCATCCCTGCGTGTCTCCGACTCAGCGGACAATGGCGATTCTGGCCGCGCTTAAGAAA
HIST1H1D Ex1 77 trP1F	CCTCTCTATGGGCAGTCGGTGATTCTGGCCGCGCTTAAGAAA
HIST1H1D Ex1 77 BC50 AR	CCATCTCATCCCTGCGTGTCTCCGACTCAGCGGACAATGGCGATTTGAGGCCAAGCTTGATACG
HIST1H1D Ex1 77 trP1R	CCTCTCTATGGGCAGTCGGTGATTTGAGGCCAAGCTTGATACG
EP300 Ex5 415 BC51 AF	CCATCTCATCCCTGCGTGTCTCCGACTCAGTTGAGCCTATTCGATCTCGACAAATCATTTCACACTGG
EP300 Ex5 415 trP1F	CCTCTCTATGGGCAGTCGGTGATCTCGACAAATCATTTCACACTGG
EP300 Ex5 415 BC51 AR	CCATCTCATCCCTGCGTGTCTCCGACTCAGTTGAGCCTATTCGATTCACTTACGCTGTTGATTTCTCT
EP300 Ex5 415 trP1R	CCTCTCTATGGGCAGTCGGTGATTCACTTACGCTGTTGATTTCTCT
BCL2 Ex2 76 BC52 AF	CCATCTCATCCCTGCGTGTCTCCGACTCAGCCGCATGGAACGATCCCCATCCAGCCGCAT
BCL2 Ex2 76 trP1F	CCTCTCTATGGGCAGTCGGTGATCCCCATCCAGCCGCAT
BCL2 Ex2 76 BC52 AR	CCATCTCATCCCTGCGTGTCTCCGACTCAGCCGCATGGAACGATTGGCGGAGGGTCAGGT
BCL2 Ex2 76 trP1R	CCTCTCTATGGGCAGTCGGTGATTGGCGGAGGGTCAGGT
TNFRSF14 Ex1 $12 \mathrm{BC70}$ AF	CCATCTCATCCCTGCGTGTCTCCGACTCAGCCTACTGGTCGATTGCCGGTCTGAGCCTGAG
TNFRSF14 Ex1 12 trP1F	CCTCTCTATGGGCAGTCGGTGATTGCCGGTCTGAGCCTGAG
TNFRSF14 Ex1 12 BC70 AR	CCATCTCATCCCTGCGTGTCTCCGACTCAGCCTACTGGTCGATAGCCTCAAGACGTCGGTTTT
TNFRSF14 Ex1 12 trP1R	CCTCTCTATGGGCAGTCGGTGATAGCCTCAAGACGTCGGTTTT
TNFRSF14 Ex6 219 BC61 AF	CCATCTCATCCCTGCGTGTCTCCGACTCAGTCACTCGGATCGATATGGTGGTTTCTCTCAGGGA
TNFRSF14 Ex6 219 trP1F	CCTCTCTATGGGCAGTCGGTGATATGGTGGTTTCTCTCAGGGA
TNFRSF14 Ex6 219 BC61 AR	CCATCTCATCCCTGCGTGTCTCCGACTCAGTCACTCGGATCGATCCCCTTGGCTTTCTTCTTTTCA
TNFRSF14 Ex6 219 trP1R	CCTCTCTATGGGCAGTCGGTGATCCCCTTGGCTTTCTTCTTTTCA
KMT2D Ex48 4987 BC62 AF	CCATCTCATCCCTGCGTGTCTCCGACTCAGTTCCTGCTTCACGATCTCCTCGCCTCAAGAAATGG
KMT2D Ex48 4987 trP1F	CCTCTCTATGGGCAGTCGGTGATCTCCTCGCCTCAAGAAATGG
KMT2D Ex48 4987 BC62 AR	CCATCTCATCCCTGCGTGTCTCCGACTCAGTTCCTGCTTCACGATCTTCCCGCTCATCCTCCTG
KMT2D Ex48 4987 trP1R	CCTCTCTATGGGCAGTCGGTGATCTTCCCGCTCATCCTCCTG
EZH2 Ex16 646 BC63 AF	CCATCTCATCCCTGCGTGTCTCCGACTCAGCCTTAGAGTTCGATTATTGCTGGCACCATCTGAC
EZH2 Ex16 646 trP1F	CCTCTCTATGGGCAGTCGGTGATTATTGCTGGCACCATCTGAC
EZH2 Ex16 646 BC63 AR	CCATCTCATCCCTGCGTGTCTCCGACTCAGCCTTAGAGTTCGATTGAATACAGGTTATCAGTGCCTT
EZH2 Ex16 646 trP1R	CCTCTCTATGGGCAGTCGGTGATTGAATACAGGTTATCAGTGCCTT
BCL2 Ex2 8 BC64 AF	CCATCTCATCCCTGCGTGTCTCCGACTCAGCTGAGTTCCGACGATCTCTGGGAAGGATGGCGC
BCL2 Ex2 8 trP1F	CCTCTCTATGGGCAGTCGGTGATCTCTGGGAAGGATGGCGC
BCL2 Ex2 8 BC64 AR	CCATCTCATCCCTGCGTGTCTCCGACTCAGCTGAGTTCCGACGATCACTCGTAGCCCCTCTGC
BCL2 Ex2 8 trP1R	CCTCTCTATGGGCAGTCGGTGATCACTCGTAGCCCCTCTGC
PIM1 Ex3 79 BC65 AF	CCATCTCATCCCTGCGTGTCTCCGACTCAGTCCTGGCACATCGATCGTGGAGAAGGACCGGATTT
PIM1 Ex3 79 trP1F	CCTCTCTATGGGCAGTCGGTGATCGTGGAGAAGGACCGGATTT
PIM1 Ex3 79 BC65 AR	CCATCTCATCCCTGCGTGTCTCCGACTCAGTCCTGGCACATCGATCTCACCCCACCCACTCATC
PIM1 Ex3 79 trP1R	CCTCTCTATGGGCAGTCGGTGATCTCACCCCACCCACTCATC
TNFRSF14 Ex8 266 BC66 AF	CCATCTCATCCCTGCGTGTCTCCGACTCAGCCGCAATCATCGATCACAGCGGAAAAGACAGGAG
TNFRSF14 Ex8 266 trP1F	CCTCTCTATGGGCAGTCGGTGATCACAGCGGAAAAGACAGGAG
TNFRSF14 Ex8 266 BC66 AR	CCATCTCATCCCTGCGTGTCTCCGACTCAGCCGCAATCATCGATTCAGTGGTTTGGGCTCCTC
TNFRSF14 Ex8 266 trP1R	CCTCTCTATGGGCAGTCGGTGATTCAGTGGTTTGGGCTCCTC
BCL2 Ex2 10-11 BC53 AF	CCATCTCATCCCTGCGTGTCTCCGACTCAGCTGGCAATCCTCGATCCGTTGCTTTTCCTCTGGG
BCL2 Ex2 10-11 trP1F	CCTCTCTATGGGCAGTCGGTGATCCGTTGCTTTTCCTCTGGG
BCL2 Ex2 10-11 BC53 AR	CCATCTCATCCCTGCGTGTCTCCGACTCAGCTGGCAATCCTCGATCATCTCCCGCATCCCACTC
BCL2 Ex2 10-11 trP1R	CCTCTCTATGGGCAGTCGGTGATCATCTCCCGCATCCCACTC
CARD11 Ex5 250 BC54 AF	CCATCTCATCCCTGCGTGTCTCCGACTCAGCCGGAGAATCGCGATGGAGGAGGAATGTAAGCTGGA
CARD11 Ex5 250 trP1F	CCTCTCTATGGGCAGTCGGTGATGGAGGAGGAATGTAAGCTGGA
CARD11 Ex5 250 BC54 AR	CCATCTCATCCCTGCGTGTCTCCGACTCAGCCGGAGAATCGCGATCCTTCTTGGGCCGATTTTCA
CARD11 Ex5 250 trP1R	CCTCTCTATGGGCAGTCGGTGATCCTTCTTGGGCCGATTTTCA
HIST1H1B Ex1 107 BC55 AF	CCATCTCATCCCTGCGTGTCTCCGACTCAGTCCACCTCCTCGATCTTCTAAGGAGCGCAATGGC
HIST1H1B Ex1 107 trP1F	CCTCTCTATGGGCAGTCGGTGATCTTCTAAGGAGCGCAATGGC
HIST1H1B Ex1 107 BC55 AR	CCATCTCATCCCTGCGTGTCTCCGACTCAGTCCACCTCCTCGATAGGCCGCCTTCTTGTTGA
HIST1H1B Ex1 107 trP1R	CCTCTCTATGGGCAGTCGGTGATAGGCCGCCTTCTTGTTGA
BCL2 Ex2 135 BC56 AF	CCATCTCATCCCTGCGTGTCTCCGACTCAGCAGCATTAATTCGATTTCGCCGAGATGTCCAGC
BCL2 Ex2 135 trP1F	CCTCTCTATGGGCAGTCGGTGATTTCGCCGAGATGTCCAGC
BCL2 Ex2 135 BC56 AR	CCATCTCATCCCTGCGTGTCTCCGACTCAGCAGCATTAATTCGATCCGAACTCAAAGAAGGCCAC
BCL2 Ex2 135 trP1R	CCTCTCTATGGGCAGTCGGTGATCCGAACTCAAAGAAGGCCAC
KMT2D Ex10 831 BC59 AF	CCATCTCATCCCTGCGTGTCTCCGACTCAGTCCTTGATGTTCGATCCTGTCTCCTGTGCCTGAG
KMT2D Ex10 831 trP1F	CCTCTCTATGGGCAGTCGGTGATCCTGTCTCCTGTGCCTGAG
KMT2D Ex10 831 BC59 AR	CCATCTCATCCCTGCGTGTCTCCGACTCAGTCCTTGATGTTCGATTCAGGGGACAGATGCGATT
KMT2D Ex10 831 trP1R	CCTCTCTATGGGCAGTCGGTGATTCAGGGGACAGATGCGATT

Supplementary Table S3. Immunohistochemical findings of FL and aggressive BCL samples.

Case	Diagnosis	CD10	BCL6	MUM1	BCL2	MIB-1 (\%)	CD20	P53*	MYC\# (\%)
De novo aggressive B-cell lymphoma									
1	HGBL-TH	+	+	-	+	70	+	+	40 (w)
2	DLBCL	+	+	-	+	40	+	\bigcirc	-
3	DLBCL	+	+	-	+	70	+	+	-
	DLBCL	+	+	-	+	70	+	+	-
4	DLBCL	+	+	-	+	70	+	-	30 (h)
5	DLBCL	+	+	-	+	40	+	-	5 (s)
6	DLBCL	+	+	-	+	30	+	-	-
Transformed FL									
7	FL	+	+	-	+	10	+	-	-
	DLBCL	+	+	+	+	90	+	-	30 (s)
8	HGBL-DH	+	+	-	+	80	+	-	60 (s)
9	FL	+	+	-	+	5	+	-	-
	HGBL-DH	+	+	-	+	70	+	-	40 (h)
10	FL	+	+	-	+	N/A	+	-	-
	DLBCL	+	+	-	+	50	+	-	15 (s)

DH, Double-hit; N/A, Not available; TH, Triple-hit. *Only samples with a strong staining of $\geq 20 \%$ of neoplastic cells were considered positive. \#Percentages represent the share of positive lymphoma cells with strong (s), heterogeneous (h) or weak (w) staining. ${ }^{\circ}$ Complete loss in the neoplastic cells.

Supplementary Table S4. Overview of non-synonymous and splice site mutations.

Case	Diagnosis	Gene	Transcript	Predicted protein change	cDNA change	VAF (\%)	Coverage	Validation	CADD Score*
De novo aggressive B-cell lymphoma									
1	ISFN	BCL2	NM_000633	p.D31N	c.91G>A	15	3210	Confirmed	22.0
	HGBL-TH	$\begin{gathered} \hline \text { BCL2 } \\ \text { BCL2 } \\ \text { TP53 } \\ \text { GNA13 } \\ \hline \end{gathered}$	NM 000633 NM 000633 NM_000546 NM_006572		$\begin{gathered} \text { c.166A>T } \\ \text { c. } 256 _257 \mathrm{delinsTC} \\ \text { c.817C>T } \\ \text { c. } 977 \mathrm{~T}>\mathrm{G} \\ \hline \end{gathered}$	$\begin{aligned} & \hline 42 \\ & 45 \\ & 52 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2427 \\ & 2426 \\ & 8697 \\ & 2322 \\ & \hline \end{aligned}$	ND ND Confirmed Confirmed	$\begin{gathered} 10.65 \\ 21.6 \\ 25.3 \end{gathered}$
2	ISFN	$\begin{gathered} \text { BCL2 } \\ \text { BCL2 } \\ \text { BCL2 } \\ \text { CREBBP } \\ \hline \end{gathered}$	NM_000633 NM_000633 NM_000633 NM_004380	$\begin{gathered} \text { p.G33R } \\ \text { p.G101A } \\ \text { p.A113G } \\ \text { p. } \mathbf{S 1 6 8 0 \mathrm { del }} \end{gathered}$	c.97G>A c.302G $>C$ C c.338C>G c. $5039 _5041$ del	$\begin{gathered} \hline 8 \\ 7 \\ 7 \\ \hline 28 \\ \hline \end{gathered}$	$\begin{gathered} \hline 3266 \\ 7474 \\ 7482 \\ 588 \\ \hline \end{gathered}$	Confirmed Confirmed Confirmed Confirmed	$\begin{gathered} \hline 15.30 \\ 25.1 \\ 13.61 \\ 22.7 \\ \hline \end{gathered}$
	DLBCL	BCL2 BCL2 BCL2 CREBBP TP53 CARD11	NM_000633 NM_000633 NM_000633 NM_004380 NM_000546 NM 032415	p.R6G p.G33R p.A113G p.S1680del p.T150fs p.Q249P	c.16A>G c. $97 \mathrm{G}>\mathrm{A}$ c.338C>G c.5039_5041del c. 447 . 459 del c. $746 \mathrm{~A}>\mathrm{C}$	$\begin{aligned} & 20 \\ & 21 \\ & 22 \\ & 67 \\ & 52 \\ & 46 \end{aligned}$	$\begin{gathered} 2481 \\ 3097 \\ 6631 \\ 565 \\ 9399 \\ 7624 \\ \hline \end{gathered}$	Confirmed Confirmed Confirmed Confirmed ND Confirmed	$\begin{gathered} \hline 21.2 \\ 15.30 \\ 13.61 \\ 22.7 \\ 28.7 \\ 27.1 \end{gathered}$
3	ISFN	CREBBP CREBBP	$\begin{aligned} & \text { NM_004380 } \\ & \text { NM_004380 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { p.Y1503D } \\ & \text { p.N1589fs } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { c.4507T>G } \\ & \text { c. } 4767 \mathrm{del} \end{aligned}$	$\begin{aligned} & 16 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 1673 \\ & 1171 \end{aligned}$	$\begin{gathered} \text { Confirmed } \\ \text { ND } \end{gathered}$	$\begin{aligned} & \hline 29.4 \\ & 26.3 \end{aligned}$
	DLBCL	BCL2 KMT2D CREBBP CREBBP TP53	NM 000633 NM 003482 NM_004380 NM_004380 NM 000546	p.W214C p.15455fs p.Y1503D p.N1589fs p.H179N	$\begin{gathered} \mathrm{c} .642 \mathrm{G}>\mathrm{T} \\ \text { c. } 16365 _16371 \mathrm{del} \\ \text { c.4507T>G } \\ \text { c. } 4767 \mathrm{del} \\ \text { c. } 535 \mathrm{C}>\mathrm{A} \\ \hline \end{gathered}$	$\begin{aligned} & 51 \\ & 47 \\ & 26 \\ & 45 \\ & 83 \\ & \hline \end{aligned}$	$\begin{gathered} 32774 \\ 4421 \\ 8807 \\ 1983 \\ 3576 \\ \hline \end{gathered}$	ND ND Confirmed ND ND	$\begin{gathered} 32 \\ 36 \\ 29.4 \\ 26.3 \\ 28.2 \\ \hline \end{gathered}$
	DLBCL	BCL2 KMT2D CREBBP CREBBP TP53	NM 000633 NM_003482 NM_004380 NM_004380 NM_000546	p.W214C p.15455fs p.Y1503D p.N1589fs p. H179N	$\begin{gathered} \text { c. } 642 \mathrm{G}>\mathrm{T} \\ \text { c. } 16365 _16371 \mathrm{del} \\ \text { c.4507T>G } \\ \text { c.4767del } \\ \text { c. } 535 \mathrm{C}>\mathrm{A} \\ \hline \end{gathered}$	$\begin{aligned} & 60 \\ & 28 \\ & 21 \\ & \mathbf{4 2} \\ & 84 \\ & \hline \end{aligned}$	$\begin{gathered} 14102 \\ 491 \\ 1385 \\ 1187 \\ 3949 \\ \hline \end{gathered}$	ND ND Confirmed ND ND	$\begin{gathered} \hline 32 \\ 36 \\ 29.4 \\ 26.3 \\ 28.2 \\ \hline \end{gathered}$
4	ISFN	BCL2 TNFRSF14 HIST1H1D EP300	NM_000633 NM_003820 NM_005320 NM_001429		$\begin{gathered} \text { c. } 227 \mathrm{C}>\mathrm{A} \\ \text { c. } 35 \mathrm{G}>\mathrm{A} \\ \text { c. } 231 \mathrm{C}>\mathrm{G} \\ \text { c. } 1244 \mathrm{~T}>\mathrm{C} \\ \hline \end{gathered}$	$\begin{aligned} & 44 \\ & 25^{\#} \\ & 31 \\ & 24 \\ & \hline \end{aligned}$	$\begin{aligned} & 1015 \\ & 7259^{+} \\ & 6107 \\ & 841 \\ & \hline \end{aligned}$	Confirmed Confirmed Confirmed Confirmed	$\begin{gathered} 13.25 \\ 35 \\ 24.8 \\ 29.3 \\ \hline \end{gathered}$
	DLBCL	BCL2 BCL2 KMT2D EZH2 TNFRSF14 HIST1H1D EP300	NM_000633 NM_000633 NM_003482 NM_004456 NM_003820 NM_005320 NM 001429	$\begin{gathered} \text { p.P59S } \\ \text { p.A76D } \\ \text { Splice site } \\ \text { p.Y646N } \\ \text { p.W12* } \\ \text { p.N77K } \\ \text { p.L415P } \end{gathered}$	c.175C>T c.227C>A c. $10207+2 T>C$ c.1936T>A c. $35 G>A$ c. $231 C>G$ c.1244T>C	$\begin{aligned} & 24 \\ & \mathbf{2 3} \\ & 18 \\ & 32 \\ & 14 \\ & 13 \\ & 19 \end{aligned}$	5580 5649 3764 2152 182 8350 1200	ND Confirmed ND ND Confirmed Confirmed Confirmed	$\begin{gathered} \hline 13.71 \\ \mathbf{1 3 . 2 5} \\ 34 \\ 32 \\ \mathbf{3 5} \\ \mathbf{2 4 . 8} \\ \mathbf{2 9 . 3} \\ \hline \end{gathered}$
5	ISFN	BCL2 BCL2 BCL2 KMT2D CREBBP IGLL5	NM_000633 NM_000633 NM_000633 NM_003482 NM_004380 NM $\mathbf{0 0 1 2 5 6 2 9 6}$	$\begin{gathered} \text { p.P53A } \\ \text { p.R129C } \\ \text { p.F153L } \\ \text { p.Q4473* } \\ \text { p.V1371D } \\ \text { p.C3S } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{c} .157 \mathrm{C}>\mathrm{G} \\ \mathrm{c} .385 \mathrm{C}>\mathrm{T} \\ \mathrm{c} .457 \mathrm{~T}>\mathrm{C} \\ \mathrm{c} .13417 \mathrm{C}>\mathrm{T} \\ \mathrm{c} .4112 \mathrm{~T}>\mathrm{A} \\ \mathrm{c} .8 \mathrm{G}>\mathrm{C} \\ \hline \end{gathered}$	$\begin{gathered} 28 \\ 13 \\ 8 \\ 24 \\ 30 \\ 25 \\ \hline \end{gathered}$	$\begin{gathered} 2009 \\ 7370 \\ 8140 \\ 702 \\ 956 \\ \mathbf{1 3 3 1} \\ \hline \end{gathered}$	Confirmed Confirmed Confirmed Confirmed ND ND	$\begin{gathered} 10.60 \\ 24.3 \\ 32 \\ 43 \\ 29.4 \\ 0.018 \\ \hline \end{gathered}$

5	DLBCL	BCL2	NM_000633	p.P59S	c.175C>T	51	2893	ND	13.71
		BCL2	NM_000633	p.A82T	c. $244 \mathrm{G}>\mathrm{A}$	50	3013	ND	12.65
		BCL2	NM-000633	p.D102G	c.305A>G	40	8896	ND	26.2
		KMT2D	NM_003482	p.Q4473*	c. $13417 \mathrm{C}>\mathrm{T}$	30	4234	Confirmed	43
		EZH2	NM_004456	p.Y646F	c.1937A>T	27	10985	ND	25.3
		IGLL5	NM_001256296	p.C3S	c.8G>C	54	1658	ND	0.018
		IGLL5	NM_001256296	p.G13W	c. $37 \mathrm{G}>\mathrm{T}$	66	1449	ND	5.721
		GNA13	NM ${ }^{\text {a }} 006572$	p.M68R	c. $203 \mathrm{~T}>\mathrm{G}$	34	18503	ND	24.1
		GNA13	NM_006572	p.D155A	c. $464 \mathrm{~A}>\mathrm{C}$	35	9386	ND	27.7
		GNA13	NM_006572	p.T203A	c.607A>G	38	118	Confirmed	23.8
		HIST1H1D	NM-005320	p.T93S	c. $278 \mathrm{C}>\mathrm{G}$	45	21464	ND	23.3
		MEF2B	NM 001145785	p.R3M	c.8G>T	36	13251	$\xrightarrow{\text { ND }}$	26.1
		CD79B	NM_000626	p.Y196H	c. $586 \mathrm{~T}>\mathrm{C}$	38	5105	Confirmed	24.6
6	ISFN	BCL2	NM_000633	p.G5V	c.14G>T	14	3104	Confirmed	25.5
		BCL2	NM_000633	p.A42V	c.125C>T	15	8584	Confirmed	15.15
		BCL2	NM_000633	p.S87R	c.261C>A	26	1338	Confirmed	21.2
		KMT2D	NM_003482	p.S468*	c.1403C>A	13	9012	Confirmed	35
		KMT2D	NM_003482	p.S477P	c.1429T>C	13	13514	Confirmed	14.21
		CREBBP	NM-004380	p.Y1503D	c.4507T>G	8	6881	Confirmed	29.4
		IGLL5	NM_001256296	p.P19S	c.55C>T	16	694	ND	10.87
		IGLL5	NM-001256296	p.A30V	c.89C>T	26	702	ND	5.331
		GNA13	NM̄_006572	p.L54*	c.159_161delinsCTA	15	15333	Confirmed	35
		GNA13	NM_006572	p.D222N	c. $664 \mathrm{G}>\mathrm{A}$	17	695	Confirmed	32
		MEF2B	NM 001145785	p.E77A	c. $230 \mathrm{~A}>\mathrm{C}$	14	1248	Confirmed	27.9
		TBL1XR1 PIM1	NM_024665 NM 002648	p.L198*	c.592_609delinsT	34	$\begin{aligned} & 16045 \\ & 2241 \end{aligned}$	ND Confirmed	$\begin{gathered} 35 \\ 24.1 \end{gathered}$
	DLBCL	BCL2	NM_000633	p.L86V	c. $256 \mathrm{C}>\mathrm{G}$	12	1902	Confirmed	18.04
		BCL2	NM_000633	p.P90S	c.268C>T	23	1911	Confirmed	23.9
		BCL2	NM_000633	p.F153L	c.457T>C	12	14816	ND	32
		BCL2	NM_000633	p.V162D	c.485T>A	10	5631	ND	26.5
		EZH2	NM_004456	p.Y646C	c.1937A>G	27	2218	ND	25.7
		CREBBP	NM_004380	p.Y1482S	c. $4445 \mathrm{~A}>\mathrm{C}$	15	6079	Confirmed	28.4
		MEF2B	NM $=001145785$	p.D83V	c.248A>T	22	1813	ND	26.5
		TBL1XR1	NM_024665	p.L198*	c.592_609delinsT	23	10662	ND	35
Transformed FL									
7	ISFN	BCL2	NM_000633	p.G8E	c.23G>A	12	1398	Confirmed	28.1
		KMT2D	NM-003482	p.W4987*	c.14960G>A	9	7593	Confirmed	45
		TNFRSF14	NM_003820	p.V219G	c. $656 \mathrm{~T}>\mathrm{G}$	15*	46363 ${ }^{\#}$	Confirmed	1.922
	FL	BCL2	NM_000633	p.G8E	c.23G>A	23	1629	Confirmed	28.1
		KMT2D	NM_003482	p.W4987*	c.14960G>A	25	12168	Confirmed	45
		EZH2	NM_004456	p.Y646N	c.1936T>A	14	334	Confirmed	32
		CREBBP	NM_004380	p.C1237Y	c. $3710 \mathrm{G} \times \mathrm{A}$	24	5787	ND	31
		CREBBP	NM-004380	p.K1586fs	c.4755del	23	1718	ND	35
		TNFRSF14	NM_003820	p.V219G	c.656T>G	29	164	Confirmed	1.922
	DLBCL	BCL2	NM_000633	p.G8E	c.23G>A	50	2590	Confirmed	28.1
		BCL2	NM-000633	p.P75L	c. $224 \mathrm{C}>\mathrm{T}$	62	1788	ND	8.790
		KMT2D	NM_003482	p.W4987*	c.14960G>A	48	19088	Confirmed	45
		TNFRSF14	NM-003820	p.V219G	c.656T>G	70	107	Confirmed	1.922
		PIM1	NM_002648	p.E79D	c. $237 \mathrm{G}>\mathrm{C}$	32	4210	Confirmed	19.23
8	ISFN	EZH2	NM_004456	p.Y646N	c.1936T>A	32	715	Confirmed	32
		CREBBP	NM_004380	p.L1499P	c.4496T>C	52\#	56313 ${ }^{\text {\# }}$	Confirmed	24.5
		CARD11	NM_032415	p.S250P	c. $748 \mathrm{~T}>\mathrm{C}$	23	9399	Confirmed	23.9
	HGBL-DH	BCL2	NM_000633	p.D10A	c.29A>C	37	4171	Confirmed	25.0
		BCL2	NM_000633	p.N11D	c.31A>G	32	4766	Confirmed	23.1
		EZH2	NM_004456	p.Y646N	c.1936T>A	56	21249	Confirmed	32
		CREBBP	NM_004380	p.L1499P	c.4496T>C	77	15559	Confirmed	24.5
		TNFRSF14	NM_003820	p.S171C	c. $512 \mathrm{C}>\mathrm{G}$	68	5035	ND	24.2

9	ISFN	BCL2 BCL2	NM_000633 NM 000633	$\begin{gathered} \hline \text { p.L86F } \\ \text { p.E135D } \end{gathered}$	$\begin{aligned} & \hline \mathrm{c} .256 \mathrm{C}>\mathrm{T} \\ & \mathrm{c} .405 \mathrm{G}>\mathrm{C} \end{aligned}$	15	110	Confirmed Confirmed	$\begin{aligned} & 19.85 \\ & 18.34 \end{aligned}$
	FL	BCL2	NM_000633	p.L86F	c.256C>T	25	301	Confirmed	19.85
		BCL2	NM_000633	p.E135D	c.405G>C	18	887	Confirmed	18.34
	HGBL-DH	BCL2	NM_000633	p.L86F	c.256C>T	55	2690	Confirmed	19.85
		EZH2	NM 004456	p.Y646F	c. $1937 \mathrm{~A}>$ T	23	4420	Confirmed	25.3
		HIST1H1B	NM ${ }^{-0} 05322$	p.S107C	c.320C>G	32	1371	Confirmed	32
10	ISFN	EZH2	NM_004456	p.Y646F	c.1937A>T	9	357	Confirmed	25.3
	FL	EZH2	NM_004456	p.Y646F	c.1937A>T	52	409	Confirmed	25.3
		KMT2D	NM_003482	p.S831*	c. $2492 \mathrm{C}>\mathrm{A}$	13	505	Confirmed	22.2
	DLBCL	EZH2	NM_004456	p.Y646F	c.1937A>T	40	1559	Confirmed	25.3
		KMT2D	NM_003482	p.S831*	c.2492C>A	21	1131	Confirmed	22.2

Bold letters indicate that mutations are shared betw
deleterious. \#Bidirectional single amplicon sequencing.

Supplementary Table S5. Overview of synonymous and 5'UTR mutations of BCL2.

Case	Diagnosis	Protein level	cDNA change	VAF (\%)	Coverage
De novo aggressive B-cell lymphoma					
1	ISFN	-	-	-	-
	HGBL-TH	5‘UTR 5'UTR Synonymous Synonymous	$\begin{gathered} \text { c.1-18G>A } \\ \text { c.1-1G>A } \\ \text { c.207C>T } \\ \text { c. } 381 G>A \\ \hline \end{gathered}$	$\begin{aligned} & 42 \\ & 42 \\ & 44 \\ & 30 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 7049 \\ 7057 \\ 2475 \\ 27929 \\ \hline \end{gathered}$
2	ISFN	5'UTR	c.1-2G>C	12	1516
	DLBCL	$\begin{aligned} & \hline \text { 5‘UTR } \\ & \text { 5‘UTR } \end{aligned}$	$\begin{aligned} & \hline \text { c. } 1-17 C>T \\ & \text { c. } 1-2 G>C \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 2472 \\ & 2478 \end{aligned}$
3	ISFN	Synonymous	c.67C>T	15	6895
	DLBCL	5‘UTR Synonymous Synonymous	$\begin{gathered} \hline \mathrm{c} .1-17 \mathrm{C}>\mathrm{G} \\ \mathrm{c} .67 \mathrm{C}>\mathrm{T} \\ \mathrm{c} .588 \mathrm{~T}>\mathrm{C} \end{gathered}$	$\begin{aligned} & \hline 47 \\ & \mathbf{5 0} \\ & 48 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 5862 \\ 6282 \\ 18642 \\ \hline \end{gathered}$
	DLBCL	5‘UTR Synonymous Synonymous	$\begin{gathered} \hline \mathrm{c} .1-17 \mathrm{C}>\mathrm{G} \\ \mathrm{c} .67 \mathrm{C}>\mathrm{T} \\ \mathrm{c} .588 \mathrm{~T}>\mathrm{C} \end{gathered}$	$\begin{aligned} & 55 \\ & 55 \\ & 58 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2601 \\ & 3771 \\ & 8330 \\ & \hline \end{aligned}$
4	ISFN	5'UTR	c. $1-49 \mathrm{G}>\mathrm{C}$	9	1085
	DLBCL	5'UTR	c.1-1G>A	15	8031
5	ISFN	-	-	-	-
	DLBCL	Synonymous Synonymous	$\begin{aligned} & \hline \text { c. } 186 \mathrm{C}>\mathrm{T} \\ & \text { c. } 261 \mathrm{C}>\mathrm{T} \end{aligned}$	$\begin{aligned} & 51 \\ & 52 \\ & \hline \end{aligned}$	$\begin{aligned} & 2892 \\ & 3191 \\ & \hline \end{aligned}$
6	ISFN	5‘UTR Synonymous Synonymous Synonymous Synonymous Synonymous	$\begin{gathered} \hline \text { c. } 1-1 \mathrm{G}>\mathrm{C} \\ \text { c. } 67 \mathrm{C}>\mathrm{T} \\ \text { c. } 291 \mathrm{C}>\mathrm{G} \\ \text { c. } 355 \mathrm{C}>\mathrm{T} \\ \mathrm{c} .438 \mathrm{G}>\mathrm{A} \\ \mathrm{c} .456 \mathrm{G}>\mathrm{A} \end{gathered}$	$\begin{gathered} \hline 21 \\ 21 \\ 16 \\ 12 \\ 17 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} \hline 3096 \\ 9335 \\ 26582 \\ 26894 \\ 12968 \\ 15227 \\ \hline \end{gathered}$
	DLBCL	5'UTR	c. 1-17C>T	26	5333

Transformed FL

7	ISFN	5'UTR Synonymous Synonymous	$\begin{gathered} \text { c. } 1-17 C>A \\ \text { c. } 24 G>A \\ \text { c. } 67 C>T \\ \hline \end{gathered}$	$\begin{aligned} & 11 \\ & 12 \\ & 11 \end{aligned}$	$\begin{aligned} & 1391 \\ & 1398 \\ & 1981 \end{aligned}$
	FL	5'UTR Synonymous Synonymous	$\begin{gathered} \hline \mathrm{c} .1-17 C>A \\ \text { c. } 24 G>A \\ \text { c. } 67 C>T \end{gathered}$	$\begin{aligned} & 22 \\ & 23 \\ & 24 \\ & \hline \end{aligned}$	$\begin{aligned} & 1609 \\ & 1630 \\ & 2201 \end{aligned}$
	DLBCL	5'UTR Synonymous Synonymous Synonymous Synonymous	$\begin{gathered} \text { c. } 1-17 \mathrm{C}>\mathrm{A} \\ \text { c. } 67 \mathrm{C}>\mathrm{T} \\ \mathrm{c} 354 \mathrm{G}>\mathrm{A} \\ \mathrm{c} .408 \mathrm{G}>\mathrm{A} \\ \text { c. } 447 \mathrm{C}>\mathrm{G} \\ \hline \end{gathered}$	$\begin{aligned} & \mathbf{5 0} \\ & 56 \\ & 25 \\ & 55 \\ & 54 \end{aligned}$	$\begin{aligned} & 2574 \\ & 3402 \\ & 8459 \\ & 7506 \\ & 7523 \\ & \hline \end{aligned}$
8	ISFN	$\begin{aligned} & \text { 5'UTR } \\ & \text { 5'UTR } \\ & \hline \end{aligned}$	c.1-49G>C c. $1-17 \mathrm{C}>\mathrm{G}$	$\begin{aligned} & 29 \\ & 14 \end{aligned}$	$\begin{aligned} & 4229 \\ & 4215 \\ & \hline \end{aligned}$
	HGBL-DH	5'UTR Synonymous	$\begin{gathered} \text { c. } 1-49 \mathrm{G}>\mathrm{C} \\ \text { c. } 426 \mathrm{G}>\mathrm{A} \end{gathered}$	$\begin{aligned} & 37 \\ & 43 \end{aligned}$	$\begin{aligned} & 4151 \\ & 8014 \end{aligned}$
9	ISFN	Synonymous Synonymous Synonymous	$\begin{aligned} & \text { c. } 66 G>A \\ & \text { c. } 258 C>T \\ & \text { c. } 357 G>A \end{aligned}$	$\begin{gathered} 10 \\ 16 \\ 9 \end{gathered}$	$\begin{gathered} 389 \\ 109 \\ 1637 \end{gathered}$
	FL	Synonymous Synonymous Synonymous	$\begin{aligned} & \hline \text { c.66G>A } \\ & \text { c. } 258 \mathrm{C}>\mathrm{T} \\ & \mathrm{c} .357 \mathrm{G}>A \end{aligned}$	$\begin{aligned} & 23 \\ & 23 \\ & 13 \end{aligned}$	$\begin{gathered} \hline 618 \\ 295 \\ 1832 \end{gathered}$
	HGBL-DH	Synonymous Synonymous Synonymous	$\begin{gathered} \text { c. } 66 G>A \\ \text { c. } 93 T>C \\ \text { c. } 258 \mathrm{C}>\mathrm{T} \end{gathered}$	$\begin{aligned} & 46 \\ & 48 \\ & 56 \\ & \hline \end{aligned}$	$\begin{aligned} & 5918 \\ & 5722 \\ & 2682 \\ & \hline \end{aligned}$
10	ISFN	5‘UTR	c.1-63G>A	4	2232
	FL	$\begin{aligned} & \hline \text { 5‘UTR } \\ & \text { 5'UTR } \\ & \hline \end{aligned}$	c.1-63G>A c.1-17C>T	$\begin{array}{r} 29 \\ 29 \\ \hline \end{array}$	$\begin{aligned} & \hline 3562 \\ & 3608 \\ & \hline \end{aligned}$
	DLBCL	$\begin{aligned} & \text { 5‘UTR } \\ & \text { 5'UTR } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { c. } 1-63 G>A \\ & \text { c. } 1-17 C>T \end{aligned}$	$\begin{aligned} & 26 \\ & 26 \end{aligned}$	$\begin{array}{r} 2970 \\ 3013 \\ \hline \end{array}$

All mutations refer to the NM 000633 transcript of the BCL2 gene. Bold letters indicate that mutations are shared between ISFN and FL and/or aggressive BCL. 5'UTR, 5' untranslated region.

Supplementary figures

Supplementary Figure S1. Branched evolution illustrated by phylogenetic trees. The trees were constructed using the ten most prevalent subclones of every sample and rooted to the corresponding VDJ germline sequence. Aggressive BCL is represented in blue, FL in green and ISFN in red. The bar graphs show the share of each subclonal sequence out of the total number of clone-specific reads of the respective sample.

Supplementary Figure S2. Patterns of clonal evolution based on the distribution of private and shared mutations. The respective evolutionary pattern is indicated in parentheses. All variants are depicted at protein level. Mutations highlighted in red were gained during the evolution. Synonymous and 5'UTR variants of BCL2 are not shown, but were also taken into account for the construction. The existence of "Progenitor clones" was assumed based on the distribution of mutations.

